
GALOIS CONNECTIONS AND PAIR ALGEBRAS 

J. C. DERDERIAN 

1. I n t r o d u c t i o n . Unless further restricted, P , Q, and R denote a rb i t r a ry 
part ial ly ordered sets whose order relations are all wri t ten " g " . 

An isotone mapping </>: P —> Q is said to be residuated if there is an isotone 
mapping \p: Q —> P such t h a t 

(RM 1) xfâ ^ x for all x i n P ; 
(RM 2) 3^0 S y for all 3/ in Q. 
Let Q* denote the part ial ly ordered set with order relation dual to t h a t of Q. 

(A) T h e following conditions are equivalent: 
(i) <j>: P —-> Q* is a Galois connection; 

(ii) 0: P —* Q is a residuated mapping; 
(iii) Maxjz G P: zy ^ 3>} exists for all y in Q and is equal to y\p. 

Since ^ is uniquely determined by <£, i t will be denoted by <£+. 
(B) If 4>: P —» Q and ^ : Q—> R are residuated mappings, so is <j> o ^ : P —» P ; 

moreover, (</> o ^)+ = ^ + o </>+. Denote by 5 ( P , Ç) the set of all residuated 
mappings </>: P —> Ç and write S ( P ) when P = Q. No te t h a t S ( P ) is a semi
group under composition of functions. 

Though the theory of Galois connections is coextensive with t h a t of 
residuated mappings, it is (B) t h a t leads us to focus on the lat ter . More 
properties and examples can be found in (2; 3) . 

W e shall give a representation for residuated mappings (and hence Galois 
connections) t h a t extends Ore's representat ion in the case when P and Q are 
power sets of some sets (1). Following this we shall show t h a t P is a complete 
lat t ice if and only if S(P) is a complete Baer semigroup. 

2. Pair a lgebras . If X , F, and Z are a rb i t ra ry sets and B C X X Y, 
C C Y X Z b inary relations, recall the following usual definitions: for W C X, 
WB = {y e Y: (w,y) £ B for some w 6 W], B~l = {(y,x): (x,y) G B), 
xB = {x}B, B o C = {(x, z): (x, y) G B and (y, z) £ C for some y G F } . 

/ C P X Ç is called a £a^> algebra if: 
(PA 1) P P = C; 
(PA 1*) QJ-i = P ; 
(PA 2) x / is a principal dual ideal of Q for all x £ P ; 
(PA 2*) yj~l is a principal ideal of P for ail 3/ Ç Q. 
Denote the set of all pair algebras J C P X Q by A (P , Q) ; if P = Ç, 

write i 4 ( P ) . 
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T H E O R E M 2.1. (i) For any pair algebra J C P X Q, define fa: P —> Q by 
the rule xfa = M in xJ, then fa is residuated and its residual is given by 
yfa+ = Max yj~\ 

(ii) For any residuated mapping <j>: P —> Q there is a unique pair algebra 

J((k) such that faw
 = $ and J{4>J) — J-

(iii) J C K if and only if fa ^ fa. 
(iv) If J C P X Q and K C Q X R are pair algebras, so is J o K; moreover, 

faoK = <(>/Ofe and J ( 0 o\f/) = J (fa o J(\p). 

Proof, (i) If xi ^ x2 and x2 G ; v / _ \ then Xi G ^ J - 1 ; thus , 

Xi0j = M'm{y: %i G 3>/-1} ^ Minf^y: x2 G lyi - 1} = x2fa. 

Therefore, fa is isotone, and analogously so is fa+. Now, since xfa = 
Min xJx G xfaJ~l\ therefore, xfafa+ = Max xfaj~l ^ x. T h e other inequali ty 
follows analogously; thus, fa is residuated. 

(ii) Let J = J (fa = {(x,y): y à * * } . Note t h a t (x, x<£) G J" for all x G P , 
therefore (X/ - 1 = P ; also, since yfa<t> ^ 3/, (3></>+, y) £ J for all 3/ G (?, therefore 
PJ = Ç. Now, x J = {;y: 3> ^ x0j is a principal daul ideal of Q for all x ^ P, 
and, since 3/ ^ x$ is equivalent to yfa ^ x, yJ~l = {x: x ^ yfa} is a principal 
ideal of P for all 3; G Q. Note t ha t x0J (0) = Min{;y: y ^ x<£} = x0 for all 
x G P . Also, J ( 0 j ) = {(x, 3;): y ^ x</)j-} = J since, in view of xfa G xJ, 
y ^ x 0 j is equivalent to y G xJ. 

(iii) is straightforward with pointwise ordering on S(P, Q). 
(iv) If there is z G Q such t ha t y ^ z\f/ and 2 ^ x<£, then y §: x^ ^ 3>$i/s 

thus J ( 0 ) o J ( ^ ) CJ(<t>o\l/). Conversely, suppose t h a t y ^ x 0 ^ and pu t 
2 = 3^+, then z ^ x$W* ^ x$ and 3> ̂  3;^+^ = 2;^; therefore, /(<£ o fa = 
J (fa o / ( ^ ) . I t follows t h a t faOK = fa o <fe. 

Thus , for any partially ordered set, A(P) and S(P) are order anti-iso-
morphic and isomorphic as semigroups. 

LEMMA 2.2. Let P and Q be partially ordered sets with least and greatest 
elements. J C P X Q is a pair algebra if and only if it satisfies (PA 2), (PA 2*), 
and 

(PA 3) 0PJ = Q, 
(PA 3*) IQJ-1 = P . 

Proof. These conditions are obviously sufficient. We show their necessity: 
since xJ is a dual principal ideal of Q, 1Q G # / ; i.e., x G 1 Q / _ 1 for all x £ P, 
therefore IQJ-1 = P; similarly, we have t h a t 0PJ = Q. 

LEMMA 2.3. Let P and Q be complete lattices. J C P X Q is a pair algebra 
if and only if it satisfies (PA 3), (PA 3*), and 

(PA 4) J is a complete sublattice of P X Q. 

Proof. Necessity. Let J be a pair algebra and <j> = fa. Suppose t h a t 
(x\,y\) G / for X G A; this is equivalent to y\ à xx# for X G A. However, 
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VXÇA^X è Vx€A (x\4>) = (Vx€A^x)0 and A x ^ x ^ AX<EA(XX0) ^ (AX€AXX)<£; 

therefore (VXCAXX, V\&y\), (AX^AXX, AXÇA^X) G / . 

Sufficiency. We shall show that x J is a principal dual ideal of Q. Since 7 is a 
complete sublattice of P X (?, 3>o = A f y f fr^f x/} G xJ; hence, xJ C 
[y0, 1]. Now suppose that y0 ^ y; by (PA 3), (0, 3>) 6 J", hence (xi, 3/) = 
(x V 0,^o V y) = (xi, 3/0) V (0,3/) G J", i.e. 3/ 6 x / . Therefore, x / = [3/0, 1]. 

Thus, we see that the concept of pair algebra coincides with that introduced 
for finite lattices in (4) ; residuated mappings coinciding with admissible 
functions are defined in (7). 

COROLLARY. If P and Q are complete lattices, A (P, Q) is a complete ring of 
sets; hence, S(P, Q) is a complete completely distributive lattice. Furthermore, 
if P = Q, then A (P) are lattice-ordered semigroups. 

3. Coordinatization of complete lattices. Let 5 be a semigroup with 
zero. Consider the following mappings R, L: 3P(S) -^&(S), for X (Z S, 

R(X) = {3/ g S: xy = 0 for all x 6 X], 

L(X) = \y Ç S: yx = 0 for all x Ç X), 
R'(X) = {e e S: e = e2 and eS = R(X)}, 

L'(X) = ( / ^ : / = f a n d 5 / = L ( I ) ) . 

We say that 5 is a complete Baer semigroup if R!' (X) ^ 0 ^ I! (X) for all 
I C ^ This is an extension of notions in (5; 6). Let «if ( ^ ) denote the collec
tion of all left (right) annihilating ideals of elements of 5 ; i.e., 

L = {L({x}): x 6 S} {3% = {P({x}): x 6 5}). 

5 is said to coordinatize a lattice P if P ^«êf. 

THEOREM 3.1. Le/ P be a partially ordered set with least and greatest element. 
The following conditions are equivalent: 

(i) P is a complete lattice; 
(ii) S(P) is a complete Baer semigroup; 

(iii) P can be coordinatized by a complete Baer semigroup. 

Proof. In view of (5, Theorem 2.3), it suffices to establish the following 
two propositions: 

(1) If S is a complete Baer semigroup, then i f is a complete lattice; 
(2) If P is a complete lattice, then S{P) is a complete Baer semigroup. 
First, note that R and L are a pair of Galois connection on the complete 

lattice £P(S)', hence, the Galois-closed elements form complete sublattices: 
{R(X): X C S} and {L(X)\ X C S], respectively. However, i f = 
{L(X):X CS}, sinceR(X) = RLE(X) = R(Sf) = £({/}) f o r / € L'(R(X)); 
therefore, <if is a complete lattice. 
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Second, note that S(P) is a Baer semigroup, since P is a lattice, which is 
completely lattice-ordered since P is complete. For any F C S(P) we have that 
R(F) = R(V<t>zF<t>) and L(F) = L(V^F4>)\ therefore, S(P) is in fact a 
complete Baer semigroup. 
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