An existence theorem for the generalized complementarity problem

J. Parida and B. Sahoo

Abstract

Given a closed, convex cone S, in R^{n}, its polar S^{*} and a mapping g from R^{n} into itself, the generalized nonlinear complementarity problem is to find a $z \in R^{n}$ such that $$
\begin{gathered} g(z) \in S^{*}, \quad z \in S \\ \langle g(z), z\rangle=0 . \end{gathered}
$$

Many existence theorems for the problem have been established under varying conditions on g. We introduce new mappings, denoted by $J(S)$-functions, each of which is used to guarantee the existence of a solution to the generalized problem under certain coercivity conditions on itself. A mapping $g: S \rightarrow R^{n}$ is a $J(S)$-function if $$
\begin{gathered} g(z)-g(0) \in S^{*}, \quad z \in S \\ \langle g(z)-g(0), z\rangle=0 \end{gathered}
$$ imply that $z=0$. It is observed that the new class of functions is a broader class than the previously studied ones.

1. Introduction

The generalized nonlinear complementarity problem is to find a $z \in R^{n}$ satisfying

Received 23 May 1978.

$$
\begin{gathered}
g(z) \in S^{*}, z \in S \\
(g(z), z\rangle=0,
\end{gathered}
$$

where S is a closed, convex cone in R^{n}, S^{*} the polar cone, and g is a mapping from R^{n} into itself. Problem (1.1) has been studied by Habetler and Price [2], Karamardian [3, 5], and Moré [6], who have given many theorems for the existence and uniqueness of a solution to the problem.

In this paper we introduce a nonlinear generalization of $J(S)$ matrices (which are known as J-matrices in [7]), denoted by $J(S)$ functions, and study problem (1.1) defined by members of this class of functions. We show that the classes of $P-$ and regular functions become proper subclasses of this class when S is taken as R_{+}^{n}. We also show that a function which is strongly S-copositive on S is a $J(S)$-function.

We establish the following: let S be pointed, and let $g: S \rightarrow R^{n}$ be a $J(S)$-function. Then there is a solution to (1.I) if
(i) the map $G(z)=g(z)-g(0)$ is continuous and positively homogeneous of some degree on S, and
(ii) the system

$$
0 \neq z \in S, \quad G(z)+p \in S^{*},\langle G(z)+p, z\rangle=0
$$

is inconsistent for some $p \in$ int S^{*}.

2. Notations and definitions

For brevity, we shall use much of the notation of [7].

A nonempty subset S of R^{n} is a closed, convex cone if S is closed, and $\alpha x+\beta y$ belongs to S for all $\alpha, \beta \geq 0$, and $x, y \in S$. The polar cone of S is the cone S^{*} defined by

$$
S^{*}=\left\{x \in R^{n}:\langle x, y\rangle \geq 0 \text { for all } y \in S\right\}
$$

A cone is said to be pointed if whenever $x \neq 0$ is in the cone, x is not in the cone. For a closed, convex cone S, the interior of S^{*}, denoted by int S^{*}, is nonempty if, and only if, S is pointed. The trivial cone $S=\{0\}$ is excluded from the discussion.

A map $g: R_{+}^{n} \rightarrow R^{n}$ is a uniform P function if there exists a scalar $c>0$ such that, for any $x \neq y$ in R_{+}^{n}, there is an index $k=k(x, y)$ with

$$
\left(x_{k}-y_{k}\right)\left(g_{k}(x)-g_{k}(y)\right) \geq c\|x-y\|^{2}
$$

A map $G: R_{+}^{n} \rightarrow R^{n}$ with $G(0)=0$ is a regular function if the system

$$
\begin{gathered}
G_{i}(x)+t=0 \text { for } i \in I_{+}(x), \\
G_{i}(x)+t \geq 0 \text { for } i \in I_{0}(x), \\
0 \neq x \geq 0, t \geq 0,
\end{gathered}
$$

is inconsistent. Here $I_{+}(x)$ and $I_{0}(x)$ denote the set of indices corresponding to the positive and zero components of x, respectively.

A map $g: S \rightarrow R^{n}$ is strongly S-copositive on S if there exists a scalar $c>0$ such that, for all $x \in S$,

$$
(g(x)-g(0), x\rangle \geq c\|x\|^{2}
$$

A map $g: S \rightarrow R^{n}$ is a $J(S)$-function if

$$
\begin{gathered}
g(x)-g(0) \in S^{*}, \quad x \in S, \\
\langle g(x)-g(0), x\rangle=0,
\end{gathered}
$$

imply that $x=0$.
A map $G: S \rightarrow R^{n}$ is positively homogeneous of degree d over S if, for every $x \in S$,

$$
G(\lambda x)=\lambda^{d_{G(x)}} \text { for all } \lambda \geq 0
$$

A square matrix A is a $J(S)$-matrix (termed as J-matrix in [7]) if

$$
A x \in S^{*}, x^{T} A x=0, x \in S
$$

imply that $x=0$.

3. Main results

LEMMA 3.1. Let S be a closed, convex cone in R^{n}, and let $g: S \rightarrow R^{n}$.
(a) If g is strongly S-copositive on S, then g is a $J(S)$ function.
(b) g is a $J\left(R_{+}^{n}\right)$-function whenever either
(i) g is a uniform P-function on R_{+}^{n}, or
(ii) the map $G(x)=g(x)-g(0)$ is a regutar function.

Proof. (a) Let g be strongly S-copositive on S. Then $x \in S$, $g(x)-g(0) \in S^{*},\langle g(x)-g(0), x\rangle=0$ imply that

$$
0=\langle g(x)-g(0), x\rangle \geq c\|x\|^{2}
$$

and consequently, $x=0$.
(b) If g is a uniform P-function on R_{+}^{n}, then, for every $0 \neq x \geq 0$, we have an index k (depending upon x) with

$$
x_{k}\left(g_{k}(x)-g_{k}(0)\right) \geq c\|x\|^{2}>0
$$

The conclusion (b) for uniform P-function is then obvious.
To prove the second part of (b) we proceed as follows: let $G(x)=g(x)-g(0)$. The consistency of the system

$$
x \geq 0, \quad g(x)-g(0) \geq 0,\langle g(x)-g(0), x\rangle=0
$$

implies that $x_{i}\left(g_{i}(x)-g_{i}(0)\right)=0$ for all $1 \leq i \leq n$. If $x \neq 0$, we will have $G_{i}(x)=0$ for $i \in I_{+}(x)$ and $G_{i}(x) \geq 0$ for $i \in I_{0}(x)$. Now taking $t=0$ in the definition of regular function, we get a contradiction to the regularity of $G(x)$.

REMARK 3.2. It is interesting to examine the following two examples in order to see that the classes of uniform P_{-}and regular functions are proper subclasses of the class of $J(S)$-functions when $S=R_{+}^{n}$. The mapping $g(x)=\left[x_{1}+x_{2}^{2}, x_{2}\right]^{T}$ defined over R_{+}^{2} is a $J\left(R_{+}^{2}\right)$-function, but
it is not a uniform $P_{\text {-function, }}$ since if $x^{k}=\left[1-2 / k, k+1 / k^{2}\right]^{T}$ and $y^{k}=[1, k]^{T}, k=2,3, \ldots$, then

$$
\begin{aligned}
& \left(x_{1}^{k}-y_{1}^{k}\right)\left(g_{1}\left(x^{k}\right)-g_{1}\left(y^{k}\right)\right\}=-2 / k^{5}<0, \\
& \left\{x_{2}^{k}-y_{2}^{k}\right\}\left\{g_{2}\left(x^{k}\right)-g_{2}\left(y^{k}\right)\right\}=1 /\left(4 k^{2}+1\right) \cdot\left\|x^{k}-y^{k}\right\|^{2} .
\end{aligned}
$$

The other example is the mapping $g(x)=\left[x_{2}^{2}-x_{1}, x_{2}\right]^{T}$ which is a $J\left(R_{+}^{2}\right)-$ function, but not regular.

We shall need the following results.
LEMMA 3.3 [2, Lemma 5.1]. Let S be a pointed, closed, convex cone in R^{n}, and let $p \in$ int S^{*}. Then the set

$$
V=\{x: x \in S,\langle p, x\rangle=1\}
$$

is compact.
THEOREM 3.4 [7, Theorem 3.6]. If $F: R^{n} \rightarrow R^{n}$ is a continuous mapping on the nonempty, compact, convex set C in R^{n}, then there is an x^{0} such that

$$
\left\langle F\left(x^{0}\right), x-x^{0}\right\rangle \geq 0 \text { for all } x \in C .
$$

Now we give the following existence theorem.
THEOREM 3.5. Let S be a pointed, closed, convex cone in R^{n}, and let $g: S \rightarrow R^{n}$ be a $J(S)$-function. Then there is a solution to (1.1) if
(i) the map $G(z)=g(z)-g(0)$ is continuous and positively homogeneous of degree $d>0$ on S, and
(ii) there exists a vector $p \in$ int S^{*} such that the system (A) $0 \neq z \in S, G(z)+p \in S^{*},\langle G(z)+p, z\rangle=0$ is inconsistent.

Proof. It is easy to show that the product set $K=S \times R_{+}$is a pointed, closed, convex cone in R^{n+1}, and its polar is $K^{*}=S^{*} \times R_{+}$. It is also obvious that $(p, 1) \in$ int K^{*}. Let

$$
C=\{(z, t): z \in S, t \geq 0,(p, z)+t=1\}
$$

The set C is a nonempty, convex subset of K, and by Lemma 3.3, it is compact. Define the map $F: K \rightarrow R^{n+1}$ by

$$
F(z, t)=\left[\begin{array}{c}
G(z)+t(p+g(0)) \\
t
\end{array}\right]
$$

It follows from Theorem 3.4 that there exists (\bar{z}, \bar{t}) in C such that, for all $(z, t) \in C$,

$$
\langle G(\bar{z})+\bar{t}(p+g(0)), z-\bar{z}\rangle+\bar{t}(t-\bar{t}) \geq 0 .
$$

But this means that

$$
\langle G(\bar{z})+\bar{t}(p+g(0)), \bar{z}\rangle+\bar{t}^{2}=\min _{(z, t) \in C}\langle G(\bar{z})+\bar{t}(p+g(0)), z\rangle+\bar{t} . t
$$

Now using the Kuhn-Tucker necessary conditions of optimality [1] for cone domains, we have a ζ_{0} in R such that

$$
\begin{gather*}
G(\bar{z})+\bar{t}(p+g(0))+\zeta_{0} p \in S^{*}, \bar{t}+\zeta_{0} \geq 0, \\
\left\langle G(\bar{z})+\bar{t}(p+g(0))+\zeta_{0} p, \bar{z}\right\rangle=0, \quad \bar{t}\left(\bar{t}+\zeta_{0}\right)=0, \tag{1.2}\\
\bar{z} \in S, \quad \bar{t} \geq 0,\langle p, \bar{z}\rangle+\bar{t}=1 .
\end{gather*}
$$

We claim that $\bar{t}>0$. If not so, then suppose that $\bar{t}=0$. This with (1.2) implies that $\bar{z} \neq 0$, and consequently, we have the system

$$
\begin{gathered}
G(\bar{z})+\zeta_{0} p \in S^{*}, \quad \zeta_{0} \geq 0, \\
\left\langle G(\bar{z})+\zeta_{0} p, \bar{z}\right\rangle=0,
\end{gathered}
$$

consistent for $0 \neq \bar{z} \in S$. Since g is a $J(S)$-function, ζ_{0} can not be equal to zero. Also, $\zeta_{0} \ngtr 0$ since, in that case, taking the positively homogeneous property of G into consideration we can have a vector $0 \neq \bar{y}=\bar{z} /\left(\zeta_{0}\right)^{1 / d} \in S$ satisfying the system (A). Hence, $\bar{t}>0$, and consequently, we have $\bar{t}+\zeta_{0}=0$. Now substituting $\zeta_{0}=-\bar{t}$ in (1.2), it can be easily shown that $z^{0}=\bar{z} /(\bar{t})^{1 / d}$ is the desired solution.

REMARK 3.6. If we take $S=R_{+}^{n}$ and $p=e \alpha, \alpha>0$, with
$e^{T}=(1,1, \ldots, 1)$, and assume that $G(z)=g(z)-g(0)$ is regular, then Theorem 3.5 reduces to Theorem 3.1 in [4]. If we take $g(z)=M(z)+q$ where $M: S \rightarrow R^{n}$ is a nonlinear map with $M(0)=0$, and q is a vector in R^{n}, then Theorem 3.5 yields Theorem 3.1 in [5]. Theorem 4.2 of Parida and Sahoo [7] follows as a special case of Theorem 3.5.

REMARK 3.7. We consider it interesting to provide the following example. Let $g: R^{3} \rightarrow R^{3}$ be an affine map defined by $g(x)=\left[x_{1}-x_{2}, x_{1}+x_{2}, x_{3}-1\right]^{T}$. The problem is to find a solution to the system

$$
\begin{gathered}
y=g(x), x_{1}^{2}+x_{2}^{2}-d^{2} x_{3}^{2} \leq 0, \quad x_{3} \geq 0 \\
y_{1}^{2}+y_{2}^{2}-y_{3}^{2} / d^{2} \leq 0, y_{3} \geq 0, \quad d \neq 0 \\
x^{T} y=0
\end{gathered}
$$

It can be cast in the form (1.1) as follows: find $x \in R^{n}$ such that

$$
x \in S, g(x) \in S^{*},\langle g(x), x\rangle=0
$$

where

$$
\begin{aligned}
S & =\left\{x \in R^{3}: x^{T} B x \leq 0, x_{3} \geq 0\right\} \\
S^{*} & =\left\{y \in R^{3}: y^{T} B^{-1} y \leq 0, y_{3} \geq 0\right\}
\end{aligned}
$$

and

$$
B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -d^{2}
\end{array}\right], \quad d \neq 0
$$

It can be shown that g, as given above, with $p=[0,0,1]^{T}$ satisfies the conditions of Theorem 3.5. So there exists a solution to the problem. Indeed, we find that $x_{1}=0, x_{2}=0, x_{3}=1$ is a solution.

References

[1] M.S. Bazaraa and J.J. Goode, "Necessary optimality criteria in mathematical programming in the presence of differentiability", J. Math. Anal. Appl. 40 (1972), 609-621.
[2] G.J. Habetler and A.L. Price, "Existence theory for generalized nonlinear complementarity problems", J. Optimization Theory Appl. 7 (1971), 223-239.
[3] S. Karamardian, "Generalized complementarity problem", J. Optimization Theory Appl. 8 (1971), 161-168.
[4] S. Karamardian, "The complementarity problem", Math. Programming 2 (1972), 107-129.
[5] S. Karamardian, "An existence theorem for the complementarity problem", J. Optimization Theory Appl. 19 (1976), 227-232.
[6] Jorge J. Moré, "Coercivity conditions in nonlinear complementarity problems", SIAM Rev. 16 (1974), I-16.
[7] J. Parida and B. Sahoo, "A note on generalised linear complementarity problems", Bull. Austral. Math. Soc. 18 (1978), 161-168.

Department of Mathematics,
Regional Engineering College,
Rourkela,
Orissa,
India.

