
Ergod. Th. & Dynam. Sys. (1984), 4, 405-420
Printed in Great Britain

On the notion of the dimension with
respect to a dynamical system

YA. B. PESIN

All- Union Extra-Mural Construction Engineering Institute,
Sredne Kalitnikovskaja St., 30, Moscow, 109807, USSR

(Received 17 December 1982 and revised 30 October 1983)

Abstract. For the invariant sets of dynamical systems a new notion of dimension - the
so-called dimension with respect to a dynamical system - is introduced. It has some
common features with the general topological notion of the dimension, but it also
reflects the dynamical properties of the system. In the one-dimensional case it
coincides with the Hausdorff dimension. For multi-dimensional hyperbolic sets
formulae for the calculation of our dimension are obtained. These results are
generalizations of Manning's results obtained by him for the Hausdorff dimension
in the two-dimensional case.

Introduction
We consider a diffeomorphism / of a smooth Riemannian manifold M, and an
/-invariant set A, consisting of the trajectories which are more or less unstable. This
instability can be characterized in many ways in particular by means of the absence
of zero Lyapunov exponents. It often implies some stochastic properties of the map
/ on the set A, for example, positivity of entropy with respect to a suitable measure
with 'good' properties. On the other hand the unstable invariant set has, as a rule,
a complicated geometric structure and can be characterized from this point of view
by means of its Hausdorff dimension. The unstable invariant sets arise both in
dissipative and conservative systems. In the first case we have so-called strange
attractors (cf. [14]). In the second case the situation is similar to that which arises
in the neighbourhoods of hyperbolic sets. The establishing of connections between
instability, stochastic properties and topological structure of unstable invariant sets
is one of the fundamental problems of the hyperbolic theory. Any relationship
between Lyapunov exponents, entropy and Hausdorff dimension can be considered
as a reflection of this connection. Moreover using such a relationship one can
calculate one of these characteristics from the others. In particular one can hope
to compute Hausdorff dimension in the case when A is a strange attractor. This fact
can play an important role in the study of the turbulence problem as Takens pointed
out recently (cf. [16]).

Some relationships between Lyapunov exponents, entropy and Hausdorff
dimension were obtained in the two-dimensional case for basic sets of A-
diffeomorphisms (cf. [11], [12]).
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In other cases and especially in multi-dimensional ones the various estimates of
Hausdorff dimension from below and from above were obtained, for example, in
the papers [6], [10], [17]. However the exact expressions for the Hausdorff dimension
in terms of Lyapunov exponents were not found. It seems to us that this is not by
chance. There are arguments showing that Hausdorff dimension does not adequately
reflect dynamical properties of dynamical systems. At least it cannot be expressed
by Lyapunov exponents only (cf. remarks in [9] in this connection). To illustrate
this fact we consider the three-dimensional Smale's horseshoe constructed from the
three-dimensional cube by means of the following procedure:

(1) expansion in some direction with coefficient y;
(2) contraction in two other directions with coefficients A, fi;
(3) bending and laying on the initial cube.

It is easy to show that the Hausdorff dimension of this horseshoe depends not only
on the numbers y, A, /J. but also on the number of bendings.

In the present paper we introduce a new notion of dimension which we call 'the
dimension with respect to a map'. This notion has some common features with the
general topological notion of dimension (cf. [8]). It coincides with Hausdorff
dimension in some cases (in particular for subsets of the straight line). However it
seems that this notion is better adapted to the description of dynamical properties
of systems than Hausdorff dimension. In particular, we extend the results of [11],
[12] to the multi-dimensional case. Moreover at present in the investigation of
concrete physical models in which the notion of dimension is used there are no
reasons why Hausdorff dimension is preferable to our dimension. Finally the simple
formulae for the dimension with respect to a map which we obtain in the present
paper allow us to compute this dimension in each concrete case easily.

Recently V. Afraimovich and the author obtained the estimates from below and
from above for the Hausdorff dimension of the hyperbolic set arising in the neigh-
bourhood of a homoclinic orbit (cf. [1]). Only the two-dimensional case is considered
in [1]; however the results and their proofs given there can easily be generalized to
the multi-dimensional case if we replace Hausdorff dimension by our new dimension.

Recall the definition of Hausdorff dimension (for example, cf. [2]). Let X be a
metric space. The Hausdorff measure of X is defined by the formula:

\mA(X) = lim inf \ £ (diam £/JA: {Us} is an open covering of X

and diam Us < e

It is easy to show that there exists a real number Ao such that wA (X) = oo for any
A<A0 and mA(X) = 0 for any A > Ao. The number Ao is called the Hausdorff
dimension of X. Thus we have

dimH X = inf {A: mA(X) = 0} = sup {A: mA(X) = oo}.

Suppose that X is a Borel subset of a smooth manifold M and p = dim M. It is
easy to see that in order to calculate Hausdorff dimension of X one can consider
only the coverings consisting of open balls. Therefore one can rewrite the expression
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for the Hausdorff measure of X in the form

lim inf { l [V(t/S)]A/P] (1)

where Us is an open ball in M with its centre a t x e X and radius< e, U s e S Us=> X.
Here V(US) is the /^-dimensional volume of the ball Us. We can get new measures
of X in M if we take in the formula (1) some other systems of open sets in M,
satisfying certain 'reasonable' conditions, instead of the system of open balls. Every
such measure induces the corresponding notion of dimension of X which has some
common features with a general topological notion of dimension. Of course our
notion of dimension is not a purely topological one because it depends on the
manifold M and on the choice of the system of open sets.

Now we consider the following situation: TV is a smooth manifold, f:N-*N is
a diffeomorphism, M <= N is a smooth submanifold, X c M i s a Borel subset. \ he
map/ induces (under suitable conditions) the special system of open sets in M and
the corresponding notion of dimension is just the dimension with respect to the map /

Definitions and formulation of results
I. After these preliminary considerations we will give explicit formulations. Let M
be a smooth Riemannian manifold, v be the Riemannian volume in M, X <= M be
a Borel set. Let 0 = { US}S<ES be a system of open subsets in M having the following
property (with respect to X):

(PI) for any e>0, there exists a subsystem V={V;},£/ such that V, e L/,diam V, < e

If y c X and U is the system of open subsets having the property (PI) with respect
to X then it obviously has the property (PI) with respect to Y.

Let y c X b e a subset and a e(0, 1). Write

Ma,c{Y,X,M,U)= inf I I KVf)
a: V = {V,}le,,diam V ( <E , U V, = Y\.

V<= V L i e / i e7 J

For the sake of brevity we will sometimes denote Mae(Y, X, M, 0) by (Mae(Y).
It is obvious that the function Mae(Y) increases as e->0. Thus we may define the
limit

ma ( Y) d=ma (Y, X, M, 0) =f lim Ma e (Y, X, M, 0).

The function ma( Y) is the outer measure on the space of all subsets of X. Namely:

(1) if Ytc Y2cz X,then ma(Yt)s ma(Y2);

(2) if Y = \Jn Vn,and YaX then

ma(Y)^Zma(Yn); (2)
n

(3) mB(0)=O.
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The first property is obvious and means that ma(Y) is a monotone function of V.
The third property is also obvious. The second property is proved as in [2]. The
inequality (2) expresses that fact that the function ma(Y) is o--semiadditive.

One can show that every Borel set in X is measurable with respect to the outer
measure ma(Y), (and ma is a a-additive measure on the a-algebra of all Borel
subsets in X). In addition ma is a metric and a regular measure (cf. [7]). It is easy
to see that there exists a0 such that ma(Y) = oo for any a<a0 and ma(Y) = 0 for
any a > a0. We call the number

dim(X?M,0) Y = p sup{a: ma(Y) = °o}

= pinf{a: ma(Y) = 0}=pao

the dimension of Y with respect to the triplet (X, M, U), (recall that p = dim M).
The following assertions are obvious and justify the term dimension.

PROPOSITION 1.(1) IfU = {BM(x, e),xeX, e > 0 } , then dim(XMoy Y = dimHY,(here
BM(x, e)) is the ball in M with centre at x and radius e).

(2) 7 /p = d i m M = l then dimiX,M,0) Y = dimHY for any system 0 having the
property (PI) with respect to X and consisting of connected sets.

(3) If Uu U2 are two systems of open sets having the property (PI) with respect to
X and Ui <= U2 then

2) Y.

(4) If y, c y2cz X, and the system U has the property (PI) with respect to X then

dim(X,M,L/) Y\<d\Tn{XM0) Y2.

(5) / / Yn c X(n e Z), Y = \Jn Yn^ X and the system 0 has the property (PI) with
respect to X then we have

C;) Yn\,

(the proof follows easily from [2]).
(6) IfX is an open subset in M, then for any system having the property (PI) with

respect to X,
dim M = dim(X M,O) -X"= dim X.

(7) If X is finite or countable then for any system of open sets in M having the
property (PI) with respect to X we have

The number dim(X,M,O) Y does not depend on the Riemannian metric of the manifold
M, because any two Riemannian metrics on M are equivalent.

Let 0' = {U'S, se S} be a system of open sets in the manifold M, having the
property (PI) with respect to the Borel set X, <= Mh i = 1,2 and dim M, = dim M2.
The systems U] and O2 are called equivalent if there exists C > 0 and a one-to-one
map ^ : U[ -» U2 such that:

(1) C - ' K U ^ K ^ l / ^ s C K t / J ) , seS;
(2) if the system {U]) covers the set X, then the system {^(U])} covers the set

2

(3) if the system {U2
S} covers the set X2 then the system {^"'([/j)} covers the

set X,.
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It is not difficult to prove the following statement.

PROPOSITION 2. dim(XljMl,0')X1 = dim(x2,M2,o
2) X2.

II. Let N be a smooth Riemannian manifold,/: N -»JV be a diffeomorphism, M c N
be a smooth submanifold, X c M b e a Borel set. Fix 5 > 0 and consider the system
of open sets

Ufig(X) = {Uc M: there exist x e X and neZ such that U= t/H where

and for n > 0

[ / k = f 1 ( [ / , . 1 )nB / - ( M ) ( r k W,S) (3)

but for « < 0

Suppose that for all sufficiently small 5 > 0 the systems UftS have the property (PI)
with respect to X. Let V c X be a subset. Consider the outer measures
ma(Y, X, M, Ufj{X)) and assume that the following condition holds

(P2) there exists 50>0 such that for any Su 52e(0, So] we have

C, ma(Y, X, M, UfA(X))&ma(Y, X, M, Uf,Bl(X))

<C2ma(Y,X,M, UfA(X)),

where Cf = C,(5,, 82)>0, i = 1,2 are constants. It follows from the condition (P2)
that for any 5 e (0, So]

dim(x,M,o/6(X)) Y = const.

This common value is called the dimension of Y with respect to the map / (and
also with respect to X and M) and it is denoted by dim^ Y, (sometimes when we
wish to emphasize the dependence on M we use the notation dim(M/) Y). We note
that the dimension with respect to a map depends in general on the choice of the
Riemannian metric on M. The following assertion is a consequence of proposition
1 and the definitions given above.

PROPOSITION 3. Suppose that the systems Ufs(X) have the properties (PI), (P2). Then

(1) if p = dim M= I, then dimfY = dimHY, (YcX);
(2) if y, c Y2 <= X, then d\mf Yt < dimx Y2;
(3) if Yn cX{neT) andY = \JnYn^X then

dim/ Y = sup dim/ Yn;
n

(4) ifX, is an open subset in M then

dim M = dim/ X = dim X;

(5) i /X is finite or countable then dim/X = 0;
(6) dim/ y = dim/-' y /or aw>> y ^ X .

During a discussion of this paper with D. V. Anosov he drew my attention to an
interesting example illustrating the distinction between Hausdorlf dimension and
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our dimension with respect to a map. Let N = T2 xT2 be the product of two
two-dimensional tori, / : iV-> iV be a diffeomorphism, / = ( / i , / 2 ) , where / : T2-> T2

is a linear hyperbolic automorphism. Let A,, /u,, be the eigenvalues and e(, gy be the
corresponding eigenvectors, i = 1,2. We assume that 0 < A , s A 2 < 1 </u.2—Mi- We
take as the submanifold M an open neighbourhood of the origin in the two-
dimensional plane spanned by the vectors gi ,g2. Let X, (respectively X2) be a
segment on the straight line in the direction of the vector g, (respectively g2). A
simple calculation shows

21nu, . . .

In fx, +ln /i,2'

In particular,

2 > dim(M>/) X, > 1 > dim(MJ0 X2 > 0.

We have at the same time that dimH X, = dimH X2 = 1. On the other hand if we take
the straight line in the direction of the vector g2 as the submanifold M we have that

d im ( M / ) X, =d im« X, = 1.

Remark. The systems Ufs have the property (PI) if the map / uniformly expands
(or contracts) on X. However one can give another definition of the dimension with
respect to a map which will do for any m a p / It will also coincide with the definition
given above in the case when / is an uniformly expanding (contracting) map. Let
X c M b e a Borel subset. Define the outer measure on X by the formula

Ma,s(y, X, M,/)=lim inf j z vW": U Ut => Y \.

Here Y<= X is a subset and UnS, S >0, n eZ is a system of open sets U for which
there exist raeZ and xeX such that |m|> | / i | and U = Ulml (cf. [11]). Essentially
this approach means that in general we do not require the property (PI) to be
satisfied. Now if we assume that the outer measures ma S(Y, X, M,f) have the
property (P2) we can define the dimension with respect to a map as specified above.

III. Let A be a locally maximal hyperbolic set of a C2-diffeomorphism f:N-*N
(cf. for example [13] in connection with definitions and results which we mention
in this and subsequent sections). We assume that the map f\ A is topologically
transitive. We denote by W*oc(x) and W"oc(x) (for x e A) the local stable and unstable
manifolds at the point x. Fix x e A and write X = W"oc(x) n A. Consider the family
of systems t / / s (X) given by formula (3) (where M = W"oc(x)) and consider also the
following families of systems:

I = { u c W"oc(x): U is an open and connected set and there exist nel and
x e X such that

J \ *-' ) — -" W u ( f (x))\J \-*/> O) \ " /

for k = 0, 1 , . . . , n - 1 and
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{U<^ W"oc(x): U is an open and connected set and there exist n e Z
and x e X such that

/ " ( [ / ) c B «o/ ( x ) )C/*(x) , C8) (5)

for k = 0, 1 , . . . , n - 1 and

where C > 1 is a real number.

Denote by E\x), E"(x), xeA, the stable and unstable subspaces at the point x,
and by x'(x) the values of the Lyapunov exponent at the point x. We assume that

where fc = dim£s(x) is independent of x Denote by F(/|A) the set of all Borel
normalized /-invariant ergodic measures on A. We have that for /u. e F(/ | A) and
/x-almost every xe A

PROPOSITION 4. (1) For any 8>0 small enough, the families UfS(X), Vfs(X),
Vfsc(X), C > 1, have the properties (PI) and (P2).

(2) The dimensions with respect to the map f induced by outer measures
ma(Y, X, M, Uls{X)), ma(Y, X, M, V/jS(X)), ma(Y, X, M, Vls,c(X)) are equal and
do not depend on the Riemannian metric on A.

We will assume that a Lyapunov metric is fixed on A.
Denote by GM the set of all x e A such that for any continuous function <p on A

there exists the limit

l im- Y *(/*(*))= I <p(x)dn(x).
n-°° n k=o JA

Let <p"(x) = —In Jac (df\ E"(x)) and consider the pressure P(t<pu), corresponding to
the function tcp", (cf. [4]), 0=£ /< 1. It is easy to prove the following statement.

PROPOSITION 5. There exists a unique toe[0,. 1] such that P(to<p") = 0.

We put for x £ A

C»(x) = dim/(Wroc(x)nA).

The purpose of the present paper is to prove the following assertions.

THEOREM 1. Let Z c Abe an f-invariant Borel set such that W*oc(x) n A <= Zfor xeZ.
Then for every xeZ and any neighbourhood U of x in W"oc(x)

dim/ (Z n U) = const.

THEOREM 2. For any xeA and /x e F(/ | A).

- i

where nM(/| A) is the metric entropy of the map f\A.

https://doi.org/10.1017/S0143385700002546 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002546


412 Ya. B. Pesin

THEOREM 3. For any x e A,

Q(x) = sup QM (x) =

COROLLARY. The following inequalities hold:

-Hf) _ _ />(/)

•>" dm

where h(f) denotes the topological entropy off and m is the measure of maximal entropy.

Let A be a locally maximal hyperbolic set for a diffeomorphism / It is known that
there is a neighbourhood jVcDiff'(M) of / such that any geJf has a locally
maximal hyperbolic set Ag near A. Let

08(x)=''dim8(W,"oc(x)nA,).

It follows from theorem 3 that Qg(x) does not depend on x but does depend on g.

THEOREM 4. The function Qg = <?g(x) is continuous on the set Jf.
Remark. Similar results are true for the dimensions dimf (W*oc(x)n GM) and
dim/ (W*O(.(x) n A) with obvious modifications in the formulae.

If A is a hyperbolic attractor for a diffeomorphism / (cf. [1]), then

dim, (W,"oc(x) n A) = dim W,uoc(x)
for any x € A.

THEOREM 5. Let A be a hyperbolic attractor for a diffeomorphism f. Then

dim/(V¥foc(x)n A) > - k ( l x'J I *!*),

where /J, is the special measure constructed by Bowen, Ruelle and Sinai (cf. [5], [15]).

COROLLARY. The following inequality holds:

This assertion follows immediately from theorem 5.
We can consider these theorems as generalizations to the multi-dimensional case

of the results obtained in the two-dimensional case in [11], [12].

Proofs
I. Proof of proposition 4. It is obvious that the systems Ufs(X), VfS(X), Vfs<c(X)
have the property (PI) with respect to X (recall that we consider a Lyapunov metric
on A). We will show that they have the property (P2). Take sufficiently small 6, < 52.
Let Ue V/6|(^) n a v e t n e f o r m

U=f-n(BnM)(f
n(x),8l),
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where M = W"oc(x) for some x e Y, n > 0. Consider the set

It is easy to see that

U c ¥( [/), diam [/ < C, diam t/2, v(V( U)) < C2 K U), (6)

where C, > 1, C2> 1 are constants depending only on Su S2. It follows from (6) that
for any e > 0 and Y <= X

Ma,e(Y, X, M, UUl(X))>-^ MaXie{Y, X, M, Uf,S

We have from this that

ma(Y,X,M, Ulh{X))>^ma(Y,X,M, UfA{X))

^ma{Y,X,M, UfA(X)). (7)

Now let U e UL&2(X) have the form

for some x e y , n > 0 . There exists N = N(5,, S2) and points xu...,xNeUnY
such that

LJ Br(M)cT(x.-), «i)=>

We will write (7, for / ~ " ( B / . ( M ) ( / " ( X J ) , 5,). It is easy to see that we have, for
sufficiently small Su 82,

\JU,=>UnY, I v( U,)" < Nv( U)a,
i = l i = l

diam Ut < diam I/.

Therefore

Ma,,(y, x , M, t7/A(A-))3:(i/JV)Ma,.(y, x, M, t//)Sl(X)).

Taking the limit as e -» 0 we get

ma(y, X, M, L//>82(X))>(1/N)ma(y, X, Af, UfA(X)).

The condition (P2) follows from here and inequality (7). We can show in the same
way that for any e > 0 and Y <= X

AfOi.(y, X, M, UM(X))& Ma,e(Y, X, M, Vls

where C3 > 1 is some constant independent of e, S. Thus we have the condition (P2)
for the system V ^ X ) , and equality for the dimensions with respect to the map f,
induced by the systems t/ /5(X) and Vfs(X). Repeating the arguments given above
for the system Vfs c (X) we complete the proof of proposition 4. •
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II. Proof of theorem 1. Let si be a Markov partition consisting of the open rectangles
Pli, • - •, n« such that

n.- = (t/«nA)x(V,nA)
where V, and V; are open sets in the submanifolds W,Joc(Xi) and W,"oc(xf) respectively
(cf. [4]). Let

A(x)=CcWnn,w, xeA,
where i(x) is the number of rectangles containing the point x

LEMMA 1. Let y,,y2e\~\i for some i. Then
dim/ (/4(y,) nZ) = dim/ (A(y2) n Z).

Proof. Suppose for 5 > 0 and i = 1, 2.

(cf. [11]). Let Ue V, have the form

U=f-n(Briwrociyi})(f"(z),S))

for some n > 0 and z e A(y,) n Z. We put

where p: A(y,)-> A{y2) is the Poincare map given by the local manifolds Wfoc(z).
We note that p(z) e A(y2) n Z by virtue of our conditions on Z. Therefore ^((7) e V2.
It follows from the results of [4] that for any UeV{

C-lv(U)<v(V(U))< O(U).

As Sf is a one-to-one map the systems V, and V2 are equivalent. Therefore the
required result follows from propositions 2 and 3. •

LEMMA 2. Let y,, >>2e A. Then
dim/ (A{y\) nZ) = dim/ (A(y2) ̂  %)•

Proof. As ^ is a Markov partition there exists m > 0 such that

for some ze\~\i(y2).
It is easy to see that systems UfyS{A(z)nZ) and Uf<s(f~

m(A{z))nZ) are
equivalent because/ is a diffeomorphism and Z is an/-invariant set. Now proposi-
tions 2 and 3 and lemma 1 imply that

dim (A(yt) nZ)> dim/ (f~m(A(z)) n Z)

= dim/ (A(z)nZ)

The opposite inequality is proved in the same way; the lemma is now proved. •

Let y\,y2^ A, I/,, U2 be neighbourhoods of points y, and y2 in W^y^) and W
If a = max, diam | |, is sufficiently small then I/, 3 A(_v,). On the other hand there
exist z , , . . . , zs e W,"oc(y2) such that t/2

 c UI= i ̂ 4(z,). Therefore it follows from propo-
sition 3 and lemma 2 that

dim/ (t/, n Z) > dim/ (A(>>|) n Z) > dim/ (t/2 n Z).
The opposite inequality is proved in the same way, so the theorem is proved. •
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III. Proof of proposition 5 (cf. [11], [4]). It follows directly from the definition of
the pressure (cf. [4]) that

P(t,<pu)<P(t2<p") if t2<tt.

It is also obvious that P(0)>0. On the other hand it is known that P((?")<0 (cf.
[4]). The result we need follows from here. •

IV. The proof of theorem 2 is a modification of the arguments given in [12].

LEMMA 3. There exist C > 0 , a sequence of numbers 8n|0, and a sequence of covers
Mn = {n(in), • • •, flic?} of the set A by open rectangles \~]\n) such that:

def

(1) an = m a x l s i s k n d i a m \ \ ) " ' - » 0 as n-*oo\

(2) for every x e \~~\("\ there is an open subset l/"n(x) in W"oc(x) having the following
properties:

(a) for any ye W1"oc(x)nni"), ^ W = t/^OO;
(b) BWlUx)(x, CSn) 3 [/-B(x) 3 BWlUx)(x, «„).

The proof follows easily from the continuity of local stable and unstable manifolds
on the set A. As 'the size' of an unstable manifold is in general a Holder function
on A then the diameters of the sets U"n{x) are 'much bigger' than 'the sizes' of the
rectangles n ' n ) in the direction of the stable manifolds.
Remark. We can assume that 8, < So (cf. the condition (P2)).

Write

n\n)= u uux). (9)
Fix e > 0 and take n > 0 so large that for any i=\,... ,kn,yuy2e f l i " '

W(yd-<puM\*e- (10)
It is shown in [3] that

where h(f, GM) is the topological entropy on the non-compact set GM. Using the
definition of topological entropy given in [3] we have that for any y > 0 there exists
a cover {<?in)} of the set GM(Q|n) are open subsets in A) such that

D(Q\n))d= Z exp (-««#">)(/.+ e))< y (12)

Here n(Q\n)) is the largest integer having the following property:/ft(Q|")) is contained
in some element of the covering sdn for fc = 0, 1 , . . . , n{Q\n)).

Fix x0 e A and consider aQ|n ) such that W"oc(x) nQ\n)*0. Let x e W,uoc(x0) n Q("\
Take the integer j such that

/ - ( ^ ( Q j - o j c n j 1 0

and denote by
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It is easy to see that

Vin)W = <?in )nKcW.
In addition we have from lemma 3 that

V^n)(x)eV/.,.,c(WI"oc(x)nGJ.

Let

GM,r = jxeG M : - Y <p" {f (x)) + \ <pu dy. <e for any m a r } .
I m 1=0 JA J

Notice that GM = [Jr G^r and

def P . f

i = k + l JA

because /x is an ergodic measure. We will give an estimate from above of dim/ (GM r n
Wroc(x)), independent of r. If y is sufficiently small then by virtue of (12), «(Qi")) s= r
for each i = 1 , . . . , kn. Therefore it follows from the definition of G^r, inequality
(10) and equalities (13) and (14) that for any xe G^r,

KV|n)(x))= ^ y(n)) Jac(df-n(Q-

~Jac(df~n{Q^>)(x)) Jac

(15)

Then for any x>0 we have diam V^"'(x)< T if xe GM and r is large enough (and
consequently n(Qi")) is also large enough). Using (11), (12), (15) we find that

is arbitrarily small. As e is arbitrarily small we have from proposition 3 that

d i m / (W,uoc(x) nG^^ sup dimr (W,"oc(x) n G^r) < (h/x)(p- k).

Now we will prove the estimation from below. For given e > 0 let M be a cover
of A consisting of open rectangles PI. such that

for any x, y e | (,. There exists 5, > 0 having the following property: let t/<= A be a
set such that if the diameters of the sets W"oc(x) n U and Wfoc(x) n t/ are less than
5, for any xe A, then U is contained in some element of the covering si. We can
assume that 5, < 80 (cf. the condition (P2)). Take any xeA and choose m>0 so
large that for every y e A

f"( WUx)) n BWiUy)(y, 8.) * 0. (16)
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It is easy to see that for any r > 0

dinv (GM,r nfm(W?oc(x))) = dim, (G^ n / m ( WJUU)))

= dim, (GM n W,uoc(x)) =' d.

Therefore, by proposition 4, for any a > 0 and any sufficiently small T > 0 there
exists a cover of the set

by the sets {V;} such that diam Vj < T, Vf € Uf,s(X), (here 5 = 5,/2), and

"'sa. (17)

It follows from the definition of the system UfS(X) that for any i there exist nt and
yt e X such that

Let

It follows from (16) that U; Ut ^ G^,. In addition

n(t/f )>«,-. (18)

If T is small enough then all «, > r and we have

where X > 0 is some constant; (recall that p — k = dim £"(x)). Therefore by virtue
of (17) and (18)

Now the proof is completed by means of the arguments given in [12]. •

V. Proof of theorem 3. Denote by /i0 the Gibbs measure corresponding to the function
to<p". It is known (cf. [4]) that

M/iA)=f0 I <P" d^0=t0 { x'»-

It follows from here, proposition 3 and theorem 2 that

We will now prove the opposite inequality. The following assertion is an easy
modification of lemma 1.

LEMMA 4. There exist />0 , C > 0 , a sequence of numbers 5n|0 and a sequence of
covers sin = {fli"', • • •, Flk"'} of the set A by open rectangles fli" ' such that:

def

(1) an = max, s i s f c diamllf -*0 a
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(2) for any xe \~\("} there is an open subset C/"n(x) in wroc(x) having the following
properties:

(b) BWlUx){x, CSn) 3 Uln(x) => BWiUx)(x, 8n);
(3) for any xeA, any rectangle |~] i"} containing the point x, and any rectangle fij"'

containing the point f~'(x), we have

We can assume that 5, < 80 (cf. the condition (P2)). Let F = / ' and

It follows from the definition of the dimension with respect to a map that Q(x) = Q(x).
To prove the estimation from above we must show that

Q(x)^(p-k)t0.

We have from the definition of the pressure that t0 is a root of the equation

PF(t<pu
F) = 0,

where <p"F(x) = -In J&c(F\E"(x))\. If r0 = 1 then our statement follows from proposi-
tion 3. Therefore we can assume that 0^ <0< 1. This means that for any e > 0 small
enough

P = P((to + e)<pF)<0. (19)

Fix a sufficiently small e > 0 and a sufficiently large n > 0. According to the definition
of the pressure given in [4] we consider for a given m > 0, the set Wm(sin) consisting
of all collections of length m, made up of the elements of the cover ^ n ; n ( n )

=ni")nir)---n^,ewm(^j. Let
A: Fk(x) e n l n ) for k = 0 , . . . , m - 1},

m - l ^

I <P"(FA;(x)):xGX(Di")) •
k=0 J

If X(G<n)) = 0 then we put Sm(D(n)) = -oo. We say that Tc Wm(dn) covers A if
A = UD<"'er^(n("))- We put

Zm(stn) = m£ I expSm(G<n)),
r D ,« , e r

where F runs through all subsets of Wm(jtfn) covering the set A. Then

P = lim lim —\x\Zm{sdn).
diam^n->0 m-»oo »l

It follows from (19) that for any y>0 and any sufficiently large n and m

(20)

We take y so small that
P+4y<0 . (21)
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Let F be a subset in Wm(sdn) covering A and such that

I expSm(n<n))sexp(P+3r)m. (22)

Consider the rectangle \~\\n) and the point xefli"1' By theorem 1 it is sufficient to
prove that

dim F (HIV0 n WToc(x))< to(p-k). (23)
Denote by T1 the set of all collections [7l(n) e F which have fTi"' as the first element.
It is easy to see that

(1) X([7|<n)) is an open subset in fli"';
(2)Un<">6r-*O

n))=JT.n).
Consider the rectangles f]\n) defined using the rectangles fi'"', i = 1, . . . , fcn in (9).
we put for n ^ n m r • • • n'ler1:

m-\

k=\

The following properties of the sets y([7l<n)) are consequences of the construction
given above, properties (1), (2) of the sets X([^\(n)), and lemma 2:

(1) y(D(n>) is an open subset of W7oc(x);

(3)
We have for any y>0 and sufficiently large n, that for every y],y2^\~\\n)

Therefore

sup [Sac(Fk\TyW?oc(x)ru°+e)

)(t0 + e))

x X sup [Jac(Fk|£"(>'))]-<'o+E)

f7|(")er' yeXO1*1)

<(C5Jp-'texp(ym(t0+e)) I expSm(D(n))-
n<n)e r .

It follows from here, the definitions of the function tpu and the sets Zm{s4n) and
inequality (22) that

D < (C8n)
pk exp (P +4y)m.

Therefore if m is sufficiently large then D is arbitrarily small by (17). This fact
proves (18) and consequently the statement we need. •

VI. The proof of theorem 5 is an easy modification of theorem 2. The proofs of the
corollary and theorem 4 repeat the arguments given in [11].

https://doi.org/10.1017/S0143385700002546 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002546


420 Ya. B. Pesin

I would like to thank D. V. Anosov for his help and for useful discussions during
the preparation of this paper; I would also like to thank Ya. G. Sinai for his attention
to this paper.

REFERENCES

[1] V. A. Afraimovich & Ya. B. Pesin. Estimations of the dimension of a hyperbolic set in the
neighbourhood of a homoclinic point. Russian Math. Surveys, 1984. To appear.

[2] P. Billingsley. Ergodic Theory and Information Wiley: New York 1965.
[3] R. Bowen. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125-136.
[4] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in

Maths 470, Springer: Berlin, 1975
[5] R. Bowen & D. Rouelle. The ergodic theory of Axiom A flows. Invent Math. 29 (1975), 181-202.
[6] A. Douady & J. Oesterle. Dimension de Hausdorff des attracteures. C.R. Acad. Sci. Paris, 24 (1980),

1135-1138.
[7] F. Federer, Geometric Measure Theory. Springer-Verlag: Berlin, 1969.
[8] W. Hurewicz & H. Wallman. Dimension Theory. Princeton Univ. Press: Princeton, 1941.
[9] A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. IHES,

51 (1980), 137-170.
[10] F. Ledrappier. Some relations between dimension and Lyapunov exponents. Comm. Math. Phys.,

81 (1981), 229-238.
[11] H. McCluskey & A. Manning. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3

(1983), 251-260.
[12] A. Manning. A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergod.

Th. & Dynam. Sys. 1 (1981), 451^159.
[13] Ya. B. Pesin & Ya. G. Sinai. Hyperbolicity and Stochasticity of Dynamical Systems. Matk-Phys.

Review 2, 53-116; Harwood Acad. Publ. GMBH.
[14] D. Ruelle & F. Takens. On the nature of turbulence. Comm. Math. Phys. 20 (1971), 167-192.
[15] Ya. G. Sinai. Gibbs measures in ergodic theory. Russian Math. Surveys 27 (1972), 21-64.
[16] F. Takens. Detecting strange attractors in turbulence. Springer Led. Notes in Math, 898 (1981),

366-381.
[17] L.-S. Young. Capacity of attractors. Ergod. Th. & Dynam. Syst. 1 (1981), 381-388.

https://doi.org/10.1017/S0143385700002546 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002546

