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Abstract

Sen attached to each p-adic Galois representation of a p-adic field a multiset of numbers
called generalized Hodge–Tate weights. In this paper, we discuss a rigidity of these
numbers in a geometric family. More precisely, we consider a p-adic local system on
a rigid analytic variety over a p-adic field and show that the multiset of generalized
Hodge–Tate weights of the local system is constant. The proof uses the p-adic Riemann–
Hilbert correspondence by Liu and Zhu, a Sen–Fontaine decompletion theory in the
relative setting, and the theory of formal connections. We also discuss basic properties
of Hodge–Tate sheaves on a rigid analytic variety.

1. Introduction

In the celebrated paper [Tat67], Tate studied the Galois cohomology of p-adic fields and obtained
the so-called Hodge–Tate decomposition of the Tate module of a p-divisible group with good
reduction. The paper has been influential in the developments of p-adic Hodge theory, and
one of the earliest progresses was done by Sen. In [Sen81], he attached to each p-adic Galois
representation of a p-adic field k a multiset of numbers that are algebraic over k. These numbers
are called generalized Hodge–Tate weights, and they serve as one of the basic invariants in p-adic
Hodge theory, especially for the study of Galois representations that may not be Hodge–Tate
(e.g. Galois representations attached to finite slope overconvergent modular forms).

In this paper, we study how generalized Hodge–Tate weights vary in a geometric family. To
be precise, we consider an étale Qp-local system on a rigid analytic varieties over k and regard
it as a family of Galois representations of residue fields of its classical points. Here is one of the
main theorems of this paper.

Theorem 1.1 (Corollary 4.9). Let X be a geometrically connected smooth rigid analytic variety
over k and let L be a Qp-local system on X. Then the generalized Hodge–Tate weights of the
p-adic Galois representations Lx of k(x) are constant on the set of classical points x of X.

The theorem gives one instance of the rigidity of a geometric family of Galois representations.
It is worth noting that arithmetic families of Galois representations do not have such rigidity;
consider a representation of the absolute Galois group of k with coefficients in some Qp-affinoid
algebra. One can associate to each maximal ideal a Galois representation of k. In such a situation,
the generalized Hodge–Tate weights vary over the maximal ideals.
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Constancy of generalized Hodge–Tate weights of a local system

To explain ideas of the proof of Theorem 1.1 as well as other results of this paper, let us
recall the work of Sen mentioned above. For each p-adic Galois representation V of k, we set

H(V ) := (V ⊗Qp Cp)Gal(k/k∞),

where Cp is the p-adic completion of k and k∞ := k(µp∞) is the cyclotomic extension of k. This is
a vector space over the p-adic completion K of k∞ equipped with a continuous semilinear action
of Gal(k∞/k) and satisfies dimK H(V ) = dimQp V . Sen developed a theory of decompletion; he
found a natural k∞-vector subspace H(V )fin ⊂ H(V ) that is stable under Gal(k∞/k)-action and
satisfies H(V )fin⊗k∞K = H(V ). He then defined a k∞-endomorphism φV on H(V )fin, called the
Sen endomorphism of V , by considering the infinitesimal action of Gal(k∞/k). The generalized
Hodge–Tate weights are defined to be eigenvalues of φV .

Therefore, the first step toward Theorem 1.1 is to define generalizations of H(V ) and φV for
each Qp-local system. For this, we use the p-adic Simpson correspondence by Liu and Zhu [LZ17];
based on recent developments in relative p-adic Hodge theory by Kedlaya–Liu and Scholze, Liu
and Zhu associated to each Qp-local system L on X a vector bundle H(L) of the same rank on
XK equipped with a Gal(k∞/k)-action and a Higgs field, where XK is the base change of X to
K. When X is a point and L corresponds to V , this agrees with H(V ) as the notation suggests.
Following Sen, we will define the arithmetic Sen endomorphism φL of L by decompleting H(L)
and considering the infinitesimal action of Gal(k∞/k). Then Theorem 1.1 is reduced to the
following.

Theorem 1.2 (Theorem 4.8). The eigenvalues of φL,x for x ∈ XK are algebraic over k and
constant on XK .

Before discussing ideas of the proof, let us mention consequences of Theorem 1.2. Sen proved
that a p-adic Galois representation V is Hodge–Tate if and only if φV is semisimple with integer
eigenvalues. In the same way, we use φL to study Hodge–Tate sheaves. We define a sheaf DHT(L)
on the étale site Xét by

DHT(L) := ν∗(L⊗Qp OBHT),

where OBHT is the Hodge–Tate period sheaf on the pro-étale site Xproét and ν : Xproét→ Xét is
the projection (see § 5). A Qp-local system L is called Hodge–Tate if DHT(L) is a vector bundle
on X of rank equal to rankL.

Theorem 1.3 (Theorem 5.5). The following conditions are equivalent for a Qp-local system L
on X:

(i) L is Hodge–Tate;

(ii) φL is semisimple with integer eigenvalues.

The study of the Sen endomorphism for a geometric family was initiated by Brinon as a
generalization of Sen’s theory to the case of non-perfect residue fields [Bri03]. Tsuji obtained
Theorem 1.3 in the case of schemes with semistable reduction [Tsu11].

Using this characterization, we prove the following basic property of Hodge–Tate sheaves.

Theorem 1.4 (Theorem 5.10). Let f : X → Y be a smooth proper morphism between smooth
rigid analytic varieties over k and let L be a Zp-local system on Xét. Then if L is a Hodge–Tate
sheaf on Xét, R

if∗L is a Hodge–Tate sheaf on Yét.
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Hyodo introduced the notion of Hodge–Tate sheaves and proved Theorem 1.4 in the case of
schemes [Hyo86]. Links between Hodge–Tate sheaves and the p-adic Simpson correspondence can
be seen in his work and were also studied by Abbes–Gros–Tsuji [AGT16] and Tsuji [Tsu18]. In
fact, they undertook a systematic development of the p-adic Simpson correspondence started by
Faltings [Fal05] and their focus is much broader than ours. Andreatta and Brinon also studied
Higgs modules and Sen endomorphisms in a different setting [AB10]. In these works, one is
restricted to working with schemes or log schemes, whereas we work with rigid analytic varieties.

We now turn to the proof of Theorem 1.2. The key idea to obtain such constancy is to
describe φL as the residue of a certain formal integrable connection. Such an idea occurs in
the work [AB10] of Andreatta and Brinon. Roughly speaking, they associated to L a formal
connection over some pro-étale cover of XK when X is an affine scheme admitting invertible
coordinates. In our case, we want to work over XK , and thus we use the geometric p-adic
Riemann–Hilbert correspondence by Liu and Zhu [LZ17] and Fontaine’s decompletion theory for
the de Rham period ring BdR(K) in the relative setting.

Liu and Zhu associated to each Qp-local system L on X a locally free OX ⊗̂BdR(K)-module
RH(L) equipped with a filtration, an integrable connection

∇ : RH(L)→ RH(L)⊗ Ω1
X ,

and a Gal(k∞/k)-action (see § 4.1 for the notation). To regard φL as a residue, we also need a
connection in the arithmetic direction BdR(K). For this we use Fontaine’s decompletion theory
[Fon04]; recall the natural inclusion k∞((t)) ⊂ BdR(K) where t is the p-adic analogue of the
complex period 2πi. Fontaine extended the work of Sen and developed a decompletion theory
for BdR(K)-representations of Gal(k∞/k). We generalize Fontaine’s decompletion theory to the
relative setting, i.e. that for OX ⊗̂BdR(K)-modules (Theorem 2.5 and Proposition 2.24), which
yields an endomorphism φdR,L on RH(L)fin satisfying

φdR,L(tnv) = ntnv + tnφdR,L(v)

and gr0 φdR,L = φL. Informally, this means that we have an integrable connection

∇+
φdR,L
t
⊗ dt : RH(L)→ RH(L)⊗ ((OX ⊗̂BdR(K))⊗ Ω1

X + (OX ⊗̂BdR(K))⊗ dt)

over X ⊗̂BdR(K) whose residue along t = 0 coincides with the arithmetic Sen endomorphism φL.
We develop a theory of formal connections to analyze our connection and prove Theorem 1.2.

Finally, let us mention two more results in this paper. The first result is a rigidity of Hodge–
Tate local systems of rank at most two.

Theorem 1.5 (Theorem 5.12). Let X be a geometrically connected smooth rigid analytic
variety over k and let L be a Qp-local system on Xét. Assume that rankL is at most two.
If Lx is a Hodge–Tate representation at a classical point x ∈ X, then L is a Hodge–Tate sheaf.
In particular, Ly is a Hodge–Tate representation at every classical point y ∈ X.

Liu and Zhu proved such a rigidity for de Rham local systems [LZ17, Theorem 1.3]. We do
not know whether a similar statement holds for Hodge–Tate local systems of higher rank.

The second result concerns the relative p-adic monodromy conjecture for de Rham local
systems; the conjecture states that a de Rham local system on X becomes semistable at every
classical point after a finite étale extension of X (cf. [KL15, § 0.8], [LZ17, Remark 1.4]). This
is a relative version of the p-adic monodromy theorem proved by Berger [Ber02], and it is a
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major open problem in relative p-adic Hodge theory. We work on the case of de Rham local
systems with a single Hodge–Tate weight, in which case the result follows from a theorem of Sen
(Theorem 5.13).

Theorem 1.6 (Theorem 5.15). Let X be a smooth rigid analytic variety over k and let L be a
Zp-local system on Xét. Assume that L is a Hodge–Tate sheaf with a single Hodge–Tate weight.
Then there exists a finite étale cover f : Y → X such that (f∗L)y is semistable at every classical
point y of Y .

This is the simplest case of the relative p-adic monodromy conjecture. In [Col08], Colmez
gave a proof of the p-adic monodromy theorem for de Rham Galois representations using Sen’s
theorem mentioned above. It is an interesting question whether one can adapt Colmez’s strategy
to the relative setting using Theorem 1.6.

The organization of the paper is as follows: § 2 presents Sen–Fontaine’s decompletion theory
in the relative setting. In § 3, we review the p-adic Simpson correspondence by Liu and Zhu, and
define the arithmetic Sen endomorphism φL. Section 4 discusses a Fontaine-type decompletion
for the geometric p-adic Riemann–Hilbert correspondence by Liu and Zhu, and develops a theory
of formal connections. Combining them together we prove Theorem 1.1. Section 5 presents
applications of the study of the arithmetic Sen endomorphism including basic properties of
Hodge–Tate sheaves, a rigidity of Hodge–Tate sheaves, and the relative p-adic monodromy
conjecture.

Conventions. We will use Huber’s adic spaces as our language for non-Archimedean analytic
geometry. In particular, a rigid analytic variety over Qp will refer to a quasi-separated adic space
that is locally of finite type over Spa(Qp,Zp). See [Hub94, § 4], [Hub96, 1.11.1].

We will use Scholze’s theory of perfectoid spaces and pro-étale site. For the pro-étale site,
we will use the one introduced in [Sch13, Sch16].

2. Sen–Fontaine’s decompletion theory for an arithmetic family

2.1 Set-up
Let k be a complete discrete valuation field of characteristic 0 with perfect residue field of
characteristic p. We set km := k(µpm) and k∞ := lim−→m

km. Let K denote the p-adic completion

of k∞. We set Γk := Gal(k∞/k). Then Γk is identified with an open subgroup of Z×p via the
cyclotomic character χ : Γk → Z×p and it acts continuously on K.

Let L+
dR (respectively LdR) denote the de Rham period ring B+

dR(K) (respectively BdR(K))
introduced by Fontaine. We fix a compatible sequence of p-power roots of unity (ζpn) and set
t := log[ε] where ε = (1, ζp, ζp2 , . . .) ∈ OK[ . Then Γk acts on t via the cyclotomic character and
the Zp-submodule Zpt ⊂ L+

dR does not depend on the choice of (ζpn). Note that LdR is a discrete
valuation ring with residue field K, fraction field LdR, and uniformizer t, and that k∞[[t]] is
embedded into L+

dR.
We now recall the Sen–Fontaine’s decompletion theory [Sen81, Theorem 3], [Fon04,

Théorème 3.6].

Theorem 2.1. (i) (Sen) Let V be a K-representation of Γk. Denote by Vfin the union of finite-
dimensional k-vector subspaces of V that are stable under the action of Γk. Then the natural
map

Vfin ⊗k∞ K → V

is an isomorphism.
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(ii) (Fontaine) Let V be an L+
dR-representation of Γk and set

Vfin := lim
←−
n

(V/tnV )fin,

where (V/tnV )fin is defined to be the union of finite-dimensional k-vector subspaces of V/tnV

that are stable under the action of Γk. Then the natural map

Vfin ⊗k∞[[t]] L
+
dR

is an isomorphism.

Using this theorem, Sen defined the so-called Sen endomorphism φV on V∞ for a K-

representation V of Γk (cf. [Sen81, Theorem 4]), and Fontaine defined a formal connection on

Vfin for an L+
dR-representation V of Γk (cf. [Fon04, Proposition 3.7]).

We now turn to the relative setting. Let A be a Tate k-algebra that is reduced and

topologically of finite type over k. It is equipped with the supremum norm and we use this

norm when we regard A as a Banach k-algebra. We further assume that (A,A◦) is smooth over

(k,Ok). We set

Akm := A ⊗̂k km, A∞ := lim−→m
Akm and AK := A ⊗̂kK.

Here we use a slightly heavy notation Akm to reserve Am for a different ring in a later

section. Since A, km, and K are all complete Tate k-algebras, the completed tensor product is

well-defined (or one can use Banach k-algebra structures). Note that Akm (respectively AK) is a

complete Tate km-algebra (respectively K-algebra), that A∞ is a Tate k∞-algebra and that AK
is the completion of A∞.

We introduce the relative versions of k∞[[t]], L+
dR, and LdR over A. We set

A∞[[t]] := lim
←−
n

A∞[t]/(tn),

and equip A∞[[t]] with the inverse limit topology of Tate k∞-algebras A∞[t]/(tn). We also set

A ⊗̂L+
dR := lim

←−
n

A ⊗̂k L+
dR/(t

n),

and equip A ⊗̂L+
dR with the inverse limit topology. We finally set

A ⊗̂LdR = (A ⊗̂L+
dR)[t−1]

and equip A ⊗̂LdR with the inductive limit topology. Note that Γk acts continuously on these

rings (cf. [Bel15, Appendix]).

Definition 2.2. In this paper, an A ⊗̂L+
dR-representation of Γk is an A ⊗̂L+

dR-module V that is

isomorphic to either (A ⊗̂L+
dR)r or (A ⊗̂L+

dR/(t
n))r for some r and n, equipped with a continuous

A ⊗̂L+
dR-semilinear action of Γk. We denote the category of A ⊗̂L+

dR-representations of Γk by

RepΓk
(A ⊗̂L+

dR). An A ⊗̂L+
dR-representation of Γk that is annihilated by t is also called an

AK-representation of Γk.
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If V is isomorphic to either (A ⊗̂L+
dR)r or (A ⊗̂L+

dR/(t
n))r then V admits a topology by

taking a basis and the topology is independent of the choice of the basis. Thus the continuity
condition of the action of Γk makes sense. Note that if V is an A ⊗̂L+

dR-representation of Γk,
then so are tnV and V/tnV .

We are going to discuss the relative version of Sen–Fontaine’s theory. Namely, we will work
on AK-representations of Γk and A ⊗̂L+

dR-representations of Γk. Note that Sen’s theory in the
relative setting is established by Sen himself [Sen88, Sen93] and that Fontaine’s decompletion
theory in the relative setting is established by Berger–Colmez and Bellovin for representations
which come from A-representations of Gal(k/k) via the theory of (ϕ,Γ)-modules [BC08, Bel15].
Since we need a Fontaine-type decompletion theory for arbitrary A ⊗̂L+

dR-representations of Γk,
we give detailed arguments; we will discuss the decompletion theory in the next subsection, and
define Sen’s endomorphism and Fontaine’s connection in § 2.3.

We end this subsection with establishing basic properties of the rings we have introduced.

Proposition 2.3.

(i) For each n > 1, A ⊗̂k L+
dR/(t

n) is Noetherian and faithfully flat over A∞[t]/(tn).

(ii) A ⊗̂L+
dR is a t-adically complete flat L+

dR-algebra with (A ⊗̂L+
dR)/(tn) = A ⊗̂k L+

dR/(t
n).

Proof. For (i), the first assertion is proved in [BMS18, Lemma 13.4]. We prove that A ⊗̂k L+
dR/(t

n)
is faithfully flat over A∞[t]/(tn).

First we deal with the case n = 1, i.e. faithful flatness of AK over A∞. The proof is similar to
that of [AB10, Lemme 5.9]. Recall A∞ = lim−→n

Akm . Since km and K are both complete valuation

fields, AK = Akm ⊗̂km K is faithfully flat over Akm (e.g. use [BGR84, Proposition 2.1.7/8 and
Theorem 2.8.2/2]).

We prove that AK is flat over A∞. For this it suffices to show that for any finitely generated
ideal I ⊂ A∞, the map I ⊗A∞ AK → AK is injective. Take such an ideal I. As I is finitely
generated, there exist a positive integer m and a finitely generated ideal Im ⊂ Akm such that
I = Im(Im ⊗Akm

A∞→ A∞). Since AK is flat over Akm , the map Im⊗Akm
AK → AK is injective.

On the other hand, this map factors as Im ⊗Akm
AK → I ⊗A∞ AK → AK and the first map is

surjective by the choice of Im. Hence the second map I ⊗A∞ AK → AK is injective.
For faithful flatness, it remains to prove that the map SpecAK → SpecA∞ is surjective.

Assume the contrary and take a prime ideal P ∈ SpecA∞ that is not in the image of the map.
Set p = P ∩ A ∈ SpecA. Note that the prime ideals of A∞ above p are conjugate to each other
by the action of Γk. From this we see that no prime ideal of A∞ above p is in the image of
SpecAK → SpecA∞. Hence p does not lie in the image of SpecAK → SpecA, which contradicts
that AK is faithfully flat over A.

Next we deal with the general n. By the local flatness criterion [Mat89, Theorem 22.3] applied
to the nilpotent ideal (t) ⊂ A∞[t]/(tn), the flatness follows from the case n = 1. Moreover,
since SpecAK → SpecA∞ is surjective, so is SpecA ⊗̂k L+

dR/(t
n) → SpecA∞[t]/(tn). Hence

A ⊗̂k L+
dR/(t

n) is faithfully flat over A∞[t]/(tn).
Assertion (ii) is proved in [BMS18, Lemma 13.4]. Note that the proof of [BMS18, Lemma 13.4]

works in our setting since we assume the smoothness of A. 2

2.2 Sen–Fontaine’s decompletion theory in the relative setting
Definition 2.4. For an A ⊗̂L+

dR-representation V of Γk, we define the subspace Vfin as follows.

– If V is annihilated by tn for some n > 1, then Vfin is defined to be the union of finitely
generated A-submodules of V that are stable under the action of Γk.
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– In general, define

Vfin := lim
←−
n

(V/tnV )fin.

If V is killed by tn, then Vfin is an A∞[t]/(tn)-module. In general, Vfin is an A∞[[t]]-module
equipped with a semilinear action of Γk.

The following theorem is the main goal of this subsection.

Theorem 2.5. For an A ⊗̂L+
dR-representation V of Γk that is finite free of rank r over A ⊗̂L+

dR,
the A∞[[t]]-module Vfin is finite free of rank r. Moreover, the natural map

Vfin ⊗A∞[[t]] (A ⊗̂L+
dR)→ V

is an isomorphism, and Vfin/t
nVfin is isomorphic to (V/tnV )fin for each n > 1.

The key tool in the proof is the Sen method, which is axiomatized in [BC08, § 3]. We review
parts of the Tate–Sen conditions that are used in our proofs. For a thorough treatment, we refer
the reader to [BC08, § 3].

Consider Tate’s normalized trace map

Rk,m = Rm : K → km.

On km+m′ ⊂ K, this map is defined as

[km+m′ : km]−1 trkm+m′/km
: km+m′ → km,

and it extends continuously to Rk,m : K→ km. We denote the kernel KerRk,m by Xm. The map
Rk,m extends A-linearly to the map RA,m : AK → Akm . Fix a real number c3 > 1. By work of
Tate and Sen [BC08, Propositions 3.1.4 and 4.1.1], G0 = Γk, Λ̃ = AK , Rm, and the valuation val
on AK satisfy the Tate–Sen axioms in [BC08, § 3] for any fixed positive numbers c1 and c2.

In particular, XA,m := A ⊗̂kXm is the kernel of RA,m, and we have topological splitting
AK = Akm ⊕ XA,m. For γ ∈ Γk, let m(γ) ∈ Z be the valuation of χ(γ) − 1 ∈ Zp. Then there
exists a positive integer m(k) such that for each m > m(k) and γ ∈ Γk with m(γ) 6 m, γ − 1 is
invertible on XA,m and

val((γ − 1)−1a) > val(a)− c3

for each a ∈ AK .
Finally, for each matrix U = (aij) ∈Mr(AK), we set valU := mini,j val aij .

Proposition 2.6. Each finitely generated A-submodule of AK that is stable under the action
of an open subgroup of Γk is contained in A∞.

Proof. We follow the proof of [Sen81, Proposition 3]. By [BC08, Corollaire 2.1.4], there exist
complete discrete valuation fields E1, . . . , Es and an isometric embedding A ↪→

∏s
i=1Ei. Then

extending the scalar yields an isometric embedding

AK = Akm ⊕XA,m ↪→

s∏
i=1

Ei ⊗̂kK =

s∏
i=1

(Ei ⊗̂k km ⊕ Ei ⊗̂kXm)

preserving the topological splittings.
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Let Γ′k be an open subgroup of Γk and W a finitely generated A-submodule of AK that is
stable under the action of Γ′k. Let Wi be the finite-dimensional Ei-vector subspace of Ei ⊗̂kK
generated by the image of W under the map AK →

∏s
i=1Ei ⊗̂kK → Ei ⊗̂kK. To prove that W

is contained in A∞ =
⋃
mAkm , it suffices to prove that for each i, there exists a large integer m

such that Wi is contained in Ei ⊗̂k km.
Replacing Γ′k by a smaller open subgroup if necessary, we may assume that there exists a

topological generator γ of Γ′k. Replacing Ei by a finite field extension, we may also assume that
all the eigenvalues of the Ei-endomorphism γ on Wi lie in Ei.

Let w ∈ Wi be an eigenvector for γ and let λi ∈ E be its eigenvalue. Note that Γ′k acts

continuously on Wi. When j goes to infinity, γp
j

approaches 1 and thus λp
j

approaches 1. This
implies that λ is a principal unit, i.e. |λ− 1|Ei < 1.

Lemma 2.7. The eigenvalue λ is a p-power root of unity.

Proof. We follow the proof of [Tat67, Proposition 7(c)]. Assume the contrary. We will prove
that γ − λ : Ei ⊗̂kK → Ei ⊗̂kK is bijective, which would contradict that the non-zero element
w ∈Wi ⊂ Ei ⊗̂kK satisfies (γ − λ)w = 0.

Let m be the integer such that km is the fixed subfield of k∞ by γ. Consider the map γ − 1 :
Ei ⊗̂kK → Ei ⊗̂kK. This map preserves the decomposition Ei ⊗̂kK = Ei ⊗̂k km ⊕ Ei ⊗̂kXm.
Moreover, it is zero on Ei ⊗̂k km and bijective on Ei ⊗̂kXm with continuous inverse. Denote the
inverse by ρ. Then ρ is a bounded Ei ⊗̂k km-linear operator with operator norm at most pc3 .
Since λ ∈ Ei and λ 6= 1, the map γ−λ is bijective on Ei ⊗̂k km. So it suffices to prove that γ−λ
is bijective on Ei ⊗̂kXm.

As operators on Ei ⊗̂kXm, we have

(γ − λ)ρ = ((γ − 1)− (λ− 1))ρ = 1− (λ− 1)ρ.

Thus if |λ − 1|Eip
c3 < 1, then 1 − (λ − 1)ρ has an inverse on Ei ⊗̂kXm given by a geometric

series, and hence γ − λ admits a continuous inverse on Ei ⊗̂kXm. If |λ− 1|Eip
c3 > 1, first take a

large integer j with |λpj − 1|Eip
c3 < 1. Then we can prove that γp

j − λpj has a bounded inverse
on Ei ⊗̂kXm. Hence so does γ − λ. 2

We continue the proof of the proposition. Since each eigenvalue of γ on Wi is a p-power root
of unity, we replace γ by a higher p-power and may assume that γ acts on Wi unipotently. Thus
γ − 1 acts on Wi nilpotently.

Let m be the integer such that km is the fixed subfield of k∞ by γ. Then the map γ −
1 : Ei ⊗̂kK → Ei ⊗̂kK is zero on Ei ⊗̂k km and bijective on Ei ⊗̂kXm. This implies that the
nilpotent endomorphism γ − 1 on Wi is actually zero and thus Wi is contained in Ei ⊗̂k km. 2

Example 2.8. For the trivial AK-representation V = AK of Γk, we have Vfin = A∞ by
Proposition 2.6.

The following theorem describes Vfin for a general AK-representation V of Γk, and it was
first proved by Sen [Sen88, Sen93].

Theorem 2.9. For an AK-representation V of Γk, the A∞-module Vfin is finite free. Moreover,
the natural map

Vfin ⊗A∞ AK → V

is an isomorphism.
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Proof. First we prove the following lemma.

Lemma 2.10. There exist an AK-basis v1, . . . , vr ∈ V and a large positive integer m such that
the transformation matrix of γ with respect to this basis has entries in Akm for each γ ∈ Γk.

Proof. This follows from the Tate–Sen method for Γk-representations in the relative setting.
By [Che09, Lemme 3.18], V has a Γk-stable A◦K-lattice. Note that [Che09, Lemme 3.18] only
concerns reduced affinoid algebras over a finite extension of Qp but the same proof works for AK
since one can apply Raynaud’s theory to AK .

By [BC08, Corollaire 3.2.4], there exist an AK-basis v1, . . . , vr ∈ V , a large positive integer
m, and an open subgroup Γ′k of Γk such that the transformation matrix of γ with respect to this
basis has entries in Akm for each γ ∈ Γ′k. By shrinking Γ′k if necessary, we may also assume that
Γ′k acts trivially on Akm .

For each γ ∈ Γk, we denote by Uγ ∈ GLr(AK) the transformation matrix of γ with respect
to v1, . . . , vr. Note that Uγγ′ = Uγγ(Uγ′) for γ, γ′ ∈ Γk.

Take a set {γ1, . . . , γs} of coset representatives of Γk/Γ
′
k and let W be the finitely generated

Akm-submodule of AK generated by the entries of Uγ1 , . . . , Uγs . Since Uγiγ′ = Uγiγi(Uγ′) and
γi(Uγ′) has entries in Akm for γ′ ∈ Γ′k by our construction, it follows that W is independent of
the choice of the representatives γ1, . . . , γs. Moreover, we have γ′(Uγi) = U−1

γ′ Uγ′γi for γ′ ∈ Γ′k.

From this we see that W is stable under the action of Γ′k.
Proposition 2.6 implies that W ⊂ A∞, namely, Uγ1 , . . . , Uγs ∈ GLr(A∞). Thus if we increase

m so that Uγ1 , . . . , Uγs ∈ GLr(Akm), then Uγ ∈ GLr(Akm) for any γ ∈ Γk. 2

We keep the notation in the proof of the lemma. From the lemma, we see that
⊕r

i=1A∞vi ⊂
Vfin. So it suffices to prove that this is an equality.

Take any v ∈ Vfin. Let Wv be the Akm-submodule of AK generated by the coordinates of γv
with respect to the basis v1, . . . , vr where γ runs over all elements of Γk. Since v ∈ Vfin, this is a
finitely generated Akm-module.

Write v =
∑r

i=1 aivi with ai ∈ AK and denote the column vector of the ai by ~a. Then it is
easy to see that Wv is generated by the entries of Uγγ(~a) (γ ∈ Γk). Since Uγ′γ = Uγ′γ

′(Uγ) for
γ, γ′ ∈ Γk, we compute

γ′(Uγγ(~a)) = U−1
γ′ Uγ′γ(γ′γ)(~a).

From this we see that Wv is stable under the action of Γk.
By Proposition 2.6, we have Wv ⊂ A∞. In particular, a1, . . . , ar ∈ A∞ and thus v ∈⊕r

i=1A∞vi. 2

Proposition 2.11. Let V be an A ⊗̂L+
dR-representation of Γk. If V is finite free of rank r over

A ⊗̂L+
dR/(t

n), then Vfin is finite free of rank r over A∞[t]/(tn). Moreover, the natural map

Vfin ⊗A∞[[t]] (A ⊗̂L+
dR)→ V

is an isomorphism.

Proof. We prove this proposition by induction on n. When n = 1, this is Theorem 2.9. So we
assume n > 1.

Set V ′ := tn−1V and V ′′ := V/V ′. They are A ⊗̂L+
dR-representations of Γk and V ′′ is finite

free of rank r over A ⊗̂L+
dR/(t

n−1). By induction hypothesis, V ′′fin is finite free of rank r over
A∞[t]/(tn−1) and V ′′fin ⊗A∞[t]/(tn−1) A ⊗̂L+

dR/(t
n−1) ∼= V ′′.
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Take lifts v1, . . . , vr of a basis of V ′′fin to V . Then v1, . . . , vr form an A∞[t]/(tn)-basis of V .
We will prove that after a suitable modification of v1, . . . , vr the transformation matrix of γ on
V with respect to the new basis has entries in A∞[t]/(tn) for every γ ∈ Γk.

Suppose that we are given an element γ of Γk. For each 1 6 j 6 r, write γvj =
∑r

i=1 aijvi
with aij ∈ A ⊗̂L+

dR/(t
n). Then the r × r matrix T := (aij) is invertible since it is invertible

modulo tn−1. By the property of V ′′fin, we can write

aij = a0
ij + tn−1a1

ij , a0
ij ∈ A∞[t]/(tn), a1

ij ∈ AK = A ⊗̂L+
dR/(t).

Set U := (a0
ij mod t) ∈Mr(A∞). This is invertible. In fact, U is the transformation matrix of γ

acting on V/tV with respect to the basis (vi mod t).
Since Γk acts continuously on V/tV , val(U − 1) > c3 and m(γ) > max{c3,m(k)} for some

γ 6= 1 close to 1. From now on, we fix such γ.

Claim 2.12. There exists an element in GLr(A ⊗̂L+
dR/(t

n)) of the form 1 + tn−1M with M ∈
Mr(AK) such that the r × r matrix

(1 + tn−1M)−1Tγ(1 + tn−1M)

lies in GLr(A∞[t]/(tn)).

Proof. Noting that every element in A ⊗̂L+
dR/(t

n) is annihilated by tn, we compute

(1 + tn−1M)−1Tγ(1 + tn−1M) = (1− tn−1M)T (1 + χ(γ)n−1tn−1γ(M))

= T − tn−1(MT − χ(γ)n−1Tγ(M))

− t2(n−1)χ(γ)n−1MTγ(M)

= T − tn−1(MU − χ(γ)n−1Uγ(M)).

Since T = (a0
ij) + tn−1(a1

ij) with (a0
ij) ∈ GLr(A∞[t]/(tn)), it suffices to find M ∈ Mr(AK) such

that

(a1
ij)− (MU − χ(γ)n−1Uγ(M)) ∈Mr(A∞).

We will apply Lemma 2.13 below to U , U ′ = U−1 and s = n − 1. Take m > m(γ) large
enough so that U and U−1 lie in GLr(Akm). Recall the normalized trace map RA,m : AK → Akm
with kernel XA,m. Since RA,m is Akm-linear, we see that ((1 − RA,m)(a1

ij))U
−1 ∈ Mr(XA,m).

Therefore, by Lemma 2.13, there exists M0 ∈Mr(XA,m) such that

((1−RA,m)(a1
ij))U

−1 = M0 − χ(γ)n−1Uγ(M0)U−1.

From this we have

(a1
ij)− (M0U − χ(γ)n−1Uγ(M0)) = RA,m(a1

ij) ∈Mr(Akm),

and the matrix 1 + tn−1M0 satisfies the condition of the lemma. 2

We continue the proof of the proposition. We replace the basis v1, . . . , vr by the one
corresponding to the matrix 1 + tn−1M in the lemma. Then the transformation matrix of our
fixed γ with respect to the new v1, . . . , vr has entries in Akm [t]/(tn). Thus for each 1 6 i 6 r,
the γZp-orbit of vi is contained in a finitely generated Akm [t]/(tn)-submodule of V that is stable
under γZp . Since γZp is of finite index in Γk, the Γk-orbit of vi is also contained in a finitely
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generated Akm [t]/(tn)-submodule of V that is stable under Γk. This means that v1, . . . , vr ∈ Vfin.
Hence

⊕r
i=1A∞[t]/(tn)vi ⊂ Vfin.

It remains to prove that
⊕r

i=1A∞[t]/(tn)vi = Vfin. Since A∞[t]/(tn) → A ⊗̂L+
dR/(t

n) is
faithfully flat and V =

⊕r
i=1A ⊗̂L

+
dR/(t

n)vi, it is enough to show that the natural map
Vfin⊗A∞[t]/(tn)A ⊗̂L+

dR/(t
n)→ V is injective. Note that Vfin⊗A∞[t]/(tn)A ⊗̂L+

dR/(t
n) = Vfin⊗A∞[[t]]

A ⊗̂L+
dR.

Recall the exact sequence 0 → V ′ → V → V ′′ → 0. From this we have an exact sequence
0→ V ′fin→ Vfin→ V ′′fin, and it yields the following commutative diagram with exact rows

0 // V ′fin ⊗ (A ⊗̂L+
dR) //

��

Vfin ⊗ (A ⊗̂L+
dR) //

��

V ′′fin ⊗ (A ⊗̂L+
dR)

��
0 // V ′ // V // V ′′ // 0

where the tensor products in the first row are taken over A∞[[t]]. By induction hypothesis, the
first and the third vertical maps are isomorphisms. Hence the second vertical map is injective
and this completes the proof. 2

The following lemma is used in the proof of Proposition 2.11.

Lemma 2.13. Let s be a positive integer. Let U,U ′ be elements in Mr(A∞) satisfying val(U − 1)
> c3 and val(U ′ − 1) > c3. Take a positive integer m such that m > max{m(k), c3} and U,
U ′ ∈Mr(Akm). Then for any γ ∈ Γk with c3 < m(γ) 6 m, the map

f : Mr(AK)→Mr(AK), M 7→M − χ(γ)sUγ(M)U ′

is bijective on the subset Mr(XA,m) consisting of the r × r matrices with entries in the kernel
XA,m of RA,m : AK → Akm .

Proof. The proof of [BC09, Lemma 15.3.9] works in our setting. For the convenience of the
reader, we reproduce their proof here.

We first check that f restricts to an endomorphism on Mr(XA,m). This follows from the fact
that the map RA,m is Akm-linear and Γk-equivariant and thus XA,m is an Akm-module stable
under the action of Γk.

We define a map h : Mr(AK)→Mr(AK) by

h(N) := N − χ(γ)sUNU ′

= (N − χ(γ)sN) + χ(γ)s((N − UN) + UN(1− U ′)).

Then the same argument as above shows that h restricts to an endomorphism on Mr(XA,m). We
also have f(M) = (1− γ)M + h(γM).

Recall that the map 1−γ :Mr(XA,m)→Mr(XA,m) admits a continuous inverse with operator
norm at most pc3 . We denote this inverse by ρ. Since (f ◦ ρ − id)M = h(γρ(M)), it suffices to
prove that the operator norm of h is less than p−c3 ; this will imply that the operator norm of
h ◦ γ ◦ ρ is less than 1. Thus f ◦ ρ admits a continuous inverse given by a geometric series and
hence f is bijective on Mr(XA,m).

By the second expression of h, we have

val(h(N)) > min{val((1− χ(γ)s)N), val((U − 1)N), val(UN(1− U ′))}
> min{val((1− χ(γ))N), val((U − 1)N), val(N(1− U ′))}.
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From this we have

val(h(N)) > val(N) + δ,

where δ := min{m(γ), val(U −1), val(U ′−1)}. Thus the operator norm of h is at most p−δ. Since
δ > c3 by assumption, this completes the proof. 2

Proof of Theorem 2.5. For each n > 1, put Vn := V/tnV . This is an A ⊗̂L+
dR-representation of

Γk that is finite free of rank r over A ⊗̂L+
dR/(t

n). Thus by Proposition 2.11, (Vn)fin is finite free
of rank r over A∞[t]/(tn), and (Vn)fin ⊗A∞[[t]] (A ⊗̂L+

dR)→ Vn is an isomorphism.
By definition, we have Vfin = lim

←−n(Vn)fin. Since the natural map Vn+1 → Vn is surjective,

so is the map (Vn+1)fin → (Vn)fin by the faithfully flatness of A∞[t]/(tn+1)→ A ⊗̂L+
dR/(t

n+1).
Thus lifting a basis of (Vn)fin gives a basis of Vfin and we see that Vfin is finite free of rank r over
A∞[[t]]. The remaining assertions also follow from this. 2

Proposition 2.14. For an A ⊗̂L+
dR-representation V of Γk that is finite free of rank r over

A ⊗̂L+
dR, the A∞[[t]]-module Vfin is the union of finitely generated A∞[[t]]-submodules of V that

are stable under the action of Γk. In particular, the natural inclusion

(Vfin)Γk ↪→ V Γk

is an isomorphism.

Proof. Let V ′fin denote the union of finitely generated A∞[[t]]-submodules of V that are stable
under the action of Γk. Then Vfin ⊂ V ′fin by Theorem 2.5. So it remains to prove the opposite
inclusion. For this it suffices to prove V ′fin/t

nV ′fin ⊂ Vfin/t
nVfin for each n > 1. Since Vfin/t

nVfin =
(V/tnV )fin by Theorem 2.5, the desired inclusion follows from the definition of (V/tnV )fin noting
A∞[t]/(tn) =

⋃
mAkm [t]/(tn). The second assertion follows from the first. 2

Example 2.15. For the trivial A ⊗̂L+
dR-representation V = A ⊗̂L+

dR of Γk, we have Vfin = A∞[[t]].

Finally, we discuss topologies on Vfin and the continuity of the action of Γk.

Lemma 2.16. Let W be a finite free A∞[[t]]/(tn)-module equipped with an action of Γk. Then
Γk-action is continuous with respect to the topology on W induced from the product topology
on A∞[[t]]/(tn) ∼= An∞ if and only if it is continuous with respect to the topology on W induced
from the subspace topology on A∞[[t]]/(tn) ⊂ A ⊗̂L+

dR/(t
n).

Proof. For each of the two topologies on W , the continuity of Γk implies that there exist
an A∞[[t]]/(tn)-basis w1, . . . , wr of W and a large positive integer m such that Wm :=⊕r

i=1Akm [[t]]/(tn)wi is stable under Γk and its action on Wm is continuous with respect
to the induced topology Wm ⊂ W . Conversely, if the Γk-action on Wm is continuous with
respect to the induced topology Wm ⊂ W for such Γk-stable Akm [[t]]/(tn)-submodule Wm with
Wm ⊗Akm [[t]]/(tn) A∞[[t]]/(tn) = W , the Γk-action on W is continuous.

The subspace topology on Akm [[t]]/(tn) from A ⊗̂L+
dR/(t

n) coincides with the product
topology on Akm [[t]]/(tn) ∼= Ankm . From this we find that the continuity conditions on the action
of Γk on Wm with respect to the two topologies coincide. Hence the two continuity properties of
the action of Γk on W are equivalent. 2
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Definition 2.17. Let V be an A ⊗̂L+
dR-representation of Γk.

– If V is finite free over A ⊗̂L+
dR/(t

n) for some n > 1, we equip Vfin with the topology acquired
from topologizing A∞[[t]]/(tn) with the product topology of the p-adic topology on A∞.
Then Γk acts continuously on Vfin by Lemma 2.16.

– If V is finite free over A ⊗̂L+
dR, we equip Vfin with the inverse limit topology via Vfin =

lim
←−n(V/tnV )fin. Then Γk acts continuously on Vfin.

Definition 2.18. An A∞[[t]]-representation of Γk is an A∞[[t]]-module W that is isomorphic
to either (A∞[[t]])r or (A∞[[t]]/(tn))r for some r and n, equipped with a continuous A∞[[t]]-
semilinear action of Γk (here the topology on W is acquired from the p-adic topology on A∞
by considering the product topology and the inverse limit topology as before). We denote the
category of A∞[[t]]-representations of Γk by RepΓk

(A∞[[t]]). An A∞[[t]]-representation of Γk that
is annihilated by t is also called an A∞-representation of Γk.

Theorem 2.19. The decompletion functor

RepΓk
(A ⊗̂L+

dR)→ RepΓk
(A∞[[t]]), V 7→ Vfin

is an equivalence of categories. A quasi-inverse is given by W 7→W ⊗A∞[[t]] (A ⊗̂L+
dR).

Proof. By Theorem 2.5, Proposition 2.11, and Lemma 2.16, the functor is well-defined and
essentially surjective. The full faithfulness follows from Proposition 2.14. 2

2.3 Sen’s endomorphism and Fontaine’s connection in the relative setting
Proposition 2.20. Let W be an A∞-representation of Γk. Then there exists a unique A∞-linear
map φW : W → W satisfying the following property: for any w ∈ W , there exists an open
subgroup Γk,w of Γk such that

γw = exp(log(χ(γ))φW )(w)

for γ ∈ Γk,w. Here log (respectively exp) is the p-adic logarithm (respectively exponential).
Moreover, φW is Γk-equivariant and functorial with respect to W .

Remark 2.21. The proposition says that the endomorphism φW is computed as

φW (w) = lim
γ→1

γw − w
logχ(γ)

for w ∈W .

Proof. This is standard; arguments in [Sen81, Theorem 4] also work in our setting. See also
[Sen93, § 2], [Sen88, Proposition 4], [Fon04, Proposition 2.5], and [BC09, § 15.1]. 2

The following lemma is also proved by standard arguments.

Lemma 2.22. Let W1 and W2 be A∞-representations of Γk. Then we have the following
equalities:

– φW1⊕W2 = φW1 ⊕ φW2 on W1 ⊕W2;

– φW1⊗W2 = φW1 ⊗ idW2 + idW1 ⊗φW2 on W1 ⊗W2;

– φHom(W1,W2)(f) = φW2 ◦ f − f ◦ φW1 for f ∈ Hom(W1,W2).
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Definition 2.23. Let V be an AK-representation of Γk. We denote by φV the AK-linear

endomorphism φVfin
⊗ idAK

on V = Vfin ⊗A∞ AK .

Proposition 2.24. Let W be an A∞[[t]]-representation of Γk. Then there exists a unique A∞-

linear map φdR,W : W →W satisfying the following property: for each n ∈ N and w ∈W , there

exists an open subgroup Γk,n,w of Γk such that

γw ≡ exp(log(χ(γ))φdR,W )(w) (mod tnW )

for γ ∈ Γk,n,w.

Proof. Note that A∞[[t]]/(tn) is a finite free A∞-module of rank n and thus W/tnW can be

regarded an A∞-representation of Γk. So the proposition follows from Proposition 2.20. 2

Definition 2.25. Set A∞((t)) := A∞[[t]][t−1]. We denote by ∂t the A∞-linear endomorphism

A∞((t))→ A∞((t)),
∑

j�−∞ ajt
j 7→

∑
j�−∞ jajt

j−1.

The restriction of ∂t to A∞[[t]] is also denoted by ∂t.

Proposition 2.26. For an A∞[[t]]-representation W of Γk, the endomorphism φdR,W : W →W

satisfies

φdR,W (αw) = t∂t(α)w + αφdR,W (w)

for every α ∈ A∞[[t]] and w ∈W .

Proof. By the characterizing property of φdR,W , we may assume that W is annihilated by some

power of t. In this case, it is enough to check the equality for α = tj by A∞-linearity of φdR,W .

By induction on j, we may further assume that α = t.
So we need to show φdR,W (tw) = tw + tφdR,W (w). This follows from

φdR,W (tw) = lim
γ→1

γ(tw)− tw
logχ(γ)

= lim
γ→1

χ(γ)− 1

logχ(γ)
tγ(w) + t lim

γ→1

γ(w)− w
logχ(γ)

= tw + tφdR,W (w). 2

Lemma-Definition 2.27. Let W be a finite free A∞[[t]]-representation of Γk. Then W [t−1] :=

W ⊗A∞[[t]] A∞((t)) is a finite free A∞((t))-module equipped with Γk-action and Γk-stable

decreasing filtration defined by FiljW [t−1] := tjW . Moreover, the A∞-linear endomorphism

φdR,W [t−1] : W [t−1]→W [t−1] sending w ∈ FiljW [t−1] to

φdR,W [t−1](w) := jw + tjφdR,W (t−jw)

is well-defined and satisfies φdR,W [t−1]|W = φdR,W .

Proof. This follows from Proposition 2.26. 2
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Definition 2.28. Let V be a finite free A ⊗̂LdR-module equipped with Γk-action and Γk-stable
decreasing filtration Filj V such that Fil0 V is a finite free A ⊗̂L+

dR-representation of Γk and
Filj V = tj Fil0 V for all j ∈ Z. Define

Vfin := (Fil0 V )fin[t−1].

By Lemma-Definition 2.27, Vfin is a finite free A∞((t))-module equipped with Γk-action, Γk-stable
decreasing filtration Filj Vfin, and φdR,Vfin

. Since φdR,Vfin
preserves the filtration, it defines an

A∞-linear endomorphism on gr0 Vfin, which we denote by ResFil0 Vfin
φdR,Vfin

. It follows from the
definition that

ResFil0 Vfin
φdR,Vfin

= φgr0 V

as endomorphisms on the finite free A∞-module gr0(Vfin) = (gr0 V )fin.

3. The arithmetic Sen endomorphism of a p-adic local system

From this section, we study relative p-adic Hodge theory in geometric families. Let k be a finite
field extension of Qp and let X be an n-dimensional smooth rigid analytic variety over Spa(k,Ok).
Let K be the p-adic completion of k∞ :=

⋃
n k(µpn) and let XK denote the base change of X to

Spa(K,OK). We denote by Γk the Galois group Gal(k∞/k).
Based on the recent progresses on relative p-adic Hodge theory [KL15, KL16, Sch12,

Sch13], Liu and Zhu attached to an étale Qp-local system L a nilpotent Higgs bundle H(L)
on XK equipped with Γk-action [LZ17]. Our goal is to define an endomorphism φL on H(L)
by decompleting the Γk-action. The endomorphism φL, which we will call the arithmetic
Sen endomorphism, is a natural generalization of the Sen endomorphism of a p-adic Galois
representation of k.

3.1 Review of the p-adic Simpson correspondence à la Liu and Zhu
First let us briefly recall the sites and sheaves that we use. Let Xproét be the pro-étale site on
X in the sense of [Sch13, Sch16]. The pro-étale site is equipped with a natural projection to the
étale site on X

ν : Xproét→ Xét.

Let ν ′ : Xproét/XK → (XK)ét be the restriction of ν and we identify Xproét/XK with (XK)proét

(see a discussion before [Sch13, Proposition 6.10]).
We denote by Ẑp (respectively Q̂p) the constant sheaf on Xproét associated to Zp (respectively

Qp). For a Zp-local system L (respectively Qp-local system) on Xét, let L̂ denote the Ẑp-module

(respectively Q̂p-module) on Xproét associated to L (see [Sch13, § 8.2]).
We define sheaves on Xproét as follows. We set

O+
X := ν∗O+

Xét
, OX := ν∗OXét

and ÔX :=

(
lim
←−
n

O+
X/p

n

)
[p−1].

We also set Ω1
X = ν∗Ω1

Xét
and we denote its ith exterior power by Ωi

X . Moreover, Scholze

introduced the de Rham period sheaves B+
dR, BdR, OB+

dR and OBdR on Xproét in [Sch13, § 6]
and [Sch16]. The structural de Rham sheaf OBdR has the following properties: it is a sheaf of
OX -algebras equipped with a decreasing filtration Fil•OBdR and an integrable connection

∇ : OBdR→ OBdR ⊗OX
Ω1
X
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satisfying the Griffiths transversality. Since X is assumed to be smooth of dimension n, this gives
rise to the following exact sequence of sheaves on Xproét:

0→ BdR −→ OBdR
∇−→ OBdR ⊗OX

Ω1
X
∇−→ · · · ∇−→ OBdR ⊗OX

Ωn
X −→ 0.

Finally, we set OC := gr0OBdR. Taking the associated graded connection of ∇ on OBdR

equips OC with a Higgs field

gr0∇ : OC→ OC⊗OX
Ω1
X(−1),

where (−1) stands for the (−1)st Tate twist.
We review the formulation of the p-adic Simpson correspondence by Liu and Zhu. Let L be

a Qp-local system on Xét of rank r. We define

H(L) = ν ′∗(L̂⊗Q̂p
OC).

Then Liu and Zhu proved the following theorem.

Theorem 3.1 (Rough form of [LZ17, Theorem 2.1]). H(L) is a vector bundle on XK of rank r
equipped with a nilpotent Higgs field ϑL and a semilinear action of Γk. The functor H is a tensor
functor from the category of Qp-local systems on Xét to the category of nilpotent Higgs bundles
on XK . Moreover, H is compatible with pullback and smooth proper pushforward.1

Remark 3.2. For our purpose, we use the p-adic Simpson correspondence formulated by Liu and
Zhu as their output is a Higgs bundle over XK with a Γk-action. See [Fal05] and [AGT16] for
the p-adic Simpson correspondence by Faltings and Abbes–Gros–Tsuji in a more general setting,
and see [AB08, AB10] for the one over a pro-étale cover of XK by Andreatta and Brinon.

To define the arithmetic Sen endomorphism on H(L) and discuss its properties, let us recall
Liu and Zhu’s arguments in the proof of Theorem 3.1.

We follow the notation on base changes of adic spaces and rings in [LZ17]. We denote by Tn
the n-dimensional rigid analytic torus

Spa(k〈T±1 , . . . , T
±
n 〉,Ok〈T±1 , . . . , T

±
n 〉).

For m > 0, we set

Tnm = Spa(km〈T±1/pm

1 , . . . , T±1/pm

n 〉,Okm〈T
±1/pm

1 , . . . , T±1/pm

n 〉).

We denote by T̃n∞ the affinoid perfectoid lim
←−mT

n
m in Xproét.

To study properties of H(L), we introduce the following base B for (XK)ét: objects of B are
the étale maps to XK that are the base changes of standard étale morphisms Y → Xk′ defined
over some finite extension k′ of k in K where Y is affinoid admitting a toric chart after some finite
extension of k′. Recall that an étale morphism between adic spaces is called standard étale if it
is a composite of rational localizations and finite étale morphisms and that a toric chart means
a standard étale morphism to Tn. Morphisms of B are the base changes of étale morphisms over
some finite extension of k in K. We equip B with the induced topology from (XK)ét. Then the
associated topoi (XK)∼ét and B∼ are equivalent [LZ17, Lemma 2.5].

1 In the smooth proper pushforward case, we need to assume that L admits a global Zp-lattice. See [LZ17,
Theorem 2.1(v)] and [SW18, Theorem 10.5.1].
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When Y = Spa(B,B+) admits a toric chart over k, we use the following notation: we set

Ym = Spa(Bm, B
+
m) := Y ×Tn Tnm.

Then Ỹ∞ := Y ×Tn T̃n∞ is the affinoid perfectoid in Yproét represented by the relative toric tower

(Yn). We denote by (B̂∞, B̂
+
∞) the perfectoid affinoid completed direct limit of the affinoid rings

(Bm, B
+
m) and set Ŷ∞ := Spa(B̂∞, B̂

+
∞), the affinoid perfectoid space associated to Y∞. We also

set Bkm = B ⊗k km as in § 2.1. When Y admits a toric chart over a finite extension of k in K,
we similarly define these objects using the rigid analytic torus over the field.

Let YK,m := Spa(BK,m, B
+
K,m) be the base change of Ym from km to K and let ỸK,∞ be

the affinoid perfectoid represented by the toric tower (YK,m). We denote the associated affinoid

perfectoid space by ŶK,∞ = Spa(B̂K,m, B̂
+
K,m). The cover ỸK,∞/Y is Galois. We denote its Galois

group by Γ. Then Γ fits into a splitting exact sequence

1→ Γgeom→ Γ→ Γk → 1.

To prove Theorem 3.1, Liu and Zhu gave a simple description of

H(L)(YK) = H0(Xproét/YK , L̂⊗OC)

for (Y = Spa(B,B+)→ Xk′) ∈ B, which we recall now.

Proposition 3.3 [LZ17, Proposition 2.8]. PutM= L̂⊗Q̂p
ÔX . Then there exists a unique finite

projective BK-submodule MK(Y ) of M(ỸK,∞), which is stable under Γ, such that

(i) MK(Y )⊗BK
B̂K,∞ =M(ỸK,∞), and

(ii) the BK-linear representation of Γgeom on MK(Y ) is unipotent.

In addition, the module MK(Y ) has the following properties.

(P1) There exist some positive integer j0 and some finite projective Bkj0 -submodule M(Y ) of
MK(Y ) stable under Γ such that M(Y )⊗Bkj0

BK = MK(Y ). Moreover, the construction of

M(Y ) is compatible with base change along standard étale morphisms.

(P2) The natural map
MK(Y )Γgeom →M(ỸK,∞)Γgeom

is an isomorphism.

Once this proposition is proved, we can describe H(L)(YK) in terms of MK(Y ) as follows: the
vanishing theorem on affinoid perfectoid spaces [Sch12, Proposition 7.13] implies the degeneration
of the Cartan–Leray spectral sequence to the Galois cover {ỸK,∞→ YK} with Galois group Γgeom,
and thus we have

H i(Γgeom,M(ỸK,∞))
∼=−→ H i(Xproét/YK ,M),

H i(Γgeom, (M⊗OC)(ỸK,∞))
∼=−→ H i(Xproét/YK ,M⊗OC).

Moreover, we know that OC|ỸK,∞
∼= (ÔX |ỸK,∞

)[V1, . . . , Vn], where Vi = t−1 log([T [i ]/Ti) for a

fixed compatible sequence of p-power roots of the coordinate T [i = (Ti, T
1/p
i , . . .). It follows from

these results and a simple argument on the direct limit of sheaves on Xproét that the natural
Γk-equivariant map

(MK(Y )[V1, . . . , Vn])Γgeom → H(L)(YK)
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is an isomorphism. A simple computation shows that the map MK(Y )[V1, . . . , Vn] → MK(Y )
sending Vi to 0 induces a Γk-equivariant isomorphism

(MK(Y )[V1, . . . , Vn])Γgeom
∼=−→MK(Y ).

Thus we have a Γk-equivariant isomorphism

H(L)(YK) ∼= MK(Y ).

The above discussion is summarized in the following commutative diagram.

MK(Y )⊗BK
B̂K,∞

� � // (MK(Y )⊗BK
B̂K,∞)[V1, . . . , Vn]

MK(Y )
?�

OO

� � //MK(Y )[V1, . . . , Vn]
?�

OO

Vi=0 //MK(Y )

MK(Y )Γgeom
?�

OO

� � // (MK(Y )[V1, . . . , Vn])Γgeom
?�

OO

∼= //MK(Y )

Finally, we recall the Higgs field ϑL. This is defined to be

ϑL := ν ′∗(gr∇ : L̂⊗OC→ L̂⊗OC⊗ Ω1
X(−1))

under the identification ν ′∗(L̂ ⊗ OC ⊗ Ω1
X(−1)) ∼= H(L) ⊗ Ω1

X/k(−1). Here H(L) ⊗ Ω1
X/k(−1)

denotes the OXK
-module H(L) ⊗OX

Ω1
X/k(−1) = H(L) ⊗OXK

Ω1
XK/K

(−1) equipped with a
natural Γk-action.

We have another description under the isomorphism H(L)(YK) ∼= MK(Y ), which proves that
ϑL is nilpotent. Namely, let ρgeom denote the action of Γgeom on MK(Y ) and let χi : Γgeom

∼=
Zp(1)n → Zp(1) denote the composite of the natural identification and projection to the ith
component. We can take the logarithm of ρgeom on M(Y ) ⊂MK(Y ) since the action is unipotent.
Suppose the logarithm is written as

log ρgeom =
n∑
i=1

ϑi ⊗ χi ⊗ t−1,

where ϑi ∈ End(M(Y )). Then ϑi can be regarded as an endomorphism on MK(Y ) by extension
of scalars and we define

ϑMK(Y ) :=

n∑
i=1

ϑi ⊗ d log Ti ⊗ t−1 =

n∑
i=1

ϑi ⊗
dTi
Ti
⊗ t−1 ∈ End(MK(Y ))⊗B Ω1

B/k′(−1). (3.1)

We can check ϑMK(Y ) ∧ ϑMK(Y ) = 0 and this defines a Higgs field on MK(Y ). It turns out that
ϑL(YK) = ϑMK(Y ) under the Γk-equivariant isomorphism H(L)(YK) ∼= MK(Y ). See [LZ17, § 2]
for the detail.

3.2 Definition and properties of the arithmetic Sen endomorphism
We will define the arithmetic Sen endomorphism φL ∈ EndH(L). Let BL be the refinement of the
base B for (XK)ét whose objects consist of (Y = Spa(B,B+)→ Xk′) ∈ B such that H(L)(YK)
is a finite free BK-module.

For (Y = Spa(B,B+)→ Xk′) ∈ BL, H(L)(YK) is a BK-representation of Γk′ := Gal(K/k′)
in the sense of Definition 2.2. Thus Proposition 2.20 and Definition 2.23 equip H(L)(YK) with
the BK-linear endomorphism

φH(L)(YK) : H(L)(YK)→ H(L)(YK).
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Lemma-Definition 3.4. The assignment of endomorphisms

BL 3 (Y = Spa(B,B+)→ Xk′) 7−→ φH(L)(YK) ∈ EndBK
H(L)(YK)

defines an endomorphism φL of the vector bundle HL on (XK)ét. We call φL the arithmetic Sen
endomorphism of L.

Proof. We need to check the compatibility of φL,YK via the pullback Y ′′K → YK for

(Y = Spa(B,B+)→ Xk′), (Y
′′ = Spa(B′′, B′′+)→ Xk′′) ∈ BL.

For this it suffices to prove that

H(L)(YK)fin ⊗B∞ B′′∞
∼= H(L)(Y ′′K)fin

as B′′∞-representation of Gal(k∞/k
′′), where B∞ and B′′∞ are defined as in § 2.1.

Since H(L) is a vector bundle on XK , we have the natural isomorphisms

(H(L)(YK)fin ⊗B∞ B′′∞)⊗B′′∞ B′′K
∼= (H(L)(YK)fin ⊗B∞ BK)⊗BK

B′′K
∼= H(L)(YK)⊗BK

B′′K
∼= H(L)(Y ′′K).

On the other hand, we see from definition H(L)(YK)fin⊗B∞B′′∞ ⊂H(L)(Y ′′K)fin. Hence the lemma
follows from the faithful flatness of B′′∞→ B′′K . 2

Proposition 3.5. The following diagram commutes.

H(L)
ϑL //

φL

��

H(L)⊗ Ω1
X/k(−1)

φL⊗ id− id⊗ id

��
H(L)

ϑL // H(L)⊗ Ω1
X/k(−1)

In particular, the endomorphisms φL ⊗ id−i(id⊗ id) on H(L) ⊗ Ωi
X/k(−i) give rise to an

endomorphism on the complex of OXK
-modules on XK

H(L)
ϑL−→ H(L)⊗ Ω1

X/k(−1)
ϑL−→ H(L)⊗ Ω2

X/k(−2) −→ · · ·

induced by the Higgs field.

Proof. It is enough to check the commutativity of the diagram evaluated at YK for each (Y =
Spa(B,B+)→ Xk′) ∈ BL. In this setting, we can use the identification

(H(L)(YK), ϑL(YK), φL(YK)) ∼= (MK(Y ), ϑMK(Y ), φMK(Y )).

So it suffices to show the commutativity of the following diagram.

MK(Y )
ϑMK (Y )//

φMK (Y )

��

MK(Y )⊗B Ω1
B/k′(−1)

φMK (Y )⊗ id− id⊗ id

��
MK(Y )

ϑMK (Y )//MK(Y )⊗B Ω1
B/k′(−1)

Moreover, since M(Y )⊗Bkj0
BK = MK(Y ), we only need to check the commutativity on M(Y ) ⊂

MK(Y ).
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We use the notation in (3.1). Then we have

ϑMK(Y ) ◦ φMK(Y ) =
n∑
i=1

(ϑi ◦ φMK(Y ))⊗
dTi
Ti
⊗ t−1

and

(φMK(Y ) ⊗ id− id⊗ id) ◦ ϑMK(Y ) =

n∑
i=1

(φMK(Y ) ◦ ϑi − ϑi)⊗
dTi
Ti
⊗ t−1.

Thus we need to show that [φMK(Y ), ϑi] = ϑi for each i. To see this, take a topological
generator γi of the ith component of Γgeom

∼= Zp(1)n. Let ρgeom denote the action of Γgeom on

MK(Y ) and write log ρgeom =
∑n

i=1 ϑi ⊗ χi ⊗ t−1 as before. Since γγiγ
−1 = γ

χ(γ)
i for γ ∈ Γk, we

have
γ(log ρgeom(γi))γ

−1 = log ρgeom(γγiγ
−1) = χ(γ) log ρgeom(γi).

Hence γϑi = χ(γ)ϑiγ for γ ∈ Γk.
For m ∈M(Y ), we compute

φMK(Y )ϑim = lim
j→∞

1

logχ(γ)

γp
j
ϑim− ϑim
pj

= lim
j→∞

1

logχ(γ)

(χ(γ)p
j − 1)ϑiγ

pjm+ ϑi(γ
pjm−m)

pj

= ϑim+ ϑiφMK(Y )m.

Hence [φMK(Y ), ϑi] = ϑi. 2

Remark 3.6. Brinon generalized Sen’s theory to the case of p-adic fields with imperfect residue
fields in [Bri03]. Analogues of φL and ϑi have already appeared in his work.

We discuss properties of the arithmetic Sen endomorphism along the lines of Theorem 3.1
(i.e. [LZ17, Theorem 2.1]).

Theorem 3.7. (i) There are canonical isomorphisms

(H(L1 ⊗ L2), ϑL1⊗L2 , φL1⊗L2) ∼= (H(L1)⊗H(L2), ϑL1 ⊗ id + id⊗ϑL2 , φL1 ⊗ id + id⊗φL2)

and
(H(L∨), ϑ(L∨), φ(L∨)) ∼= (H(L)∨, (ϑL)∨, (φL)∨).

(ii) Let f : Y → X be a morphism between smooth rigid analytic varieties over k and L be
a Qp-local system on Xét. Then there is a canonical isomorphism

f∗(H(L), ϑL, φL) ∼= (f∗H(L), ϑf∗L, φf∗L).

Proof. Part (i) follows from [LZ17, Theorem 2.1(iv)] and Lemma 2.22. Part (ii) follows from
[LZ17, Theorem 2.1(iii)] and Proposition 2.20 (functoriality of φW ). 2

By construction, we also have the following in the case of points.

Proposition 3.8. If X is a point, then φL coincides with the Sen endomorphism attached to
the Galois representation L.
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For pushforwards, we have the following theorem (the notation is explained after the
statement).

Theorem 3.9. Let f : X → Y be a smooth proper morphism between smooth rigid analytic
varieties over k and let L be a Zp-local system on Xét. Then we have

(H(Rif∗L), ϑRif∗L) ∼= RifHiggs,∗(H(L)⊗ Ω•X/Y (−•), ϑ̄L).

Moreover, under this isomorphism, we have

φRif∗L = RifK,ét,∗(φL ⊗ id− • (id⊗ id)).

Let us explain the notation in the theorem. Recall the complex of OXK
-modules

H(L)
ϑL−→ H(L)⊗ Ω1

X/k(−1)
ϑL−→ H(L)⊗ Ω2

X/k(−2) −→ · · · .

This has an OXK
-linear endomorphism φL ⊗ id− • (id⊗ id) by Proposition 3.5. The complex

yields a complex of OXK
-modules

H(L)
ϑ̄L−→ H(L)⊗ Ω1

X/Y (−1)
ϑ̄L−→ H(L)⊗ Ω2

X/Y (−2) −→ · · ·

by composing with the projection Ωi
X/k → Ωi

X/Y . The new complex has an induced OXK
-linear

endomorphism, which we still denote by φL ⊗ id− • (id⊗ id).
We denote by fK : XK → YK the base change of f . Then RifHiggs,∗ is the ith derived

pushforward of the complex with the Higgs field. In particular, RifHiggs,∗(H(L)⊗Ω•X/Y (−•), ϑ̄L)

is the OXK ,ét-module RifK,ét,∗(H(L)⊗ Ω•X/Y (−•)) together with a Higgs field.

Proof. The first part is [LZ17, Theorem 2.1(v)] (see Theorem 3.1). Note that [LZ17, Theorem
2.1(v)] has an additional assumption that Rif∗L is a Zp-local system on Yét for every i, but
this is always the case; to see this, it suffices to check that (Rif∗L)|Yˆ

k
,ét is a Zp-local system,

which follows from [SW18, Theorem 10.5.1]. So we will prove the statement on arithmetic Sen
endomorphisms.

Since the statement is local on Y , we may assume that Y is an affinoid Spa(A,A+) and
that H(Rif∗L) is a globally free vector bundle on YK . So H(Rif∗L) is associated to a finite free
AK-module (say V ). Then V is an AK-representation of Γk and the endomorphism φRif∗L is
associated to φV .

Since X is quasi-compact, there exists a finite affinoid open cover X =
⋃
i∈I U

(i) with U (i) =

Spa(B(i), B(i),+) such that H(L)|
U

(i)
K

is a globally finite free vector bundle for each i. So H(L)|
U

(i)
K

gives rise to a B
(i)
K -representation of Γk and the latter is defined over B

(i)
km

for a sufficiently large
m (cf. the proof of Theorem 2.9). Since the same holds for H(L)|

U
(i)
K ∩U

(j)
K

, there exists a large

integer m such that the complex of OXK
-modules

H(L)
ϑ̄L−→ H(L)⊗ Ω1

X/Y (−1)
ϑ̄L−→ H(L)⊗ Ω2

X/Y (−2) −→ · · ·

with the Γk-action and the endomorphism φL ⊗ id− • (id⊗ id) descends to a complex of OXkm
-

modules

H(L)km
ϑ̄L−→ H(L)km ⊗ Ω1

X/Y (−1)
ϑ̄L−→ H(L)km ⊗ Ω2

X/Y (−2) −→ · · ·
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on Xkm equipped with Γ-action and an endomorphism φL⊗ id−•(id⊗ id) such that H(L)km |U(i)
km

is a globally finite free vector bundle for each i. We denote by F• the complex on Xkm and by
φ• the descended endomorphism.

Let fkm : Xkm → Ykm denote the base change of f . Set

HY,km := Rifkm,étF•.

Since fkm is proper, this is a coherent OYkm -module by Kiehl’s finiteness theorem.2 We have

HY,km |YK = (Rifkm,étF•)|YK = RifK,ét(F•|XK
) = RifK,ét(H(L)⊗ Ω•X/Y (−•)),

and this is isomorphic to H(Rif∗L) by the first assertion. Thus (after increasing m) HY,km is
globally finite free and associated to a finite free Akm-module (say Vkm) with Γk-action satisfying
Vkm ⊗Akm

AK = V . By construction, Vkm is contained in Vfin and the AK-linear endomorphism
φV on V is uniquely characterized by the following property: for each v ∈ Vkm , there exists an
open subgroup Γ′k ⊂ Γk such that

exp(logχ(γ)φV )v = γv

for all γ ∈ Γ′k.
We will show that RifK,ét,∗(φL ⊗ id− • (id⊗ id)) defines an AK-linear endomorphism on V

with the same property. To see this, we compute Vkm via the Čech-to-derived functor spectral
sequence. Note that

Vkm = Γ(Ykm,ét,HY,km) = RiΓ(Xkm,ét,F•)

by definition.

Let us briefly recall the Čech-to-derived functor spectral sequence. Set U := {U (i)
km
}i∈I . For

i0, . . . , ia ∈ I, we denote by U
(i0···ia)
km

the affinoid open U
(i0)
km
∩· · ·∩U (ia)

km
. Consider the Čech double

complex Č•(U ,F•) associated to the complex F•; this is defined by

Ča(U ,Fb) :=
∏

i0,...,ia∈I
Fb(U (i0···ia)

km
).

Let Hb be the bth right derived functor of the forgetful functor from the category of abelian
sheaves on Xkm,ét to the category of abelian presheaves on Xkm,ét; for an abelian sheaf G, Hb(G)
associates to (U → Xkm) the abelian group Hb(U,G). Then the Čech-to-derived functor spectral
sequence is a spectral sequence with

Ea,b2 = Ha(Tot(Č•(U , Hb(F•))))

converging to Ra+bΓ(Xkm,ét,F•). Moreover, this is functorial in F•.
In our case, F• consists of coherent Okm-modules and U

(i0···ia)
km

are all affinoid. So

Hb(Fc)(U (i0···ia)
km

) = 0 for each b > 0 and any a and c by Kiehl’s theorem. Thus the spectral
sequence yields an isomorphism

H i(Tot(Č•(U ,F•)))
∼=−→ RiΓ(Xkm,ét,F•) = Vkm .

Moreover, this isomorphism is Γk-equivariant as the construction is functorial in F•.

2 For a coherent Okm -module F , we have (RifkmF)ét = Rifkm,étFét [Sch13, Proposition 9.2]. So we simply write
F for the sheaf Fét on Xkm,ét.
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Let us unwind the definition of Ča(U ,Fb):

Ča(U ,Fb) =
∏

i0,...,ia∈I
Γ(U

(i0···ia)
km

,H(L)km ⊗ Ωb
X/Y (−b)).

Set
W (i0···ia),b := Γ(U

(i0···ia)
K ,H(L)⊗ Ωb

X/Y (−b))

and
W

(i0···ia),b
km

:= Γ(U
(i0···ia)
km

,H(L)km ⊗ Ωb
X/Y (−b)).

They have a natural Γk-action, and W
(i0···ia),b
km

is contained in (W (i0···ia),b)fin. In particular, the

restriction of φW (i0···ia),b to W
(i0···ia),b
km

satisfies the following property: for each w ∈ W (i0···ia),b
km

,
there exists an open subgroup Γ′k ⊂ Γk such that

exp(logχ(γ)φW (i0···ia),b)w = γw

for all γ ∈ Γ′k.
It follows from our construction that under the isomorphism H i(Tot(Č•(U ,F•))) ∼=

RiΓ(Xkm,ét,F•) = Vkm , the endomorphism RifK,ét,∗(φL ⊗ id− • (id⊗ id))|Vkm = Rifkm,ét,∗φ
•

corresponds to

H i

(
Tot

( ∏
i0,...,ia∈I

φW (i0···ia),b

))
.

Since differentials in the complex Tot(Č•(U ,F•)) are all Γk-equivariant, we see that
H i(Tot(

∏
i0,...,ia∈I φW (i0···ia),b)) satisfies the above-mentioned characterizing property of φV . This

completes the proof. 2

4. Constancy of generalized Hodge–Tate weights

In this section, we prove the multiset of eigenvalues of φL is constant on XK (Theorem 4.8). For
this we give a description of φL as the residue of a formal connection in § 4.1. Then the constancy
is proved by the theory of formal connections developed in § 4.2.

4.1 The decompletion of the geometric Riemann–Hilbert correspondence
We review the geometric Riemann–Hilbert correspondence by Liu and Zhu and discuss its
decompletion.

Keep the notation in § 3. Let L be a Qp-local system on Xét of rank r. Following [LZ17], we
define

RH(L) = ν ′∗(L̂ ⊗Q̂p
OBdR).

In order to state their theorem, let us recall a ringed space X introduced in [LZ17, § 3.1]. Let
L+

dR denote the de Rham period ring B+
dR(K,OK) as before ([LZ17] uses B+

dR but we prefer to
use L+

dR). Define a sheaf OX ⊗̂ (L+
dR/t

i) on XK,ét by assigning

(Y = Spa(B,B+)→ Xk′) ∈ B 7−→ B ⊗̂k′ (L+
dR/t

i).

This defines a sheaf by the Tate acyclicity theorem. We also set

OX ⊗̂L+
dR = lim

←−
i

OX ⊗̂ (L+
dR/t

i)
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and
OX ⊗̂LdR = (OX ⊗̂L+

dR)[t−1].

We denote the ringed space (XK ,OX ⊗̂LdR) by X . We have a natural base change functor
E 7→ E ⊗̂LdR from the category of vector bundles on X to the category of vector bundles on X .
We set

Ω1
X/LdR

= Ω1
X/k ⊗̂LdR.

Theorem 4.1 [LZ17, Theorem 3.8].

(i) RH(L) is a filtered vector bundle on X of rank r equipped with an integrable connection

∇L : RH(L) −→ RH(L)⊗OX ΩX/LdR

that satisfies the Griffiths transversality. Moreover, Gal(K/k) acts on RH(L) semilinearly, and
the action preserves the filtration and commutes with ∇L.

(ii) There is a canonical isomorphism

(gr0RH(L), gr0(∇L)) ∼= (H(L), ϑL).

We want to consider a decompletion of RH(L). Here we only develop an ad hoc local theory
that is sufficient for our purpose.

Take (Y = Spa(B,B+)→ Xk′) ∈ BL and consider Fil0RH(L)(YK). Since gr0RH(L)(YK) is
a finite free BK-module by the definition of BL, the B ⊗̂k′ L+

dR-module Fil0RH(L)(YK) is also
finite free. Thus Fil0RH(L)(YK) is a B ⊗̂k′ L+

dR-representation of Gal(K/k′), and RH(L)(YK) =
(Fil0RH(L)(YK))[t−1].

Definition 2.28 yields the B∞((t))-module RH(L)(YK)fin and the B∞-linear endomorphism

φdR,RH(L)(YK)fin
: RH(L)(YK)fin→ RH(L)(YK)fin.

For simplicity, we denote φdR,RH(L)(YK)fin
by φdR,L,YK . It satisfies

φdR,L,YK (αm) = t∂t(α)m+ αφdR,L,YK (m)

for every α ∈ B∞((t)) and m ∈ RH(L)(YK)fin. Note that ∇L is Gal(K/k)-equivariant. Hence
under the identification

RH(L)⊗OX Ω1
X/LdR

∼= RH(L)⊗OX
Ω1
X/k,

we have

∇L,YK (RH(L)(YK)fin) ⊂ (RH(L)(YK)⊗ Ω1
B/k′)fin = RH(L)(YK)fin ⊗ Ω1

B/k′ .

Proposition 4.2. The following diagram commutes.

RH(L)(YK)fin

∇L,YK //

φdR,L,YK
��

RH(L)(YK)fin ⊗B Ω1
B/k′

φdR,L,YK⊗ id

��
RH(L)(YK)fin

∇L,YK // RH(L)(YK)fin ⊗B Ω1
B/k′

Moreover, we have
ResFil0RH(L)(YK)fin

φdR,L,YK = φL,YK .
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Proof. The commutativity of the diagram follows from the fact that ∇L is Gal(K/k)-equivariant.
The second assertion is a consequence of Theorem 4.1(ii) (cf. Definition 2.28). 2

Remark 4.3. In [AB10], Andreatta and Brinon developed a Fontaine-type decompletion theory
in the relative setting. Roughly speaking, they associated to a local system on X a formal
connection over the pro-étale cover X̃K,∞ over XK when X is an affine scheme admitting a toric
chart.

4.2 Theory of formal connections
To study φdR,L,YK in the previous subsection, we develop a theory of formal connections. We work
on the following general setting: let R be an integral domain of characteristic 0 (e.g. R = B∞ in
the previous subsection) and fix an algebraic closure of the fraction field of R. Consider the ring
of Laurent series R((t)) and define the R-linear derivation d0 : R((t))→ R((t)) by

d0

(∑
j∈Z

ajt
j

)
=
∑
j∈Z

jajt
j−1.

Let M be a finite free R((t))-module of rank r and let D0 : M →M be an R-linear map which
satisfies the Leibniz rule

D0(αm) = αD0(m) + d0(α)m (α ∈ R((t)),m ∈M).

Definition 4.4. A tD0-stable lattice of M is a finite free R[[t]]-submodule Λ of M that satisfies

Λ⊗R[[t]] R((t)) = M and tD0(Λ) ⊂ Λ.

For a tD0-stable lattice Λ of M , we have tD0(tΛ) ⊂ tΛ by the Leibniz rule. Thus tD0 : Λ→ Λ
induces an R-linear endomorphism on Λ/tΛ. We denote this endomorphism by ResΛD0. Since
Λ/tΛ is a finite free R-module of rank r, the endomorphism ResΛD0 has r eigenvalues (counted
with multiplicity) in the algebraic closure of the fraction field of R.

The following is known for tD0-stable lattices.

Theorem 4.5. Assume that R is an algebraically closed field.

(i) There exists a finite subset A of R such that the submodule

ΛA :=
⊕
α∈A

Ker(tD0 − α)r ⊗R R[[t]]

is a tD0-stable lattice of M . In particular, the eigenvalues of ResΛAD0 lie in A.

(ii) For any tD0-stable lattices Λ and Λ′ of M , the eigenvalues of ResΛD0 and those of
ResΛ′D0 differ by integers. Namely, for each eigenvalue α of ResΛD0, there exists an eigenvalue
α′ of ResΛ′D0 such that α− α′ ∈ Z.

See [DGS94, III.8 and V. Lemma 2.4] and [AB01, ch. 1, Proposition 3.2.2] for details.
We now turn to the following multivariable situation: Let R be an integral domain of

characteristic 0 as before. Suppose that R is equipped with pairwise commuting derivations
d1, . . . , dn; this means that for each i = 1, . . . , n, the map di : R→ R is additive and satisfies the
Leibniz rule

di(ab) = di(a)b+ adi(b) (a, b ∈ R),
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and di ◦ dj = dj ◦ di for each i and j. Since R is an integral domain of characteristic 0, the
derivations d1, . . . , dn extend uniquely over the algebraic closure of the fraction field of R.

For each i = 1, . . . , n, we extend di : R→ R to an additive map di : R((t))→ R((t)) by

di

(∑
j∈Z

ajt
j

)
=
∑
j∈Z

di(aj)t
j .

Then endomorphisms d0, d1, . . . , dn on R((t)) commute with each other. Moreover, d1, . . . , dn
commute with td0.

Let M be a finite free R((t))-module of rank r together with pairwise commuting additive
endomorphisms D0, D1, . . . , Dn : M →M satisfying the Leibniz rule

Di(αm) = αDi(m) + di(α)m (α ∈ R((t)),m ∈M, 0 6 i 6 n).

Note that D0 is R-linear and D1, . . . , Dn commute with tD0.
The following proposition is the key to the constancy of generalized Hodge–Tate weights.

Proposition 4.6. With the notation as above, let Λ be a tD0-stable lattice of M . Then each
eigenvalue α of ResΛD0 in the algebraic closure of the fraction field of R satisfies

d1(α) = · · · = dn(α) = 0.

Proof. By extending scalars from R to the algebraic closure of its fraction field, we may assume
that R is an algebraically closed field. By Theorem 4.5(i), there exists a finite subset A of R such
that the submodule

ΛA :=
⊕
α∈A

Ker(tD0 − α)r ⊗R R[[t]]

is a tD0-stable lattice of M .
By Theorem 4.5(ii), the eigenvalues of ResΛD0 and those of ResΛAD0 differ by integers. Since

every integer a satisfies d1(a) = · · · = dn(a) = 0, it suffices to treat the case where Λ = ΛA.

Lemma 4.7. The finite free R[[t]]-submodule ΛA is stable under D1, . . . , Dn.

Note that Lemma 4.7 says that the connection (ΛA, D0, . . . , Dn) is regular singular along
t = 0. In this case, Proposition 4.6 is easy to prove. In fact, this is an algebraic analogue of the
following fact: let X be the complex affine space An+1

C and D the divisor {0} × AnC. Consider
a vector bundle Λ on X and an integrable connection ∇ on Λ|X\D that admits logarithmic

poles along D. Let T be the monodromy transformation of (Λ|X\D)∇=0 defined by the positive

generator of π1(X\D) = Z. Then T extends to an automorphism T̃ of Λ and satisfies

T̃ |D = exp(−2πiResD∇).

See [Del70, Proposition 3.11].

Proof of Lemma 4.7. This is [AB01, Lemma 3.3.2]. For the convenience of the reader, we
reproduce the proof here. Fix 1 6 i 6 n and α ∈ A. It is enough to show that for each 0 6 j 6 r,

Di Ker(tD0 − α)j ⊂ Ker(tD0 − α)j+1.
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We prove this inclusion by induction on j. The assertion is trivial when j = 0. Assume j > 0
and take m ∈ Ker(tD0 − α)j . Then (tD0 − α)m ∈ Ker(tD0 − α)j−1, and thus Di(tD0 − α)m ∈
Ker(tD0 − α)j by the induction hypothesis. We need to show (tD0 − α)j+1Dim = 0. Since Di

commutes with tD0 and satisfies Di(αm) = αDi(m) + di(α)m, we have

(tD0 − α)Dim = Di(tD0 − α)m+ di(α)m.

Therefore

(tD0 − α)j+1Dim = (tD0 − α)j(tD0 − α)Dim

= (tD0 − α)jDi(tD0 − α)m+ (tD0 − α)jdi(α)m

= (tD0 − α)jDi(tD0 − α)m+ di(α)(tD0 − α)jm.

For the third equality, note that di(α) ∈R andD0 isR-linear. SinceDi(tD0−α)m ∈Ker(tD0−α)j

and m ∈ Ker(tD0 − α)j , the last sum is zero. 2

We continue the proof of Proposition 4.6. Fix an R[[t]]-basis of ΛA and identify ΛA with
R[[t]]r. Note that R[[t]]r has natural differentials d0, d1, . . . , dn : R[[t]]r → R[[t]]r. Consider the
map

t(D0 − d0) : R[[t]]r → R[[t]]r.

This is R[[t]]-linear. We denote the corresponding r × r matrix by C0 ∈Mr(R[[t]]).
Fix 1 6 i 6 n. By Lemma 4.7, the map Di gives an endomorphism on R[[t]]r that satisfies

the Leibniz rule, and thus Di − di is an R[[t]]-linear endomorphism on R[[t]]r. We denote the
corresponding r × r matrix by Ci ∈Mr(R[[t]]).

We have [tD0, Di] = 0 and [td0, di] = 0 in End(R[[t]]r). Plugging tD0 = td0 + C0 and Di =
di + Ci into [tD0, Di] = 0 yields

[C0, Ci] = diC0 − td0Ci, (4.1)

where d0 and di are derivatives acting on the matrices entrywise.
Consider the surjection R[[t]] → R evaluating t by 0. We denote the image of C0

(respectively Ci) in Mr(R) by C0 (respectively Ci). By construction C0 is the matrix
corresponding to ResΛAD0. Thus it suffices to show that each eigenvalue of C0 is killed by di.
This is standard. Namely, by (4.1), we have

[C0, Ci] = diC0.

This implies that

di(C
2
0) = C0di(C0) + di(C0)C0 = C0[C0, Ci] + [C0, Ci]C0 = [C

2
0, Ci].

Similarly, for each j ∈ N,

di(C
j
0) = [C

j
0, Ci].

In particular, we get

di(tr(C
j
0)) = 0.

This implies that each eigenvalue of C0 is killed by di. 2
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4.3 Constancy of generalized Hodge–Tate weights
Here is the key theorem of this paper.

Theorem 4.8. Let k be a finite extension of Qp. Let X be a smooth rigid analytic variety over
k and L a Qp-local system on Xét. Consider the arithmetic Sen endomorphism φL ∈ End(H(L)).
Then eigenvalues of φL,x ∈ End(H(L)x) for x ∈ XK are algebraic over k and constant on each
connected component of XK .

We call these eigenvalues generalized Hodge–Tate weights of L.

Proof. Since φL is an endomorphism on the vector bundle H(L) on XK , it suffices to prove the
statement étale locally on X. Thus we may assume that X is an affinoid Spa(B,B+) which
admits a toric chart Xk′ → Tnk′ over some finite extension k′ of k in K.

Take (Y = Spa(B,B+) → Xk′) ∈ BL. We may assume that B∞ is connected, hence an
integral domain. Note that Y admits a toric chart

Yk′′ → Tnk′′ = Spa(k′′〈T±1 , . . . , T
±
n 〉,Ok′′〈T±1 , . . . , T

±
n 〉)

after base change to a finite extension k′′ of k′ in K. Then the derivations ∂/∂T1, . . . , ∂/∂Tn on
k′′〈T±1 , . . . , T±n 〉 extends over B∞. We also denote the extensions by ∂/∂T1, . . . , ∂/∂Tn.

We set

R = Bk∞ , d0 = ∂t and di =
∂

∂Ti
(1 6 i 6 n).

Consider the R((t))-module
M = RH(L)(YK)fin

equipped with endomorphisms

D0 = t−1φdR,L,YK and Di = (∇L,YK )∂/∂Ti (1 6 i 6 n).

By Proposition 4.2, they satisfy the assumptions in the previous subsection.
Consider the R[[t]]-submodule of M

Λ = (Fil0RH(L)(YK))fin.

Then Λ is tD0-stable, and ResΛD0 is φL,YK . Thus by Proposition 4.6, each eigenvalue α of ResΛD0

in an algebraic closure L of FracR satisfies

d1(α) = · · · = dn(α) = 0.

On the other hand, we can check that

Ld1=···=dn=0 = (Frac k′′〈T±1 , . . . , T
±
n 〉)∂/∂T1=···=∂/∂Tn=0 = k̄.

Therefore the eigenvalues of φL,YK are algebraic over k and constant on YK . 2

Corollary 4.9. Let k be a finite extension of Qp. Let X be a geometrically connected smooth
rigid analytic variety over k and L a Qp-local system on X. Then the multiset of generalized

Hodge–Tate weights of the p-adic representations Lx of Gal(k(x)/k(x)) does not depend on the
choice of a classical point x of X.

In particular, if Lx is presque Hodge–Tate for one classical point x of X (i.e. generalized
Hodge–Tate weights are all integers), Ly is presque Hodge–Tate for every classical point y of X.

Proof. This follows from Theorem 4.8. 2
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5. Applications and related topics

We study properties of Hodge–Tate sheaves using the arithmetic Sen endomorphism. We keep
the notation in § 3.

Consider the Hodge–Tate period sheaf on Xproét:

OBHT := gr•OBdR =
⊕
j∈Z
OC(j).

For a Qp-local system L on Xét, we define a sheaf DHT(L) on Xét by

DHT(L) := ν∗(L̂⊗Q̂p
OBHT).

Proposition 5.1. The sheaf DHT(L) is a coherent OXét
-module. Moreover, for every affinoid

Y ∈ Xét,

Γ(Y,DHT(L)) =
⊕
j∈Z

H0(Γk,H(L)(Y )(j)).

Proof. This follows from the proof of [LZ17, Theorem 3.9(i)]. 2

Remark 5.2. In [KL16, Theorem 8.6.2(a)], Kedlaya and Liu proved this statement for
pseudocoherent modules over a pro-coherent analytic field.

We are going to study the relation between DHT(L) and φL ∈ EndH(L). For each j ∈ Z, we
set

H(L)φL=j := Ker(φL − j id : H(L)→ H(L)).

This is a coherent OXK,ét
-module. We denote by DHT(L)|XK

the coherent OXK ,ét-module
associated to the pullback of DHT(L) on X to XK as coherent sheaves.

Proposition 5.3. Let L be a Qp-local system of rank r on Xét. Assume that L satisfies one of
the following conditions:

(i) H(L)φL=j is a vector bundle on XK,ét for each j ∈ Z;

(ii) DHT(L) is a vector bundle of rank r on Xét.

Then we have
DHT(L)|XK,ét

∼=
⊕
j∈Z
H(L(j))φL(j)=0.

Moreover, this is isomorphic to
⊕

j∈ZH(L)φL=j . In particular, DHT(L) is a vector bundle on Xét

and
⊕

j∈ZH(L)φL=j is a vector bundle on XK,ét.

Proof. The statement is local. So it suffices to prove that for each affinoid Y = Spa(B,B+) ∈Xét

such that H(L)|YK is associated to a finite free BK-module (say V ), we have

Γ(Y,DHT(L)) ⊗̂B BK ∼=
⊕
j∈Z

V (j)φV (j)=0.

Note Γ(Y,DHT(L)) =
⊕

j∈Z(V (j))Γk . Moreover, it follows from the Tate–Sen method [LZ17,
Lemma 3.10] that

(Vfin(j))Γk
∼=−→ (V (j))Γk .
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Lemma 5.4.

(i) (V φV =0
fin )⊗B∞ BK ∼= V φV =0.

(ii) The natural map

(V Γk
fin )⊗B B∞→ V φV =0

fin

is injective.

Proof. Part (i) follows from the flatness of B∞→ BK and Vfin ⊗B∞ BK ∼= V .
We prove part (ii). By the definition of φV , the natural map

(V Γk
fin )⊗B B∞→ Vfin

factors through V φV =0
fin . So we show that the above map is injective.

We denote the total fraction ring of B (respectively B∞) by FracB (respectively FracB∞).
We first claim that the natural map

V Γk
fin → V Γk

fin ⊗B FracB

is injective. To see this, note that Vfin is a finite free B∞-module. Hence the composite

Vfin→ Vfin ⊗B FracB = Vfin ⊗B∞ (B∞ ⊗B FracB)→ Vfin ⊗B∞ FracB∞

is injective, and thus so is the first map. Since the composite

V Γk
fin → V Γk

fin ⊗B FracB→ Vfin ⊗B FracB

coincides with the composite of injective maps V Γk
fin → Vfin and Vfin → Vfin ⊗B FracB, the map

V Γk
fin → V Γk

fin ⊗B FracB is also injective.
By the above claim, it suffices to show the injectivity of the natural map

(V Γk
fin ⊗B FracB)⊗FracB FracB∞→ Vfin ⊗B∞ FracB∞.

Now that FracB and FracB∞ are products of fields, this follows from standard arguments;
we may assume that FracB is a field. Replacing k by an algebraic closure in FracB, we may
further assume that FracB∞ is also a field. Note that FracB∞ = (FracB) ⊗k k∞ and thus
(FracB∞)Γk = FracB.

Assume the contrary. Let a > 0 be the minimal positive integer such that there exist v1, . . . ,
va ∈ V Γk

fin ⊗B FracB that are linearly independent over FracB and non-zero b1, . . . , ba ∈ FracB∞
satisfying b1v1 + · · · + bava = 0. By replacing bi by b−1

1 bi, we may further assume b1 = 1. Take

any γ ∈ Γk. As v1, . . . , va ∈ V Γk
fin ⊗B FracB, we have v1 + γ(b2)v2 + · · · + γ(ba)va = 0 and thus

(γ(b2)− b2)v2 + · · ·+ (γ(ba)− ba)va = 0. By the minimality, we have γ(bi) = bi for each 2 6 i 6 a
and γ ∈ Γk. Therefore we have bi ∈ FracB for all i, which contradicts the linear independence
of v1, . . . , va over FracB. 2

We continue the proof of Proposition 5.3. By Lemma 5.4 and discussions above, it is enough
to show V Γk

fin ⊗B B∞ ∼= V φV =0
fin assuming either condition (i) or (ii). In fact, the Tate twist of this

isomorphism implies (V (j))Γk ⊗̂B BK ∼= (V (j))φV (j)=0, and a choice of a generator of OXK,ét
(j)

yields H(L(j))φL(j)=0 ∼= H(L)φL=−j .

We show that condition (ii) implies condition (i). For each j ∈ Z, let V
(j)

fin denote the

generalized eigenspace of φV on Vfin with eigenvalue j. By the constancy of φV , V
(j)

fin is a direct
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summand of Vfin and thus a finite projective B∞-module. By Lemma 5.4(ii), we have injective

B∞-linear maps

(V (j)fin)Γk ⊗B B∞ ↪→ (V (j)fin)φV (j)=0 ∼= V φV =−j
fin ↪→ V

(−j)
fin

for each j ∈ Z. From this we obtain

rankDHT (L) =
∑
j∈Z

rankB(Vfin(j))Γk 6
∑
j∈Z

rankB∞ V
(−j)

fin 6 rankH(L) = r.

Hence it follows from condition (ii) that (Vfin(j))Γk ⊗B B∞ and V
(−j)

fin are finite projective B∞-

modules of the same rank. This implies V φV =−j
fin = V

(−j)
fin . So V φV =−j

fin is a finite projective

B∞-module for every j ∈ Z and thus H(L) satisfies condition (i).

From now on, we assume thatH(L) satisfies condition (i). By condition (i) and Lemma 5.4(i),

V φV =0
fin is finite projective over B∞. So shrinking Y if necessary, we may assume that V φV =0

fin is

finite free over B∞. Note that we only concern the B∞-representation Vfin of Γk and we have

(V φV =0
fin )Γk = V Γk

fin . Thus replacing Vfin by the subrepresentation V φV =0
fin , we may further assume

φV = 0 on Vfin. Under this assumption, it remains to prove V Γk
fin ⊗B B∞ ∼= Vfin.

Fix a B∞-basis v1, . . . , vr of Vfin. Then there exists a large positive integer m such that for

each γ ∈ Γk the matrix of γ with respect to (vi) has entries in GLr(Bkm). Since φV = 0, by

increasing m if necessary, we may further assume that γvi = vi for each 1 6 i 6 r and γ ∈ Γ′k :=

Gal(k∞/km)⊂ Γk. Set Vkm :=
⊕

16i6r Bkmvi. This is a Bkm-representation of Γk/Γ
′
k = Gal(km/k)

and satisfies Vfin = Vkm ⊗Bkm
B∞.

It follows from [BC08, Proposition 2.2.1] that (Vkm)Γk/Γ
′
k is a finite projective B-module and

that (Vkm)Γk/Γ
′
k ⊗B Bkm ∼= Vkm . As V Γk

fin = (Vkm)Γk/Γ
′
k , this yields

V Γk
fin ⊗B B∞ ∼= Vfin. 2

Theorem 5.5. Let L be a Qp-local system of rank r on Xét. Then the following conditions are

equivalent:

(i) DHT(L) is a vector bundle of rank r on Xét;

(ii) ν∗DHT(L)⊗OX
OBHT

∼= L̂⊗Q̂p
OBHT;

(iii) φL is a semisimple endomorphism on H(L) with integer eigenvalues;

(iv) there exist integers j1 < · · · < ja such that if we set F (s) :=
∏

16i6a(s− ji) ∈ Z[s], then

F (φL) = 0

as an endomorphism of H(L).

Definition 5.6. A Qp-local system on Xét is a Hodge–Tate sheaf if it satisfies the equivalent

conditions in Theorem 5.5.

Remark 5.7. Tsuji obtained Theorem 5.5 in the case of semistable schemes [Tsu11, Theorem 9.1].

He also gave a characterization of Hodge–Tate local systems in terms of restrictions to divisors.

See [Tsu11, Theorem 9.1] for the detail.
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Proof of Theorem 5.5. The equivalence of (iii) and (iv) is clear, and (iii) implies (i) by
Proposition 5.3. Conversely, assume condition (i). Thus DHT(L)|XK

is a vector bundle of rank r
on XK,ét. By Proposition 5.3, it is also isomorphic to

⊕
j∈ZH(L)φL=j . Thus

⊕
j∈ZH(L)φL=j =

H(L), and there exist integers j1 < · · · < ja such that
⊕

16i6aH(L)φL=ji = H(L). So F (s) :=∏
16i6a(s− ji) satisfies F (φL) = 0, which is condition (iv).

Next we show that condition (iv) implies (ii). Obviously, there is a natural morphism

ν∗DHT(L)⊗OX
OBHT→ L̂⊗Q̂p

OBHT (5.1)

on Xproét and we will prove that this is an isomorphism. It is enough to check this on Xproét/XK
∼=

XK,proét. Recall a canonical isomorphism in [LZ17, Theorem 2.1(ii)]:

ν ′∗H(L)⊗OXK
OC|XK,proét

∼= (L̂⊗Q̂p
OC)|XK,proét

.

Then the restriction of the morphism (5.1) to XK,proét is obtained as

(ν∗DHT(L)⊗OX
OBHT)|XK,proét

∼= ν∗DHT(L)|XK,proét
⊗OXK

OBHT|XK,proét

∼= ν ′∗(DHT(L)|XK
)⊗OXK

(⊕
j∈Z
OC(j)

)∣∣∣∣
XK,proét

∼= ν ′∗
(
DHT(L)|XK

⊗
⊕
j∈Z
OXK

(j)

)
⊗OXK

OC|XK,proét

→ ν ′∗
(⊕
j∈Z
H(L)(j)

)
⊗OXK

OC|XK,proét

∼=
(⊕
j∈Z

L̂⊗Q̂p
OC(j)

)∣∣∣∣
XK,proét

∼= (L̂⊗Q̂p
OBHT)|XK,proét

.

This can be checked by considering affinoid perfectoids represented by the toric tower, and the
verification is left to the reader. It follows from condition (iii) and Proposition 5.3 that⊕

j∈Z
DHT(L)|XK

(j) ∼=
⊕
j∈Z
H(L)(j).

Hence (ν∗DHT(L)⊗OX
OBHT)|XK,proét

∼= (L̂⊗Q̂p
OBHT)|XK,proét

.

Finally we show that (ii) implies (i). By condition (ii), we have

ν ′∗((ν
∗DHT(L)⊗OX

OBHT)|XK,proét
) ∼= ν ′∗((L̂⊗Q̂p

OBHT)|XK,proét
).

On the other hand, it is easy to check

ν ′∗((ν
∗DHT(L)⊗OX

OBHT)|XK,proét
) ∼=

⊕
j∈Z

DHT(L)|XK
(j).

Since ν ′∗((L̂ ⊗Q̂p
OBHT)|XK,proét

) =
⊕

j∈ZH(L(j)), we have⊕
j∈Z

DHT(L)|XK
(j) ∼=

⊕
j∈Z
H(L(j)).

In particular, DHT(L)|XK
is a vector bundle on XK,ét, and thus DHT(L) is a vector bundle on

Xét. Moreover, condition (ii) implies rankDHT(L) = r. 2
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Example 5.8. Suppose that there exists a Zariski dense subset T ⊂ X consisting of classical rigid
points with residue field finite over k such that the restriction of L to each x ∈ T defines a
Hodge–Tate representation. Then L is a Hodge–Tate sheaf by Theorems 4.8 and 5.5(iii). See
[KL16, Theorem 8.6.6] for a generalization of this remark.

Corollary 5.9.

(i) Hodge–Tate sheaves are stable under taking dual, tensor product, and subquotients.

(ii) Let f : Y → X be a morphism between smooth rigid analytic varieties over k. If L is a
Hodge–Tate sheaf on Xét, then f∗L is a Hodge–Tate sheaf on Yét.

Proof. This follows from Proposition 2.20, Lemma 2.22, and Theorem 5.5(iii). 2

We next turn to the pushforward of Hodge–Tate sheaves.

Theorem 5.10. Let f : X → Y be a smooth proper morphism between smooth rigid analytic
varieties over k of relative dimension m and let L be a Zp-local system on Xét.

(i) If α ∈ k is a generalized Hodge–Tate for Rif∗L, then α is of the form β−j with a generalized
Hodge–Tate weight β of L and an integer j ∈ [0,m].

(ii) If L is a Hodge–Tate sheaf on Xét, then Rif∗L is a Hodge–Tate sheaf on Yét.
3

Remark 5.11. Theorem 5.10(ii) is proved by Hyodo [Hyo86, § 3, Corollary] when f : X → Y and
L are analytifications of corresponding algebraic objects.

Proof. Let fK : XK → YK denote the base change of f over K.
Part (i) easily follows from Theorem 3.9. In fact, we have the isomorphism

H(Rif∗L) ∼= RifK,ét,∗(H(L)⊗ Ω•X/Y (−•)),

and under this identification φRif∗L corresponds to RifK,ét,∗(φL ⊗ id− • (id⊗ id)). Consider the
spectral sequence with

Ea,b1 = RbfK,ét,∗H(L)⊗ Ωa
X/Y (−a)

converging to H(Ra+bf∗L). Then the endomorphism RbfK,ét,∗((φL − a)⊗ id) on Ea,b1 converges
to φRa+bf∗L, and this implies part (i).

For part (ii), we need arguments similar to the proof of Theorem 3.9. We may assume that

Y is affinoid. Take a finite affinoid covering U = {U (i)
K } of XK . Let F• denote the complex of

OXK
-modules

H(L)
ϑL−→ H(L)⊗ Ω1

X/Y (−1)
ϑL−→ H(L)⊗ Ω2

X/Y (−2) −→ · · ·

on XK equipped with the natural Γk-action and the endomorphism φF• = φL ⊗ id− • (id⊗ id).
Recall also the Čech-to-derived functor spectral sequence with

Ea,b2 = Ha(Tot(Č•(U , Hb(F•))))

converging to Ra+bΓ(XK,ét,F•). This spectral sequence degenerates at E2 and yields

H i(Tot(Č•(U ,F•)))
∼=−→ RiΓ(XK,ét,F•) = Γ(YK ,H(Rif∗L)). (5.2)

3 A Zp-local system L is called Hodge–Tate if the Qp-local system L⊗Zp Qp is Hodge–Tate.
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Note that both source and target in (5.2) have arithmetic Sen endomorphisms and they are
compatible under the isomorphism.

Since L is a Hodge–Tate sheaf, there exist integers j1 < · · · < ja such that F (φL) = 0 with
F (s) :=

∏
16i6a(s− ji). Set J := {j1 −m, j1 −m+ 1, . . . , ja − 1, ja}. This is a finite subset of Z.

We set G(s) :=
∏
j∈J(s− j) ∈ Z[s]. For each 0 6 j 6 m, the endomorphism φL ⊗ id−j(id⊗ id)

on H(L)⊗ Ωj
X/Y (−j) satisfies

G(φL ⊗ id−j(id⊗ id)) = 0.

This implies G(φF•) = 0, and thus G(Tot(Č•(U , φF•))) = 0. Therefore (5.2) yields

G(φRif∗L) = 0.

Hence Rif∗L is a Hodge–Tate sheaf on Yét. 2

We now turn to a rigidity of Hodge–Tate representations. Let us first recall Liu and Zhu’s
rigidity result for de Rham representations [LZ17, Theorem 1.3]: let X be a geometrically
connected smooth rigid analytic variety over k and let L be a Qp-local system on Xét. If Lx
is a de Rham representation at a classical point x ∈ X, then L is a de Rham sheaf. In particular,
Ly is a de Rham representation at every classical point y ∈ X.

The same result holds for Hodge–Tate local systems of rank at most two. We do not know
whether this is true for Hodge–Tate local systems of higher rank.

Theorem 5.12. Let k be a finite extension of Qp. Let X be a geometrically connected smooth
rigid analytic variety over k and let L be a Qp-local system on Xét. Assume that rankL is at most
two. If Lx is a Hodge–Tate representation at a classical point x ∈ X, then L is a Hodge–Tate
sheaf. In particular, Ly is a Hodge–Tate representation at every classical point y ∈ X.

Before the proof, let us recall a remarkable theorem by Sen on Hodge–Tate representations
of weight 0.

Theorem 5.13 [Sen81, §Corollary]. Let k be a finite extension of Qp and let ρ : Gk→ GLr(Qp)
be a continuous representation of the absolute Galois group Gk of k. Then ρ is a Hodge–Tate
representation with all the Hodge–Tate weights zero if and only if ρ is potentially unramified,
i.e. the image of the inertia subgroup of k is finite.

Note that ρ being a Hodge–Tate representation with all the Hodge–Tate weights zero is
equivalent to the Sen endomorphism of ρ being zero. Since potentially unramified representations
are de Rham and de Rham representations are stable under Tate twists, Theorem 5.13 implies
that a Hodge–Tate representation with a single weight is necessarily de Rham.

Proof of Theorem 5.12. We check condition (iii) in Theorem 5.5. By Theorem 4.8 and
assumption, all the eigenvalues of φL are integers. So the statement is obvious either when
rankL = 1 or when rankL = 2 and two eigenvalues are distinct integers.

Assume that rankL = 2 and two eigenvalues are the same integer. Then Lx is de Rham by
Theorem 5.13, and thus L is de Rham by the above-mentioned rigidity theorem for de Rham
representations by Liu and Zhu [LZ17, Theorem 1.3]. In particular, L is a Hodge–Tate sheaf. 2

Remark 5.14. The proof shows that Theorem 5.12 holds for L of an arbitrary rank if one of the
following conditions holds.
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(i) Lx is a Hodge–Tate representation with a single weight at a classical point x ∈ X.

(ii) Lx is a Hodge–Tate representation with rankL distinct weights at a classical point x ∈X.

We end with another application of Sen’s theorem in the relative setting.

Theorem 5.15. Let k be a finite extension of Qp. Let X be a smooth rigid analytic variety
over k and let L be a Zp-local system on Xét. Assume that L is a Hodge–Tate sheaf with a
single Hodge–Tate weight. Then there exists a finite étale cover f : Y → X such that (f∗L)y is
semistable at every classical point y of Y .

Proof. Since semistable representations are stable under Tate twists, we may assume that L is a
Hodge–Tate sheaf with all the weights zero. Let L denote the Z/p2-local system L/p2L on Xét.
Then there exists a finite étale cover f : Y → X such that f∗L is trivial on Yét. We will prove
that this Y works.

Let y be a classical point of Y . We denote by k′ the residue field of y. Let ρ : Gk′ → GL(V )
be the Galois representation of k′ corresponding to the stalk V := (f∗L)y at a geometric point
y above y. By assumption, ρ is a Hodge–Tate representation with all the weights zero, and thus
it is potentially unramified by Theorem 5.13. Hence if we denote the inertia group of k′ by Ik′ ,
ρ(Ik′) is finite.

By construction, the mod p2 representation

Gk′
ρ−→ GL(V ) −→ GL(V/p2V )

is trivial. On the other hand, Ker(GL(V )→GL(V/p2V )) does not contain elements of finite order
except the identity. Thus we see that ρ(Ik′) is trivial and hence ρ is an unramified representation.
In particular, ρ is semistable. 2

Remark 5.16. As mentioned in the introduction, it is an interesting question whether one can
extend Colmez’s strategy [Col08] to prove the relative p-adic monodromy conjecture using
Theorem 5.15.
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