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THE SET OF FINITE OPERATORS 
IS NOWHERE DENSE 

BY 

DOMINGO A. HERRERO 

ABSTRACT. A bounded linear operator A on a complex, separable, in
finite dimensional Hilbert space 'H is called finite if \\AX — XA — 11| ^ 1 
for each X G L CH ). It is shown that the class of all finite operators is a 
closed nowhere dense subset of L {9-( ). 

Introduction. In [15], J. R Williams introduced the notion of finite operator. In 
a finite dimensional Hilbert space, the commutator of two linear operators has trace 
0, and therefore 0 belongs to the numerical range of every commutator. Let L {f}{ ) 
denoted the algebra of all (bounded linear) operators acting on a complex, separable, 
infinite dimensional Hilbert space 9f. We say that A G L {Of ) is finite if 0 G W(AX — 
XA)~ for all X in L(9f), where W(T) denotes the numerical range of the operator 
T. In that article, Williams proves that the class J of all finite operators is closed in 
L(9f), and that the following three conditions are equivalent for A in L(9f): 

(1) Ae <J. 
(2) ||AX -XA - 1|| ^ 1 for all X e L(tt) (that is, the identity operator is 

"orthogonal" to the range of the inner derivation induced by A). 
(3) There exists a state/ such that/(AX) =f(XA) for all X G L{^H). 
Furthermore, if A G 7, then the C*-algebra C*(A) (generated by A and 1) is 

included in J. 
As J. P. Williams explains in his article, the adjective "finite" used to describe the 

operators in $ is admittedly ad hoc. It comes from the fact that J D ^ ~ , where 
^ „ = { I G £ ( ^ 0 • T has a reducing subspace of dimension n) and ^ = U ^ ^ ^ . 
(The most difficult open problem in this area is the question of whether 7 — %^~\ 
see [10],[15].) 

The existence of non-finite operators follows immediately from, for instance, the 
Brown-Pearcy characterization of commutators [4]. (For more information about the 
class J, the reader is referred to [2],[5],[7],[9],[10].) 

In the Introduction of [11] (joint work with S. J. Szarek), the author claims without 
proof that %, ~ is nowhere dense in L (9-( ). The purpose of this note is to provide 
such a proof. Indeed, it will be shown that J is nowhere dense in L {Of ). 
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THE SET OF FINITE OPERATORS IS NOWHERE DENSE 321 

By William's results, it is sufficient to show that for each T in a dense subset 
of L(9{) and for each e > 0, there exists Te e L(fH\ with \\T - Te\\ < e, such 
that C*(Te) contains some non-finite operator. The proof will be given in Section 3. 
Section 2 contains all the necessary auxiliary results, including a very general result on 
approximation of operators that has some interest in itself (see Proposition 3 below). 

This note was written during the Informal Seminar on Operator Theory (Summer 
1987) held at the University of California at San Diego. The author wishes to thank the 
Department of Mathematics of UCSD and, very especially, Professors J. Agler, L. C. 
Chadwich and J. W. Helton for their hospitality. The author also wants to acknowledge 
several useful discussions with Professor Myra Panavale. 

Preliminaries on Approximation of Operators. An analytic Cauchy domain ft 
is a (not necessarily connected) bounded open subset of the complex plane C whose 
boundary consists of finitely many pairwise disjoint Jordan curves. Let M(dft) = 
"multiplication by A" on L2(3ft) (linear Lebesgue measure on 3ft), and let //2(3ft) 
denote the closure in L2(9ft) of the rational functions with poles outside ft-; H2(d£l) 
is invariant under M (3ft), and we have the decomposition 

MOCK - ( ̂ +0") zO") Ï #20n) 
WD - y 0 M ( 9 Q ) j L 2 ( 3 Q ) 0 / / 2 ( 3 Q ) > 

where M+(3ft) = M(3ft)|//20ft), a(M+0ft)) = a(M-(d£l)) = ft", ae(M+(dQ)) = 
ae(M-(dO)) = a(M(3ft)) = ae(M(dO)) = dQ, and - ind(A - Af+(3Q)) = ind(A -
M_(3n» = nul(A - M+(dQ)T = nul(A - M_(3«)) = 1 and nul(A - M+0Q)) = 
nul(A - M_(3Q))* = 0 for all A G ft (see, e.g!, [8, Chapter 3] for details). Here 
cr(-) and ae(-) denote the spectrum and, respectively, the essential spectrum of an 
operator. The reader is referred to [12] for definition and properties of the Fredholm 
and semi-Fredholm operators, index, stability, etc. 

Given A\ G L{9{\) and A2 E £(•?£), M 0A 2 will denote the direct sum of Ai and 
A2 acting in the usual fashion on the orthogonal direct sum 9l\ © 9{2 of the underlying 
spaces. By A[a) we indicate the direct sum of a(0 ^ a ^ oo) copies of A\ acting on 
the orthogonal direct sum Hx

 (a) of a copies of 9{\. 

LEMMA 1. Suppose A G L(^HQ), a(A) C ft (an analytic Cauchy domain) and 

S-(A Z \ * ( l < a < o o V 
V 0 M+(3n)<a> / //2Oft) ( a ) U = " h 

then the C*-algebra C*(S) generated by S and 1 contains the orthogonal projection 
onto % andH2(dQ)(a\ 

PROOF. According to [1], there exists a function </>, analytic on a neighborhood 
of ft~ such that </>(Q~) = D~ and (j>(dQ) = 3D (D := open unit disk). Clearly, 
</>(M+(3ft)(a)), </>(A) and (f>(S) are well-defined via functional calculus; moreover, 

<f)(M+(dQ)(a)) = "multiplication by (/>(A)" on //2(3ft) Xoc) 
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is an isometry, and <r(c/>04)) = </>(G(A)) C </>(Q) = D. 
Therefore, </>(M+(3Q)(a))™ is an isometry for all m = 1,2,..., and 

ii<wn —o 

exponentially, as m —• oo, because the spectral radius of (j>(A) is less than 1. 
Observe that a(A) C {A G C : A -M+(3Q) (a) is left invertible}. Thus, according to 

[6] (or [8, Chapter 3]), there exists W invertible, W = ({>*), such that 

It follows that 

é(sr-(l x V < w ° )(l ~x) 
^ ~ U l A 0 0(M+(3O)<«>)Ao 1 / 

= / 0(A)m X(/>(M+(3Q)(a))m - </>(A)mX \ 
V 0 (f)(M+(dQ.)(a))m ) 

and 

wsrmsr = (°0 l + WM+iw«rb-xWM+w«r)+0(ll^ni)-
Since 1 ^ 1 + [^(M+(aQ)(a))w]*X*X[(/)(M+OQ)(ûr)]w ^ 1 + ||X||2, and U(A)m\\ 

converges exponentially to 0, it is not difficult to conclude that the sequence 

l )m=\ 

converges in the norm to the orthogonal projection onto H2(dQ,fa) (and therefore this 
projection belongs to C*(S). 

Since C*(S) contains the identity, the orthogonal projection onto 9f$ also belongs 
to C*(5). D 

REMARK 2. The conclusion is the same if S is replaced by 

(A 0 \H0 

VZ M_(aQ)(oo)/ [L2 2(dn)GH2(dQ)](a) 

( A G I ( ^ J ( A ) C Q ) . 

PROPOSITION 3. Let T G L{0i^; T can be uniformly approximated by operators of 
the form S = /?i©/?20/?3> where the R/s (Rj G L (^7)) satisfy the following condition: 
given any three operators R\2lRn and R23 (/?// : %,} —> ^ / ) , the C*-algebra C*(Sf) 
generated by 

(R\ Rn Rn\ ^i 
S'=\ 0 R2 R23 ^2 

V 0 0 R3J ^ 3 

and 1 contains the orthogonal projections {/^},3=1 onto the subspaces {^y}y=1. 
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PROOF. Let %^ho : C*(f) —• L(^ho) be a faithful unital *-representation of 
the C*-algebra C*(f), generated by f and Ï onto a separable Hilbert space ti^ho, 
where f = T + 3C(#) € £ ( # ) / ! £ ( # ) (!£(#") denotes the ideal of all compact 
operators). By Voiculescu's theorem [14], given e > 0 there exists T\ G L{H) such 
that T-Tie?K(M), \\T - r i | | < c, and 7\ - 7 0 A ©A, where A = ^ho(f)(oo\ 

According to [3] (or [8, Chapter 6]), we can find 

(S'+l®S+ii * * A £ + j l 

/?! ~ I ' 0 N{ * ^o,i , | | r - ^ i | | < e , 
V 0 0 S'^QS-iJ ^_ + , i 

where a(N\), a(Sf
+ l)1 a{S+,\), aiS-^) and a(Sf_ {) are pairwise disjoint, N\ is algebraic 

(and therefore CT(N\) is a finite set), 

s'+l ~ e^M+cao; ^ ^ , s i i ^ ejf=iM_(3oî *)<*.*>, 

1 ^ p\,i,q\,k < oo (for all / and all &) and the analytic Cauchy domains {Q\ i}™L\", 

{&\k}i=\"> {Q\,i}?=\ anc* {®i,k}k=\ n a v e pairwise disjoint closures. 
Clearly, cr(A) = cre(A) — ae(T)1 Û^hos-F(A) = Û^hos-f(T) and for each À G 

^hos-F(n 

( 0, if -oo < ind(7 - A)< oo, 
ind(A - A) = | oo, if ind(T - A) = oo, 

v —oo, if ind(7 — A) = —oo. 

Thus, by proceeding as above, we can find 

fS+A * * A 4L+,y 
R'j= 0 Nj * ^ 0 J , | | A - ^ | | < e , 

V 0 0 S-iXJ <H-j 

where a(S+j\), 0"(N-) and cr(iS_7i) are pairwise disjoint, and Nj is algebraic (j — 2,3). 
Furthermore, the results of [3] (see, especially, the comments in the first part of [8, 

Chapter 6] on this subject) indicate that we have some flexibility on our choice of the 
Cauchy domains £l\j and «Pi*. By using this flexibility, Rj can be replaced by 

fS+J * * A ÛL+j 

Rj=\ 0 Nj * 0̂,y J^-*J<*, 
V 0 0 S-jJ 3L-j 

where S+J ~ ®?=lM+(dahi)
ioo\ S-j ~ ®UiM-(^j^°°\ 0* - 2,3), ^ M C 

(«i,,-)~ C ^2,/ C (Q2,/)~ C Q3,/ C (Q3,i)~, (Q3,/)" is disjoint from a(Sf
+l)Ua(Sf_^)U 

v(S-i)U {Us,/ *(#,•)}, and ( O ^ ) " D 3>U D (<&2,*)~ D 0>2,* D (®3,*)~ 3 ®3^-
Let S =/?i ,0/?2®/?3; then | | r - 5 | | < 2c. 
Given /fy G L ^ , ^ ) \^i<j^ 3), let 

(^i R\i Rn\ 9L\ 
0 /?2 *23 ^ 2 , 

0 0 /?3 J ^ 3 
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and let Pj denote the orthogonal projection of H onto %^j (j — 1,2, 3). 
Since a C*-algebra of operators is always inverse-closed, C*(S') contains the or

thogonal projection onto every Riesz spectral subspace. Thus, in particular, C*(Sf) 
contains the projections PQJ onto the subspace ^ o j (j = 1,2, 3), as well as the pro
jections Q'+ v, Q'_x and Q\ onto the Riesz subspaces corresponding to (IJ/li ^'i ;)~» 
(LCli^i,*)" and, respectively, (Q3,i)". 

Observe that 

S'\lLanQi~\ o ' M+(dQ2,i)
{oo) * 

V 0 0 M+OQ3,i) (oo)/ 

= /M|OQ3 , i) * \ 
V 0 M + 0 « , i ) ( o o ) / ' M+(aQ3,i)(00) 

where a(Af|(3Q3,i)) = (02,i)~ C Q3,i = interior a[M+(3Q3,i)(oo)]. 
By Lemma 1, C*(S') contains the orthogonal projections P3 { onto the image of 

the subspace {0} 0 {0} 0//2(3Q35i)(oo) under the unitary equivalence. 
By a formal repetition of the same argument, we infer that C*(S') also contains 

PJ 1 a nd P\\ (defined in the obvious way). 
By repeating the operations with Q3^, £23,3,..., £23,m, we deduce that C*(S") con

tains the orthogonal projections P+j onto the subspaces ^+j (j — 1,2,3; P+\ — 

e:,i + ET=i T,,-> ^ , ; = Ef=. P& J '= 2> 3). 
Another repetition of the same argument (with help of Lemma 1 and Remark 2) 

shows that C*(Sf) contains the orthogonal projections P„j onto the subspaces ^ - , y 
(j = 1,2,3), whence we conclude that 

Pj = P+J+Poj+P-jeC*(S') 0" -1 ,2 ,3 ) . 

The proof of Proposition 3 is now complete. • 

J is nowhere dense in L {Oi ). According to our observations in the Introduction, 
it suffices to show that for each S as in Proposition 3 and each e > 0, there exists 
Se e L(9{), with 11S — Se|| < e, such that C*(Se) contains a non-finite operator. 

Let X be any non-finite operator, and define 

(Rx (e/2)l (e/2\\X\\)X\ ^ 
• S e = 0 R2 (e/2)l ^ 2 ; 

V 0 0 R3 J ^ 3 

then \\S - S£|| < 2. (e/2) = e, and (by Proposition 3) Py G C*(Se) 0 = 1 , 2 , 3). 
Therefore 

A(X) := ^(PlSeP2+P2SeP3 + ||X||PiScP3) 

But, according to [15, Theorem 8], A(X) G 7 if and only if X G 7. Hence, Se 0 J. 
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We conclude that 7 is nowhere dense in L{9{). • 

A Concluding Remark. Theorem 8 of [15] admits many variations (see, e.g., [7, p. 
605]). 

(i) For instance, if X 0 ^ ( ^ ) and g = (&))"7=1 G L(!H{n)) (n ̂  3) is a nilpotent 
operator of the form 

1, if j = i + 1, / = 1,2,... ,/Î — 1, 
n = J 1, i t ; = I + 1,I = 1 

and Qtj = X for some (ij) with j — i ^ 2, then Williams's argument shows that 

(ii) If F : 0i -> 9^o (1 ^ dim ^ ) ^ oo) is onto, then 

<Mo D? i s M f i"'K 

Indeed, iff = ( ^ ) ^ 0 is a state such that/(G_F) =f{YQJ) for all Y = ( 7 ^ - = 0 ^ 
L{?k®tt\ then 

^~ ^ " VxFio XYu-YuXJ M XYl0 XYn-YnxJ H 

and/(<2_7 - 7<2_) = 0, whence we obtain foo(FYi0) = 0 for all Yl0 G l ( ^ , ^ ) 
and/n(XFn - YnX) = 0 for all Yn G £(#*•)• Since F is onto, it readily follows 
that/oo = 0, and therefore/oi = / io = 0 and / = 0 0 / n (where/n is a state on 
L(M)) because/ is a positive map. But/n(XFn - YnX) = 0 for all r n € £ , ( # ) is 
impossible because X is not finite, a contradiction. 

Hence g_ £ 7 • 
(iii) If F \9{Q-+!H (1 ^ dim ^ ^ oo) is bounded below, then 

e+ = (o o) Vsnotfinite-
Observe that the class J is self-adjoint. Now the result follows immediately from 

(ii) by taking adjoints. 
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