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Abstract

This paper deals with continuous-time Markov decision processes in Polish spaces, under
the discounted and average cost criteria. All underlying Markov processes are determined
by given transition rates which are allowed to be unbounded, and the costs are assumed
to be bounded below. By introducing an occupation measure of a randomized Markov
policy and analyzing properties of occupation measures, we first show that the family
of all randomized stationary policies is ‘sufficient’ within the class of all randomized
Markov policies. Then, under the semicontinuity and compactness conditions, we prove
the existence of a discounted cost optimal stationary policy by providing a value iteration
technique. Moreover, by developing a new average cost, minimum nonnegative solution
method, we prove the existence of an average cost optimal stationary policy under some
reasonably mild conditions. Finally, we use some examples to illustrate applications of
our results. Except that the costs are assumed to be bounded below, the conditions for
the existence of discounted cost (or average cost) optimal policies are much weaker than
those in the previous literature, and the minimum nonnegative solution approach is new.

Keywords: Occupation measure; optimality inequality/equation; discounted cost optimal
policy; average cost optimal policy; minimum nonnegative solution method
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1. Introduction

Continuous-time Markov decision processes (MDPs) have received considerable attention
because many optimization models, such as in communication engineering, queueing systems,
and control of epidemics, are based on the processes involving continuous time. As is well
known, the expected discount and average criteria are most commonly used in continuous-
time MDPs; see, for instance, [3], [4], [6], [7], [8], [9], [11], [12], [15, Chapter 4], [16], [18],
[19, Section 5, Chapter 11], [20, Chapter 10], [24], [25], and their extensive references. The
main focus of the aforementioned works is the so-called optimality conditions that ensure the
existence/calculation of optimal policies. For this reason, the state spaces in [4], [8], [9], [11],
[12], [15], [16], [18], [19], and [20] were assumed to be denumerable, and taken to be Polish
spaces in [3], [7], [6], [24], and [25]. In this paper we will further study the case of continuous-
time MDPs in Polish spaces, and, thus, only state results from some of the aforementioned

Received 14 January 2009; revision received 28 June 2010.
∗ Postal address: School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275,
P. R. China.
Research supported by the NSFC and GDUPS (2010).
∗∗ Email address: mcsgxp@mail.sysu.edu.cn
∗∗∗ Email address: yeliuer@hotmail.com

953

https://doi.org/10.1239/aap/1293113146 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113146


954 X. GUO AND L. YE

works. For the discount criterion of continuous-time MDPs in Polish spaces, rewards in [3] were
assumed to be bounded, and, for the case of unbounded rewards in [7], additional assumptions,
such as the expected growth and absolute integrability conditions, were made. For the average
criterion of continuous-time MDPs in Polish spaces, the main optimality conditions are based
on the corresponding approaches. Roughly speaking, the optimality equation approach in [25]
requires the uniformly exponentially ergodic condition; the optimality two-inequality approach
in [10] requires that a drift (Lyapunov type) function can dominate the relative difference of
the discount optimal value function; the convex analysis method in [6] needs another set of
convergence conditions for sequences of measures; and the optimality inequality approach
in [24] requires some additional absolute integrability conditions and the assumption that the
relative difference is bounded below. Furthermore, the absolute integrability conditions, as
well as the continuity assumption imposed on the class of policies, were required in [3], [7],
[6], [10], [24], and [25], owing to the use of Dynkin’s formula, and the existing examples
verifying the average optimality conditions in [10] and [11] need the monotonicity assumption
to be imposed on the rewards. In this paper we further study both the expected discount and
average criteria, and aim to drop both the integrability conditions and the continuity assumption
required in [3], [6], [7], [10], [24], and [25] for Polish state spaces. To this end, we develop
some new techniques, and also give some new and verifiable conditions as well as examples
for both discount and average optimalities.

More precisely, the state and action spaces in our model are allowed to be Polish spaces,
the costs are bounded below, the transition rates may be unbounded, and each randomized
Markov policy may not satisfy the continuity condition in [3], [6], [7], [10], [24], and [25].
Since we established the existence of a transition function without the continuity condition
in [23], the discount and average optimality problems can be well defined when the costs
are bounded below. To prove the existence of discounted cost optimal policies, we introduce
an occupation measure of a randomized Markov policy and analyze its properties. These
properties are used to prove that the family of all randomized stationary policies is ‘sufficient’
within the class of all randomized Markov policies (see Theorem 3.1). Then, using a value
iteration technique, we not only establish the discount cost optimality equation and show the
existence of a discounted cost optimal stationary policy, but also prove that such value iteration
techniques can be used to calculate (or at least approximate) the discounted cost optimal value
(see Theorem 3.2). For the average criterion, we first give reasonably mild conditions and
present some new sufficient conditions for the verification of these average optimality conditions
(see Theorem 3.3). Then, in order to prove the existence of average cost optimal policies, we
obtain a key fact by developing a new average cost minimum nonnegative solution technique
(see Theorem 3.4), which together with the optimality inequality approach is used to prove the
existence of an average cost optimal policy (see Theorem 3.5). Furthermore, we illustrate the
applications of our results with examples, which satisfy all of our conditions, but in which the
monotonicity assumption commonly used in the examples in the literature fails to hold.

It is worth noting that, except for the fact that the costs are bounded below, the conditions for
the existence of discounted cost (or average cost) optimal policies are much weaker than those in
the literature [3], [6], [7], [10], [24], [25]. More precisely, the improvement in the corresponding
optimality conditions is twofold: (i) the expected growth condition in [3] and [7] for the discount
criterion has been dropped (see Remark 3.4 for details), and (ii) the exponentially ergodic
condition in [25] and the drift conditions imposed on the relative difference of the discounted
cost optimal value in [10] and [25] have been removed (see Remark 3.8). Moreover, the
absolute integrability condition and the continuity assumption in [3], [6], [7], [10], [24], and
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[25] are no longer needed in this paper (see Remarks 3.4 and 3.8). Furthermore, some new
sufficient conditions and examples verifying our assumptions are given (see Remark 3.6 and
Examples 4.1–4.3). The minimum nonnegative solution technique and the results of a transition
function constructed from transition rates under the measurability condition are new and play
key roles in our arguments (see Remark 3.7).

The rest of this paper is organized as follows. In Section 2 we introduce the model that
we are concerned with. The main optimality results for the two optimality criteria are stated
in Section 3, and are illustrated with examples in Section 4. The proofs of these results are
postponed to Section 5.

2. The nonnegative cost model

Notation. If X is a Polish space (that is, a complete and separable metric space), we denote by
B(X) the Borel σ -algebra, and by P(X) the set of all probability measures on B(X) endowed
with the topology of weak convergence.

The model of continuous-time MDPs is defined by

{S, (A(x) ⊆ A, x ∈ S), q(· | x, a), c(x, a)}, (2.1)

where q(· | x, a) denotes the transition rates, c(x, a) is the cost function, S is a state space, A

is an action space, and A(x) ∈ B(A) denotes the set of admissible actions at state x ∈ S. We
suppose that S and A are Polish spaces. The set

K := {(x, a) | x ∈ S, a ∈ A(x)} (2.2)

is a Borel subset of S × A.
The transition rates, q(· | x, a), satisfy the following properties.

(T1) For each fixed (x, a) ∈ K , q(· | x, a) is a signed measure on B(S), whereas, for each
fixed D ∈ B(S), q(D | ·) is a real-valued Borel-measurable function on K .

(T2) 0 ≤ q(D | x, a) < ∞ for all (x, a) ∈ K and x �∈ D ∈ B(S).

(T3) q(S | x, a) = 0 for all (x, a) ∈ K .

The model is assumed to be stable, which means that

q∗(x) := sup
a∈A(x)

|q({x} | x, a)| < ∞ for all x ∈ S. (2.3)

The cost function, c(x, a), is assumed to be bounded below and measurable on K .
A continuous-time MDP evolves as follows. The decision maker continuously observes the

current state of a system. Whenever the system is at state x(t) ∈ S at time t ≥ 0, he/she
chooses an action a(t) ∈ A(x(t)) according to some rule. Consequently, he/she incurs an
immediate cost c(x(t), a(t)) and the system moves to a new state set governed by a possibly
nonhomogeneous transition probability function, which is determined by the transition rates
q(· | x(t), a(t)). Thus, the goal of the decision maker is to minimize his/her costs with respect
to some performance criterion, such as Vα(·, ·, ·) or J (·, ·, ·), respectively defined in (2.9)
and (2.10) below.

To define a rule precisely, we introduce some notation.
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Definition 2.1. A (randomized Markov) policy is a family π := (πt , t ≥ 0) of stochastic
kernels πt that satisfy the following conditions.

(a) For each t ≥ 0, πt is a stochastic kernel on A given S such that πt (A(x) | x) = 1 for all
x ∈ S.

(b) For each B ∈ B(A), πt (B | x) is Borel measurable in (t, x) ∈ [0, ∞) × S.

We denote by � the family of all randomized Markov policies.
By Definition 2.1(a), without loss of generality, we regard πt (· | x) as a probability measure

on A(x).
A policy π = (πt , t ≥ 0) ∈ � is called randomized stationary if there exists a stochastic

kernel φ on A given S such that

πt (· | x) = φ(· | x) for all t ≥ 0 and x ∈ S.

The set of all randomized stationary policies is denoted by �s .
A randomized stationary policy φ ∈ �s is called deterministic stationary or simply station-

ary if there exists a Borel-measurable function f on S with f (x) ∈ A(x) for all x ∈ S such
that

φ({f (x)} | x) = 1 for all x ∈ S.

For simplicity, we denote such a policy φ by f . The set of all stationary policies is denoted by F ,
which means that F is the set of all Borel-measurable functions f on S such that f (x) ∈ A(x)

for all x ∈ S. Obviously, � ⊃ �s ⊃ F .
For each π = (πt , t ≥ 0) ∈ �, we define the associated transition rates qπ(· | x, πt ) by

qπ(D | x, πt ) :=
∫

A(x)

q(D | x, a)πt (da | x)

for all x ∈ S, D ∈ B(S), and t ≥ 0.
The function qπ(· | x, πt ) is also called an infinitesimal generator (for any fixed policy

π ∈ �); see, e.g. [3]. As is well known, any (possibly substochastic and nonhomogeneous)
transition function p̃π (s, x, t, D) depending on π such that

lim
ε→0+

p̃π (t, x, t + ε, D) − δx(D)

ε
= qπ(D | x, πt )

for all x ∈ S, t ≥ 0, and D ∈ B(S) is called a Q(t, π)-transition function with transition rates
qπ(· | x, πt ), where δx(D) denotes the Dirac measure at point x ∈ S.

By Theorem 1 of [23] (see, e.g. [5] and [22]), we have the following fact.

Lemma 2.1. For each policy π = (πt , t ≥ 0) in �, there exists a Q(t, π)-transition function
with transition rates qπ(· | x, πt ).

Lemma 2.1 guarantees the existence of a Q(t, π)-transition function, such as the mini-
mum Q(t, π)-transition function denoted by pmin

π (s, x, t, D), which can be constructed from
qπ(· | x, πt ) (see [5] and [23]). But, as is well known (see, e.g. [1, Theorem 2.2.2]), such a
Q(t, π)-transition function might not be regular, that is, we might have pmin

π (s, x, t, S) < 1 for
some x ∈ S and t ≥ s ≥ 0.

To ensure the regularity of a Q(t, π)-transition function, we propose the following ‘drift
condition’.
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Assumption A. There exist a measurable function w ≥ 1 on S, and constants c0 ∈ (−∞, ∞),

b0 ≥ 0, and M0 > 0 such that

(i)
∫
S

w(y)q(dy | x, a) ≤ c0w(x) + b0 for all (x, a) ∈ K; and

(ii) q∗(x) ≤ M0w(x) for all x ∈ S, with q∗(x) as in (2.3).

Remark 2.1. (a) Assumption A is satisfied when the transition rates are bounded (that is,
supx∈S q∗(x) < ∞).

(b) Assumption A(i) is an extension of the ‘drift condition’ (2.4) of [17] for a homogeneous
Q-transition function.

(c) Under Assumption A, it follows from Theorem 2 of [23] that pmin
π (s, x, t, S) ≡ 1. Hence,

the Q(t, π)-transition function with transition rates qπ(· | x, πt ) is regular and unique. Thus,
we write pmin

π (s, x, t, D) simply as pπ(s, x, t, D).

For each initial distribution ν ∈ P(S), initial time s ≥ 0, and π = (πt , t ≥ 0) ∈ �, as is
well known, there exists a unique probability space (	, B(	), Pπ

s,ν), in which the probability
measure Pπ

s,ν is completely determined by ν and pπ(s, x, t, D). Then, Lemma 2.1 of [6] ensures
the existence of a ‘state and action’ process {x(t), a(t), t ≥ s} such that

Pπ
s,ν((x(t), a(t)) ∈ K) = 1, (2.4)

Pπ
s,ν(x(s) ∈ D, a(s) ∈ C) =

∫
D

πs(C | y)ν(dy), (2.5)

Pπ
s,ν(x(t) ∈ D, a(t) ∈ C) =

∫
S

∫
D

πt (C | y)pπ(s, x, t, dy)ν(dx), (2.6)

for all t ≥ 0, D ∈ B(S), and C ∈ B(A).
Let Eπ

s,ν denote the expectation operator associated with Pπ
s,ν . In particular, if ν is concen-

trated on the ‘initial state’ x at time s (i.e. ν({x}) = 1), we write Pπ
s,ν and Eπ

s,ν as Pπ
s,x and Eπ

s,x ,
respectively. Furthermore, if s = 0, we write Pπ

s,x and Eπ
s,x as Pπ

x and Eπ
x , respectively.

For each π = (πt , t ≥ 0) ∈ �, let

c(x, πt ) :=
∫

A(x)

c(x, a)πt (da | x) for each x ∈ S and t ≥ 0. (2.7)

Then, by (2.6) and (2.7), we have

Eπ
s,x c(x(t), a(t)) = Eπ

s,x c(x(t), πt ) :=
∫

S

c(y, πt )pπ(s, x, t, dy) for each t ≥ s. (2.8)

Since c(x, a) is measurable in (x, a) ∈ K , and πt (C | x) is measurable in (t, x) ∈ S̄ :=
[0, ∞) × S (for each fixed C ∈ B(A)), it follows from (2.7) that c(x, πt ) is measurable in
(t, x) ∈ S̄, and so is the expected cost Eπ

s,x c(x(t), a(t)) because pπ(s, x, t, dy) is continuous
in t ≥ s; see, e.g. [23].

Let α(> 0) be a fixed discount factor. For each policy π ∈ �, s ≥ 0, and x ∈ S, the
expected discounted cost and average cost criteria are defined as

Vα(s, x, π) :=
∫ ∞

s

e−α(t−s) Eπ
s,x c(x(t), a(t)) dt (2.9)
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and

J (s, x, π) := lim sup
T →∞

1

T − s

∫ T

s

Eπ
s,x c(x(t), a(t)) dt, (2.10)

respectively. The corresponding discounted cost and average cost optimal value functions are
given by

Vα
∗(s, x) := inf

π∈�
Vα(s, x, π) for all s ≥ 0 and x ∈ S

and
J ∗(s, x) := inf

π∈�
J(s, x, π) for all s ≥ 0 and x ∈ S,

respectively.

Definition 2.2. A policy π∗ ∈ � is said to be discounted cost optimal if

Vα(s, x, π∗) ≤ Vα
∗(s, x) for all s ≥ 0 and x ∈ S.

Similarly, a policy π∗ ∈ � is said to be average cost optimal if

J (s, x, π∗) ≤ J ∗(s, x) for all s ≥ 0 and x ∈ S.

Remark 2.2. Note that, sincepπ(s, x, t,D) is regular underAssumptionA (see Remark 2.1(c)),
without loss of generality, we may replace the costs c(x, a) in (2.9)–(2.10) with c(x, a) + L

for any constant L. Therefore, in the following arguments, we will assume that ‘c(x, a) ≥ 0’
since c(x, a) in model (2.1) is bounded below.

3. Main results

In this section we state our main results. Their applications are illustrated with examples in
Section 4, and their proofs are postponed to Section 5.

3.1. On discount optimality

In this subsection we present the main results of discounted cost optimality. To this end, we
introduce the concept of an occupation measure of a policy.

Definition 3.1. (a) The occupation measure of a policy π ∈ � is a measure µπ (depending
on π ) on S × A, which is defined by

µπ(
) :=
∫ ∞

s

e−α(t−s) Pπ
s,ν((x(t), a(t)) ∈ 
) dt for 
 ∈ B(S × A).

(Obviously, µπ also depends on the initial distribution ν at s ≥ 0, but it is still denoted as µπ

for simplicity.)

(b) Two policies π1 and π2 in � are called equivalent if µπ1 = µπ2
.

Remark 3.1. (a) By Definition 2.1(a) and (2.4)–(2.6), we have µπ(S × A) = 1/α, and µπ is
concentrated on K in (2.2), i.e.

µπ(Kc) = 0,

where Kc denotes the complement of K .
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(b) The marginal (or projection) µ̂π
S of µπ on S is given by

µ̂π
S (D) := µπ(D × A) =

∫ ∞

s

e−α(t−s) Pπ
s,ν(x(t) ∈ D) dt for each D ∈ B(S). (3.1)

Theorem 3.1. Let ν ∈ P(S) be any initial distribution. Suppose that Assumption A holds,
that

∫
S

w(y)ν(dy) < ∞, and that α > c0, with α the discount factor, and c0 and w as in
Assumption A. Then the following assertions hold.

(a) For each fixed policy π ∈ �, the occupation measure µπ is a solution to the equation

αµ̂π
S (D) = ν(D) +

∫
S×A

q(D | x, a)µπ(dx, da) for all D ∈ B(S).

(b) Conversely, if a measure µ on B(S × A) concentrated on K satisfies µ(K) = 1/α,∫
S

w(y)µ̂S(dy) < ∞, and

αµ̂S(D) = ν(D) +
∫

S×A

q(D | x, a)µ(dx, da) for all D ∈ B(S), (3.2)

then there exists a randomized stationary policy φµ ∈ �s (depending on µ) such that
µφµ = µ, and φµ can be given by

µ(D × C) =
∫

D

φµ(C | x)µ̂S(dx) for all D ∈ B(S) and C ∈ B(A). (3.3)

(c) Vα
∗(x) := infφ∈�s Vα(0, x, φ) = infπ∈� Vα(s, x, π) for all x ∈ S and s ≥ 0.

Proof. See Section 5.

Remark 3.2. Theorem 3.1(a) and (b) state some properties of an occupation measure of a
policy. Moreover, Theorem 3.1(c) shows that the family �s of all randomized stationary
policies is ‘sufficient’ within the class � of all randomized Markov policies for the discount
optimality when the costs are bounded below.

To guarantee the existence of a discounted cost optimal stationary policy, we also need the
following assumption.

Assumption B. Suppose that the following conditions hold:

(i) α > c0, with c0 as in Assumption A;

(ii) A(x) is compact for each x ∈ S;

(iii) for each x ∈ S and D ∈ B(S), the function q(D | x, ·) is continuous on A(x);

(iv) for each x ∈ S, the function c(x, ·) is lower semicontinuous (l.s.c.) on A(x).

Remark 3.3. Assumption B(i) follows from the condition in Theorem 3.1. It is required for
the finiteness of

∫
S

w(x)µπ(dx), but not needed when the transition rates are bounded. We
call Assumption B(ii) and (iii) the so-called ‘semi-continuity and compactness conditions’,
which are imposed on the primitive data of model (2.1) and are an extension of the standard
continuity-compactness conditions in [13,Assumptions 4.2.1 and 4.2.2], [14,Assumptions 8.3.1
and 8.3.3], and [19, Theorem 6.2.10] for discrete-time MDPs.
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To state our second main result for discounted cost optimality, we define a sequence {un} as
follows. For each n ≥ 0, let

un+1(x) := inf
a∈A(x)

{
c(x, a)

α + q(x, a)
+ 1

α + q(x, a)

∫
S−{x}

un(y)q(dy | x, a)

}
(3.4)

for x ∈ S, where u0 := 0 and q(x, a) := −q({x} | x, a)(≥ 0).

Theorem 3.2. Suppose that Assumptions A and B hold. Then

(a) limn→∞ un = V ∗
α , with un as in (3.4) and V ∗

α as in Theorem 3.1(c);

(b) V ∗
α satisfies the following discounted cost optimality equation:

V ∗
α (x) = inf

a∈A(x)

{
c(x, a)

α + q(x, a)
+ 1

α + q(x, a)

∫
S−{x}

V ∗
α (y)q(dy | x, a)

}
(3.5)

for all x ∈ S;

(c) any policy f ∈ F realizing the minimum in the right-hand side of (3.5) is discounted
cost optimal;

(d) there exists a discounted cost optimal stationary policy.

Proof. See Section 5.

Remark 3.4. (a) Theorem 3.2 not only shows the existence of a discounted cost optimal
stationary policy, but also provides a value iteration algorithm to approximate the discounted
cost optimal value function V ∗

α .

(b) Except for the fact that the costs are bounded below, the other conditions are much weaker
than those in [7]. For example, we have dropped the following three assumptions required
in [7]: (i) the continuity condition imposed on the class of all randomized Markov policies (see
Definition 2.1 of [7]), (ii) Assumption B(1) of [7] (i.e. the so-called expected growth condition)
for the finiteness of the expected discounted cost function, and (iii) Assumption C(4) of [7]
(i.e. the absolute integrability condition) for the interchange of integrals and sums.

3.2. On average optimality

In this subsection we focus on the main results of the existence of an average cost optimal
stationary policy.

In addition to Assumptions A and B, to ensure the existence of an average cost optimal
policy, we need the following hypothesis.

Assumption C. For some decreasing sequence {αn} tending to 0 and some state x0 ∈ S, there
exist a constant L∗ and a nonnegative real-valued function H on S such that

(i) αnV
∗
αn

(x0) is bounded in n ≥ 1 (this implies that V ∗
αn

(x0) < ∞, and so we may define the
relative difference of the discount optimal value function hαn(x) := V ∗

αn
(x) − V ∗

αn
(x0)

on S for each n ≥ 1);

(ii) L∗ ≤ hαn(x) ≤ H(x) for all n ≥ 1 and x ∈ S.

Remark 3.5. Assumption C is a continuous-time version of Assumption 5.4.1 of [13] for
discrete-time MDPs. Such a hypothesis is commonly used in discrete-time MDPs, and examples
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satisfying this hypothesis are given in [19, pp. 421–425], but for the case of discrete-time MDPs
with denumerable states.

For the verification of Assumption C, since Theorem 3.3(a) of [7] can be used to verify
Assumption C(i), we need to verify only Assumption C(ii). To this end, we introduce some
notation.

Suppose that there is a set B ∈ B(S) such that, for each f ∈ F and x /∈ B, either
q(B | x, f (x)) > 0 or there are some distinct sets B1, B2, . . . , Bn ∈ B(S) (depending on f

and x) satisfying

q(B1 | x, f (x)) > 0, q(Bk+1 | xk, f (xk)) > 0, k = 1, . . . , n − 1,

and q(B | xn, f (xn)) > 0 for all xk ∈ Bk, k = 1, 2, . . . , n .

Then we know that such a set B can be reached from state x /∈ B under any f ∈ F , which is
denoted by ‘x ↪→ B’. For the aforementioned B ∈ B(S) and f ∈ F , we denote by

τ
f
B :=

{
inf{t > 0 : x(t) ∈ B} if {t > 0 : x(t) ∈ B} �= ∅,

+∞ otherwise,

the first entrance time to B. We can see that τ
f
B < ∞, Pf

x -almost surely (Pf
x -a.s.). When B

is a singleton set {x0}, we denote τ
f
B simply by τ

f
x0 . Furthermore, for any δ ≥ 0 and any

nonnegative Borel-measurable function g on K , define

UB
δ (x, f ) := Ef

x

[∫ τ
f
B

0
e−δt g(x(t), f ) dt

]
for all x /∈ B and f ∈ F, (3.6)

where g(x, f ) := g(x, f (x)).
Then we have the following fact for the verification of Assumption C(ii).

Theorem 3.3. Suppose that Assumption A holds, and let f ∈ F , x ↪→ B ∈ B(S), and δ ≥ 0.
Then the following statements hold.

(a) UB
δ (x, f ) is the minimum nonnegative solution to the equation

δu(x) ≥ g(x, f (x)) +
∫

S−B

u(y)q(dy | x, f (x)) for all x /∈ B. (3.7)

(b) If, in addition, Assumptions B and C(i) hold, there exists a nonnegative measurable
function u on S that satisfies

c(x, a) +
∫

S−{x0}
u(y)q(dy | x, a) ≤ 0 for all x �= x0 and a ∈ A(x),

with x0 as in Assumption C(i), and hαn(x) ≤ u(x) for all n ≥ 1 and x ∈ S.

(c) If, in addition, there exist some constant β > 0 and B ∈ B(S) such that q(B | x, a) ≥ β

for all a ∈ A(x) and x /∈ B, then Ef
x [τf

B ] ≤ 1/β for all x /∈ B and f ∈ F .

(d) If the conditions in (b) and (c) (with B = {x0}) hold, then Assumption C is satisfied.

(e) If the conditions in (b) hold, and Ef
x [τf

x0 ] is bounded in f ∈ F and x �= x0 (with x0 as in
Assumption C(i)), then Assumption C holds.
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Proof. See Section 5.

Remark 3.6. Theorem 3.3 is new and can be applied to the case of Polish spaces; see
Examples 4.1–4.3 below. In particular, the condition in Theorem 3.3(d) does not require any
monotonicity assumption, and, thus, it is different from the monotonicity condition imposed
on the transition rates in [9], [10], and [19, pp. 426–427], which further require the additional
monotonicity assumption imposed on the rewards; see, e.g. Lemma 3.3 and Example 5.1 of [10],
Assumption C of [9], and Theorems 8.11.3 and 8.11.4 of [19].

To prove the existence of average cost optimal policies, we need some facts and concepts. For
each f ∈ F , since the transition function pf (s, x, t, D) is homogeneous, pf (s, x, s + t, D)

is independent of s ≥ 0. Thus, we may write pf (x, t, D) := pf (0, x, 0 + t, D) for all
x ∈ S, D ∈ B(S), and t ≥ 0. Define the t-horizon expectation total cost under policy f by

Jf (x, t) :=
∫ t

0
Ef

x c(x(s), a(s)) ds =
∫ t

0

∫
S

c(y, f (y))pf (x, s, dy) ds (3.8)

for all x ∈ S and t ≥ 0. We then have the following key result.

Theorem 3.4. For any fixed f ∈ F , let q(x, f ) := −q({x} | x, f (x)) ≥ 0, q(· | x, f ) :=
q(· | x, f (x)), and c(x, f ) := c(x, f (x)) for all x ∈ S. Suppose that Assumption A holds,
then

(a) Jf (x, t) is the minimum nonnegative solution to the inequality

u(x, t) ≥ c(x, f )te−q(x,f )t +
∫ t

0
e−q(x,f )s

[
q(x, f )c(x, f )s

+
∫

S−{x}
u(y, t − s)q(dy | x, f )

]
ds

(3.9)

for all x ∈ S and t ≥ 0, satisfying (3.9) with equality;

(b) if there exist a constant ρ ≥ 0 and a real-valued measurable function u on S bounded
below, such that

ρ + u(x)q(x, f ) ≥ c(x, f ) +
∫

S−{x}
u(y)q(dy | x, f ) for all x ∈ S, (3.10)

then ρ ≥ J (0, x, f ) for all x ∈ S.

Proof. See Section 5.

Remark 3.7. (a) Theorem 3.4 needs only Assumption A and allows unbounded costs and
transition rates, whereas similar results in [10] and [24] require some additional conditions.

(b) We call the method used to prove Theorem 3.4 a minimum nonnegative solution approach,
which is new and rather different from those in [10] and [24] for continuous-time MDPs and
those in [13] and [19] for the discrete-time case. Moreover, results of a transition function
constructed from transition rates under the measurability condition play key roles in our
arguments.

The following theorem establishes the existence of average cost optimal policies.
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Theorem 3.5. Under Assumptions A, B, and C, the following assertions hold.

(a) There exist a nonnegative constant ρ∗, a stationary policy f ∗ ∈ F , and a real-valued
measurable function h∗ on S satisfying the average cost optimality inequality

ρ∗ ≥ c(x, f ∗(x)) +
∫

S

h∗(y)q(dy | x, f ∗(x))

≥ inf
a∈A(x)

{
c(x, a) +

∫
S

h∗(y)q(dy | x, a)

}
for all x ∈ S. (3.11)

(b) Any policy f ∈ F realizing the minimum in (3.11) is average cost optimal. Therefore,
f ∗ in (a) is an average cost optimal stationary policy, and, moreover, ρ∗ is the average
cost optimal value.

Proof. See Section 5.

Remark 3.8. The conditions and results of Theorem 3.5 are the continuous-time versions
of those for discrete-time MDPs; see, e.g. [13]. Note that the exponentially ergodic con-
dition in [25] and the drift condition imposed on the relative difference in [10] have been
dropped. Moreover, both the absolute integrability condition and the continuity assumption (see
Remark 3.4(b) above) in [3], [6], [7], [10], [24], and [25] have been removed. Since the proof
of Theorem 3.5 is based on Theorem 3.4, we also call it an average cost minimum nonnegative
solution approach, which is rather different from those in [10], [13, Theorem 5.4.3], [19,
Theorem 8.10.7], and [24].

4. Examples

In this section we illustrate our conditions and show applications of our results with Exam-
ples 4.1–4.3.

Example 4.1. Consider a management problem of a water reservoir with finite capacity C(>

0). The state variable x(t) denotes the amount of water in the reservoir at time t ≥ 0. Water in
the reservoir can be replenished and used at positive constant rates λ and µ, respectively. The
quantity of water available to replenish the reservoir depends on the amount of rainfall, and
the largest amount of ‘replenishment’ water is assumed to be M(< C). Moreover, the quantity
of water in the reservoir is divided into three zones: the inactive zone S1 := [0, θ ], the active
zone S2 := (θ, C − M], and the flood control zone S3 := (C − M, C], where the constant
θ (0 < θ < C − M) denotes the lowest quantity of water that is not normally used. Suppose
that the amount of water in the reservoir decreases to 0 at a constant rate β > 0 due to some
risk, and that the quantity of water to be used can be controlled by a decision maker. Assume
that the amount of water in the reservoir is x and that the decision maker plans for a quantity, a,
of water to be used. Then the decrease and increase in the quantity of water in the reservoir are
measured by Lebesgue’s measure on [x − a, x] and [x, min{x + M, C}], respectively, and the
cost incurred per unit time is denoted by c(x, a). We then obtain a model for continuous-time
MDPs as follows. The state space herein is S := S1 ∪ S2 ∪ S3 = [0, C], the sets of feasible
actions A(x) at x ∈ S are A(x) := {0} for x ∈ [0, θ ], A(x) := [0, x − θ ] for x ∈ (θ, C − M],
and A(x) := {x − C + M} for x ∈ (C − M, C]. The transition rates q(· | x, a) are given as
follows. For each D ∈ B(S),

q(D | x, a) := βδ0(D)+λmL(D∩[x, x+M])−(β+λM)δx(D) for x ∈ S1 and a ∈ A(x);
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when x ∈ S2 and a ∈ A(x), we have

q(D | x, a) := βδ0(D)+µmL(D∩[x−a, x])+λmL(D∩[x, x+M])−(β+µa+λM)δx(D);
moreover, for x ∈ S3 and a ∈ A(x),

q(D | x, a) := βδ0(D) + µmL(D ∩ [C − M, x]) + λmL(D ∩ [x, C])
− [β + µ(x − C + M) + λ(C − x)]δx(D).

(Indeed, the q(· | x, a) defined above are transition rates because they satisfy properties (T1)–
(T3).)

For the management problem of the water reservoir, we aim to find conditions that ensure
the existence of discounted cost and average cost optimal stationary policies. To this end, we
consider the following hypotheses.

(H1) Assume that c(x, ·) is bounded below and l.s.c. in a ∈ A(x) for each fixed x ∈ S.

(H2) β > 1
2λM2, and supa∈A(x) |c(x, a)| ≤ L1(x + 1) for all x ∈ S, with some constant

L1 > 0.

Then we obtain the following result.

Proposition 4.1. Under (H1), the following statements hold.

(a) There exists a discounted cost optimal stationary policy for Example 4.1.

(b) If, in addition, (H2) holds, then Example 4.1 satisfies Assumptions A, B, and C. Hence,
(by Theorem 3.5) there exists an average cost optimal stationary policy.

Proof. (a) The proof follows from Theorem 3.2; however, in order to appeal to this theorem,
we need to verify Assumptions A and B. Since (ii)–(iv) of Assumption B follow from the
definition of q(· | x, a) above, (H1), and the description of Example 4.1, we need only verify
Assumptions A and B(i). Let w(x) := x +1 for all x ∈ S. Then, by the definition of q(· | x, a)

above and a straightforward calculation, we have

q∗(x) ≤ (µ + λM + β)(x + 1) for all x ∈ S,∫
S

w(y)q(dy | x, 0) = βw(0) + λ

∫ x+M

x

(y + 1) dy − (β + λM)w(x)

≤ −β(x + 1) + β + 1
2λM2 for x ∈ S1,∫

S

w(y)q(dy | x, a) = βw(0) + µ

∫ x

x−a

(y + 1) dy + λ

∫ x+M

x

(y + 1) dy

− (β + µa + λM)w(x)

= β − 1
2µa2 + 1

2λM2 − β(x + 1)

≤ −β(x + 1) + β + 1
2λM2 for x ∈ S2, a ∈ [0, x − θ ],∫

S

w(y)q(dy | x, a) = βw(0) + µ

∫ x

C−M

(y + 1) dy + λ

∫ C

x

(y + 1) dy

− [β + µ(x − C + M) + λ(C − x)]w(x)
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= −βx − 1
2µ(x − C + M)2 + 1

2λ(C + 1)(C − x)

− 1
2λ(C − x)(x + 1)

≤ −β(x + 1) + β + 1
2λM2 for x ∈ S3, a = x − C + M.

Then Assumptions A and B(i) follow immediately from these inequalities with c0 := −β,
b0 := β + 1

2λM2, and M0 := µ + λM + β.
(b) Since Assumptions A and B are verified, it remains to verify Assumption C. By The-

orem 3.2, for each 0 < α < 1, there exists an α-discounted cost optimal stationary policy
fα ∈ F , for which Vα(x, fα) = V ∗

α (x) for all x ∈ S. Let x0 = 0. Then, by (a), (H2), and
Theorem 3.3(a) of [7], we have

L̂1 ≤ αVα
∗(0) = αVα(0, fα) ≤ L1b0

α + β
+ αL1

α + β
< ∞, (4.1)

where L̂1 is a constant. This implies Assumption C(i).
To verify Assumption C(ii), let w1(x) := L′

1(x + 1) with L′
1 := L1/(β −λM2/2) > 0. For

x �= 0 and a ∈ A(x), by (H2), we have, for x ∈ S1 and a = 0,

L1(x + 1) +
∫

S−{0}
w1(y)q(dy | x, 0) = L1(x + 1) + L′

1

( 1
2λM2 − β(x + 1)

)
≤ L1(x + 1) − L′

1

(
β − 1

2λM2)(x + 1)

≤ 0; (4.2)

for x ∈ S2 and a ∈ [0, x − θ ],

L1(x + 1) +
∫

S−{0}
w1(y)q(dy | x, a) = L1(x + 1) + L′

1

(− 1
2µa2 + 1

2λM2 − β(x + 1)
)

≤ L1(x + 1) − L′
1

(
β − 1

2λM2)(x + 1)

≤ 0; (4.3)

and, for x ∈ S3 and a = c − x + M ,

L1(x + 1) +
∫

S−{0}
w1(y)q(dy | x, a)

= L1(x + 1) − L′
1

( 1
2µ(x − C + M)2 + β(x + 1) − 1

2λ(C + 1)(C − x)

+ 1
2λ(C − x)(x + 1)

)
≤ L1(x + 1) − L′

1

( 1
2µ(x − C + M)2 + β(x + 1) − 1

2λM2)
≤ 0. (4.4)

Moreover, since q({0} | x, a) ≥ β for all x �= 0 and a ∈ A(x), by (4.1)–(4.4) and Theo-
rem 3.3(d), we can see that Assumption C(ii) is satisfied.

Remark 4.1. It should be mentioned that the state space in Example 4.1 is not denumerable,
any monotonicity assumptions imposed on both the rewards and transition rates in [9], [10],
and [11] are not required.

Next we illustrate the applications of our results with another two examples with unbounded
transition rates.
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Example 4.2. Consider a control problem of hypertension, in which we are interested in how
to control the average time when the blood pressure in a body is ‘stable’. As is well known,
by the normalization technique we can describe the blood pressure with the standard normal
distribution N(0, 1), and, thus, the normalized quantity of blood pressure may take values in
S := (−∞, ∞). When the current amount of blood pressure is at x ∈ S and a controlled amount
a is given, we suppose that the holding time of the ‘stable’ blood pressure has an exponential
distribution with parameter (γ |x| + a)−1, where γ is a fixed constant. Thus, the rate of change
of blood pressure is given as

q(D | x, a) := βδ0(D) + (γ |x| + a)

∫
D−{x}

1√
2π

e−y2/2 dy − (γ |x| + β + a)δx(D) (4.5)

for each D ∈ B(S), where the constant β represents the rate at which a risk may happen.
We denote by c(x, a) the cost of taking control a when the current amount of blood pressure

is at x ∈ S, and regard a as an action, which takes values in [0, κ], with some constant κ > 0.
Then, the model of continuous-time MDPs is specified with S, q(· | x, a), and c(x, a) as above,
and A = A(x) := [0, κ] for all x ∈ S.

Our goal is to find conditions that ensure the existence of discounted cost and average cost
optimal stationary policies. To this end, we need the following hypotheses.

(H3) Assume that c(x, ·) is bounded below and l.s.c. in a ∈ A(x) for each fixed x ∈ S.

(H4) supa∈A(x) |c(x, a)| ≤ L2(x
2 + 1) for all x ∈ S, with some constant L2 > 0.

Then we obtain the following result.

Proposition 4.2. Under (H3), the following statements hold.

(a) If α + β > 1
2γ then there exists a discounted cost optimal stationary policy for Exam-

ple 4.2.

(b) If, in addition, (H4) holds and β > κ + 1
2γ , then Example 4.2 verifies Assumptions A, B,

and C. Hence, (by Theorem 3.5) there exists an average cost optimal stationary policy.

Proof. Since the proof of this proposition is similar as that of Proposition 4.1, we only
describe the skeleton of the proof, and omit the details.

(a) The proof follows from Theorem 3.2 and, therefore, it suffices to verify Assumptions A
and B. Since (ii)–(iv) of Assumption B follow from (4.5) and the description of Example 4.2,
it remains to verify Assumptions A and B(i). Let w(x) := x2 + 1 for all x ∈ S. Then, by (4.5)
and a straightforward calculation, we can see that Assumptions A and B(i) are indeed satisfied
with c0 := −β + 1

2γ , b0 := κ + β, and M0 := β + κ + 1
2γ .

(b) SinceAssumptionsA and B are verified above, we now need to verify onlyAssumption C.
Take x0 = 0. Then, by (a), (H3), and Theorem 3.3(a) of [7], we see that Assumption C(i) is
also true. To verify Assumption C(ii), let

w2(x) := L2

β − (κ + γ /2)
(x2 + 1).

Then, under (H4) and β > κ + 1
2γ , a direct calculation shows that

L2(x
2 + 1) +

∫
S−{0}

w2(y)q(dy | x, a) ≤ 0. (4.6)
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Moreover, it follows from (4.5) that q({0} | x, a) = β > 0 for all x �= 0 and a ∈ A(x).
Therefore, by (4.6) and Theorem 3.3(d), Assumption C(ii) is thus satisfied, and the proof is
complete.

Example 4.3. (A controlled birth-and-death process.) Consider a birth-and-death process with
controlled birth and death parameters, in which the state variable denotes a system’s size at any
time t ≥ 0. There are ‘natural’ birth and death rates represented by positive constants λ and µ,
respectively, and additional birth and death parameters (a1 and a2), which are controlled by a
decision maker. When the state of the process is x ∈ S := {0, 1, . . .}, the decision maker takes
an action a := (a1, a2) from a given set A(x), which may admit (a1 ≥ 0) or expel (a1 ≤ 0)
the birth rate, and also increase (a2 ≥ 0) or decrease (a2 ≤ 0) the death rate. Moreover, this
action a incurs a cost at rate c(x, a).

We now formulate this system as a model of continuous-time MDPs. The corresponding
function of transition rates q(y | x, a) is given as follows. For x = 0 and a = (a1, a2) ∈ A(0),

q(1 | 0, a) = −q(0 | 0, a) := a1,

and, for each x ≥ 1 and a = (a1, a2) ∈ A(x),

q(y | x, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λx2 + a1 if y = x + 1,

−(µ + λ)x2 − a1 − a2 if y = x,

µx2 + a2 if y = x − 1,

0 otherwise.

(4.7)

The cost function c(x, a) is defined as

c(x, a) = px2 + h(x, a) for all (x, a) ∈ K, (4.8)

with some fixed constant p > 0 and h(·, ·) a Borel-measurable function on K .

To ensure the existence of discounted cost and average cost optimal stationary policies, we
consider the following hypotheses.

(H5) A(0) := [0, 1
4λ], and assume that A(x) is a compact subset of [−λ, 1

4λ] × [− 1
4µ, µ] for

each x ≥ 1.

(H6) The function h(x, a) is bounded below and l.s.c. in a ∈ A(x) for each fixed x ∈ S.

(H7) µ ≥ 3
2λ.

(H8) supa∈A(x) |h(x, a)| ≤ L3(x
2 + 1) for all x ≥ 1 with some fixed constant L3 > 0.

Under these hypotheses, we obtain the following result.

Proposition 4.3. Under (H5) and (H6), the following assertions hold.

(a) If µ > λ then there exists a discounted cost optimal stationary policy for Example 4.3.

(b) If, in addition, (H7) and (H8) hold, then Example 4.3 satisfies Assumptions A, B, and C.
Therefore, (by Theorem 3.5) there exists an average cost optimal stationary policy.

Proof. (a) It follows from (H6) and (4.8) that the cost function is bounded below. Moreover,
since (ii)–(iv) of Assumption B follow from (4.7)–(4.8) and (H5)–(H6), we need to verify only
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Assumptions A and B(i). Let w(x) := x2 + 1 for all x ∈ S. Then, by (4.7) and (H5), we can
derive

q∗(x) ≤ λ(x2 + 1) + µ(x2 + 1) = M0w(x) for all x ∈ S, (4.9)∑
y∈S

w(y)q(y | x, a) = 2(λ − µ)x3 + (λ + µ)x2 + 2(a1 − a2)x + a2 + a1. (4.10)

Moreover, by µ > λ and (4.10), we have, for each a ∈ A(x) with x ≥ 1,∑
y∈S

w(y)q(y | x, a) ≤ (λ − µ)(x2 + 1) + b0 (4.11)

for some constant b0 ≥ 0. Moreover, for each a ∈ A(0), we have∑
y∈S

w(y)q(y | 0, a) = a1 ≤ (λ − µ)w(0) + b0. (4.12)

Therefore, Assumptions A and B(i) follow from (4.9)–(4.12) with c0 := λ − µ, b0 as above,
and M0 := λ + µ > 0. Thus, (a) follows from Theorem 3.2.

(b) Since we have verified Assumptions A and B in part (a), it follows from Theorem 3.2
that, for each 0 < α < 1, there exists an α-discounted cost optimal stationary policy fα ∈ F

for which Vα(x, fα) = V ∗
α (x) for all x ∈ S. To verify Assumption C(i), we take x0 = 0. By

(4.8), (H8), and Theorem 3.3(a) of [7], we obtain

L̂ ≤ αVα
∗(0) = αVα(0, fα) ≤ (p + L3)b0

α − λ + µ
+ α(p + L3)

α − λ + µ
< ∞,

since L̂ ≤ c(x, a) ≤ (p +L3)(x
2 + 1) for all x ∈ S, with some constant L̂ (by (H6) and (H8)).

Hence, Assumption C(i) is verified.
To verifyAssumption C(ii), let {αm} be a decreasing sequence that tends to 0, and let fαm ∈ F

be the αm-discounted cost optimal stationary policies. Then

hαm(x) = Vαm(x, fαm) − Vαm(0, fαm) for all x ∈ S and m ≥ 1.

Let

w3(x) := 2(p + L3)

13µ − 19λ
(x2 + 8x + 9).

By (H5), (H7), and (H8), we have, for x = 1 and a = (a1, a2) ∈ A(1),

2(p + L3) +
∑
y≥1

w3(y)q(y | 1, a)

= 2(p + L3)

+ 2(p + L3)

13µ − 19λ
[(−µ − λ − a1 − a2)(1 + 8 + 9) + (λ + a1)(4 + 16 + 9)]

≤ 2(p + L3) + 2(p + L3)

13µ − 19λ

(
−27

2
µ + 55

4
λ

)
< 0,
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and, for x ≥ 2 and a = (a1, a2) ∈ A(x),

(p + L3)(x
2 + 1) +

∑
y≥1

w3(y)q(y | x, a)

= (p + L3)(x
2 + 1)

+ 2(p + L3)

13µ − 19λ
[2(λ − µ)x3 + (9λ − 7µ)x2 + 2(a1 − a2)x + 9a1 − 7a2]

≤ (p + L3)(x
2 + 1)

+ 2(p + L3)

13µ − 19λ

[
16(λ − µ) + (9λ − 7µ)x2 + 1

2
(λ + µ)x + 9

4
λ + 7

4
µ

]

≤ (p + L3)(x
2 + 1) + 2(p + L3)

13µ − 19λ

[(
19

2
λ − 13

2
µ

)
(x2 + 1) + 35

4
λ − 31

4
µ

]
< 0.

The two inequalities imply that

(p + L3)(x
2 + 1) +

∑
y≥1

w2(y)q(y | x, a) ≤ 0 for all x ≥ 1, (x, a) ∈ K.

Hence, by Theorem 3.3(b) (with x0 = {0} and u = w3), we obtain

hαm(x) ≤ w3(x) = 2(p + L3)

13µ − 19λ
(x2 + 8x + 9) for all x ∈ S.

We now estimate Ef
x

[
τ

f
0

]
(for f ∈ F and x �= 0). Denote by

Rf :=
∞∑

x=1

(
1

µf (x)
+

∞∑
k=0

λf (x)λf (x + 1) · · · λf (x + k)

µf (x)µf (x + 1) · · · µf (x + k)µf (x + k + 1)

)

the mean time of first reaching 0 from state ‘∞’ under policy f (see [21, pp. 146–148] for
details), with λf (x) := λx2 + f1(x), µf (x) := µx2 + f2(x), and f (x) =: (f1(x), f2(x)) ∈
A(x). Then by (H5) we have µf (x) ≥ 3

4µx2 and λf (x) ≤ λ(x + 1)2 for all x ≥ 1. Therefore,
from (H5) and (H6), we obtain

Rf ≤
∞∑

x=1

(
1

3µx2/4
+

∞∑
k=0

[λ(x + 1)2][λ(x + 2)2] · · · [λ(x + k + 1)2]
[3µx2/4][3µ(x + 1)2/4] · · · [3µ(x + k + 1)2/4]

)

=
∞∑

x=1

4

3µx2

(
1 +

∞∑
k=0

(
4λ

3µ

)k+1)

=: M∗

< ∞ for all f ∈ F,

and so (by Theorem 2 of [21, Chapter 5, p. 149]), we have

Ef
x [τf

0 ] ≤ Rf ≤ M∗ for all x ≥ 1.

This together with Theorem 3.3(e) verifies Assumption C(ii), and thus completes the proof.
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Remark 4.2. It is worth noting that the conditions in Examples 4.1–4.3, under which the
existence of an average cost optimal stationary policy is ensured, are different from those in
[6], [9], [10], and [11]. In particular, we do not need the monotonicity assumptions imposed
on both transition rates and rewards in [9], [10], and [11].

5. Proofs of Theorems 3.1–3.5

Note that the function Vα(s, x, φ) defined in (2.9) is independent of time s, and, since
pφ(s, x, t, D) = pφ(0, x, t − s, D) for φ ∈ �s , we can write Vα(s, x, φ) = Vα(0, x, φ) =:
Vα(x, φ) for each φ ∈ �s .

5.1. Proof of Theorem 3.1

To prove Theorem 3.1, we need the following result.

Lemma 5.1. For each φ ∈ �s , x ∈ S, and D ∈ B(S), let q(x, φ) := −qφ({x} | x, φ) and
q(D | x, φ) := qφ(D | x, φ). Then, under Assumption A, the following statements hold.

(a) Vα(φ) is the minimum nonnegative solution to the equation

u(x) = c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

u(y)q(dy | x, φ) for all x ∈ S. (5.1)

(b) If a nonnegative measurable function u on S satisfies

u(x) ≥ c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

u(y)q(dy | x, φ) for all x ∈ S,

then u ≥ Vα(φ).

Proof. (a) Choose an arbitrary φ ∈ �s . For each x ∈ S, D ∈ B(S), and n ≥ 0, define

ϕ
(n)
φ (x, D) :=

⎧⎪⎪⎨
⎪⎪⎩

δx(D)

α + q(x, φ)
for n = 0,

1

α + q(x, φ)

[
δx(D) +

∫
S−{x}

ϕ
(n−1)
φ (y, D)q(dy | x, φ)

]
for n ≥ 1.

(5.2)
Note that pφ(s, x, t, D) is homogeneous and ϕ

(n)
φ (x, D) is nondecreasing in n ≥ 0. In view of

the theory of continuous-time Markov processes (see, e.g. Theorem 2.21 of [2]), we obtain

∫ ∞

0
e−αtpφ(0, x, t, D) dt = lim

n→∞ ϕ
(n)
φ (x, D).

Since c(x, a) ≥ 0, this equality together with (2.8)–(2.9), the monotone convergence theorem,
and Fubini’s theorem gives

Vα(x, φ) =
∫

S

c(y, φ)
[

lim
n→∞ ϕ

(n)
φ (x, dy)

]
= lim

n→∞

∫
S

c(y, φ)ϕ
(n)
φ (x, dy). (5.3)
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For any n ≥ 1, from (5.2) we can derive∫
S

c(y, φ)ϕ
(n+1)
φ (x, dy)

=
∫

S

c(y, φ)

α + q(x, φ)

(
δx(dy) +

∫
S−{x}

ϕ
(n)
φ (z, dy)q(dz | x, φ)

)

= 1

α + q(x, φ)

(
c(x, φ) +

∫
S−{x}

∫
S

c(y, φ)ϕ
(n)
φ (z, dy)q(dz | x, φ)

)
. (5.4)

Letting n → ∞ in (5.4), the monotone convergence theorem and (5.3) give

Vα(x, φ) = c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

Vα(z, φ)q(dz | x, φ),

which implies that Vα(φ) satisfies (5.1).
Let u be a nonnegative solution to (5.1). To prove that u ≥ Vα(φ), in view of (5.3) it suffices

to show that ∫
S

c(y, φ)ϕ
(n)
φ (x, dy) ≤ u(x) for all x ∈ S and n ≥ 0. (5.5)

Obviously, it is valid for n = 0. In fact, since u ≥ 0 and q(D | x, φ) ≥ 0 for x /∈ D, by
(5.1)–(5.2), we have

u(x) ≥ c(x, φ)

α + q(x, φ)
=

∫
S

c(y, φ)ϕ
(0)
φ (x, dy). (5.6)

Suppose now that (5.5) holds for some n ≥ 0. Then taking (5.4) and the induction hypothesis
into account, we obtain∫

S

c(y, φ)ϕ
(n+1)
φ (x, dy)

= c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

∫
S

c(y, φ)ϕ
(n)
φ (z, dy)q(dz | x, φ)

≤ c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

u(z)q(dz | x, φ)

= u(x).

Hence, (5.5) is valid for all n ≥ 0, which proves (a).
(b) Under the assumption in assertion (b), there exists a nonnegative measurable function v

on S such that

u(x) = c(x, φ) + v(x)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

u(y)q(dy | x, φ) for all x ∈ S.

Thus, in view of (a) and (5.3) (with c(x, φ) + v(x) in lieu of c(x, φ)), we have

u(x) ≥ lim
n→∞

∫
S

(c(y, φ) + v(y))ϕ
(n)
φ (x, dy) ≥ lim

n→∞

∫
S

c(y, φ)ϕ
(n)
φ (x, dy) = Vα(x, φ)

for all x ∈ S, which yields (b). This completes the proof.
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Proof of Theorem 3.1. (a) Fix a policy π ∈ �. For each x ∈ S and D ∈ B(S), by the
Kolmogorov forward equation in [23], we obtain

pπ(s, x, t, D) = δx(D) +
∫ t

s

∫
S

pπ(s, x, τ, dy)q(D | y, πτ ) dτ for all t ≥ s.

Moreover, since α > c0 and
∫
S

w(y)ν(dy) < ∞, by Assumption A and Theorem 3.1 in [7],
we have∣∣∣∣

∫ ∞

s

e−α(t−s)

∫
S

∫ t

s

∫
D

[∫
A

q({y} | y, a)πτ (da | y)

]
pπ(s, x, τ, dy) dτν(dx) dt

∣∣∣∣ < ∞.

Thus, by (2.6) and (3.1), we can derive

µ̂π
S (D) =

∫ ∞

s

e−α(t−s)

∫
S

pπ(s, x, t, D)ν(dx) dt

= ν(D)

α
+

∫ ∞

s

e−α(t−s)

∫
S

∫ t

s

∫
S

q(D | y, πτ )pπ(s, x, τ, dy) dτν(dx) dt

= ν(D)

α
+

∫ ∞

s

e−α(t−s)

∫
S

∫ t

s

∫
S−D

(∫
A

q(D | y, a)πτ (da | y)

)
× pπ(s, x, τ, dy) dτν(dx) dt

+
∫ ∞

s

e−α(t−s)

∫
S

∫ t

s

∫
D

(∫
A

q(D − {y} | y, a)πτ (da | y)

)
× pπ(s, x, τ, dy) dτν(dx) dt

+
∫ ∞

s

e−α(t−s)

∫
S

∫ t

s

∫
D

(∫
A

q({y} | y, a)πτ (da | y)

)
× pπ(s, x, τ, dy) dτν(dx) dt

= ν(D)

α
+

∫ ∞

s

e−α(t−s)

×
∫ t

s

∫
S×A

q(D | y, a)

(∫
S

pπ(s, x, τ, dy)πτ (da | y)ν(dx)

)
dτ dt

= ν(D)

α
+

∫
S×A

q(D | y, a)

∫ ∞

s

e−α(t−s)

(∫ t

s

Pπ
s,ν(x(τ ) ∈ dy, a(τ ) ∈ da) dτ

)
dt

= ν(D)

α
+

∫
S×A

q(D | y, a)

(
1

α

∫ ∞

s

e−α(τ−s) Pπ
s,ν(x(τ ) ∈ dy, a(τ ) ∈ da) dτ

)

= ν(D)

α
+ 1

α

∫
S×A

q(D | y, a)µπ(dy, da),

and so (a) follows.
(b) By Lemma 9.4.4 of [14], there exists a stochastic kernel φµ (depending on µ) on A given

S, which is concentrated on A(x) for all x ∈ S, such that

µ(D × C) =
∫

D

φµ(C | x)µ̂S(dx) for all D ∈ B(S) and C ∈ B(A).

Obviously, φµ is in �s . To prove (b), it suffices to show that∫
S×A

h(x, a)µ(dx, da) =
∫

S×A

h(x, a)µφµ

(dx, da) (5.7)
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for each nonnegative and bounded measurable function h on S × A. To this end, for any
nonnegative measurable function h and x ∈ S, define

Ṽh(x, φµ) :=
∫ ∞

0
e−αt Eφµ

x [h(x(t), a(t))] dt and Ṽh(ν, φµ) :=
∫

S

Ṽh(x, φµ)ν(dx).

By Fubini’s theorem, Definition 3.1(a), and (2.6), we obtain

Ṽh(ν, φµ) =
∫

S×A

h(x, a)µφµ

(dx, da). (5.8)

When h is nonnegative and bounded (thus, Ṽh(x, φµ) is finite), by Lemma 5.1(a) (with h in
lieu of c) and a straightforward calculation, we obtain

αṼh(x, φµ) =
∫

A

h(x, a)φµ(da | x) +
∫

S

Ṽh(y, φµ)q(dy | x, φµ). (5.9)

On the other hand, by Assumption A(ii) and ‖h‖ := sup(x,a)∈K |h(x, a)| < ∞,∫
S

(∫
S

|Ṽh(s, y, φµ)q(dy | x, φµ)|
)

µ̂S(dx) ≤
∫

S

∫
S

|q(dy | x, φµ)| ‖h‖
α

µ̂S(dx)

≤ 2M0‖h‖
α

∫
S

w(x)µ̂S(dx)

< ∞.

Thus, from Fubini’s theorem we can derive∫
S×A

h(x, a)µ(dx, da)

=
∫

S×A

h(x, a)φµ(da | x)µ̂S(dx) (by (3.3))

=
∫

S

(
αṼh(x, φµ) −

∫
S

Ṽh(y, φµ)q(dy | x, φµ)

)
µ̂S(dx) (by (5.9))

=
∫

S

Ṽh(x, φµ)

(
ν(dx) +

∫
S×A

q(dx | y, a)µ(dy, da)

)
(by (3.2))

−
∫

S

(∫
S

Ṽh(y, φµ)q(dy | x, φµ)

)
µ̂S(dx)

=
∫

S

Ṽh(x, φµ)ν(dx) +
∫

S

Ṽh(x, φµ)

∫
S×A

q(dx | y, a)φµ(da | y)µ̂S(dy)

−
∫

S

(∫
S

Ṽh(y, φµ)q(dy | x, φµ)

)
µ̂S(dx)

= Ṽh(ν, φµ) +
∫

S

∫
S

Ṽh(x, φµ)q(dx | y, φµ)µ̂S(dy)

−
∫

S

(∫
S

Ṽh(y, φµ)q(dy | x, φµ)

)
µ̂S(dx)

= Ṽh(ν, φµ),

which together with (5.8) implies (5.7).
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(c) The desired result follows from (b). Indeed, for any fixed x ∈ S, we take an initial
distribution ν such that ν({x}) = 1. Then, by Assumption A and Theorem 3.3(a) of [7], we
have

Ṽw(x, π) ≤ b0

α(α − c0)
+ w(x)

α − c0
for all x ∈ S and π ∈ �,

which implies that
∫
S

w(y)µ̂π
S (dy) = Ṽw(x, π) < ∞ for all π ∈ �. By (2.9) and (b), for any

policy π ∈ � and any initial state x ∈ S, there exists a randomized stationary policy φπ
x ∈ �s

(depending on π and x) such that

Vα(x, φπ
x ) = Vα(0, x, φπ

x ) = Vα(s, x, π).

Hence,
V ∗

α (x) := inf
φ∈�s

Vα(x, φ) = inf
φ∈�s

Vα(0, x, φ) = inf
π∈�

Vα(s, x, π),

which is desirable.

5.2. Proof of Theorem 3.2

Before proving Theorem 3.2, we need some general lemmas. Denote by M+(S) the family
of nonnegative measurable functions on S.

Lemma 5.2. Suppose that Assumption B(iii) holds. Then the function
∫
S−{x} u(y)q(dy | x, ·)

is l.s.c. on A(x) for each x ∈ S and u ∈ M+(S).

Proof. Since u ∈ M+(S), there exists a nondecreasing sequence of nonnegative simple
measurable functions {hn} such that hn ↑ u. On the other hand, for any fixed x ∈ S and
a sequence {an

x } in A(x), it follows from Assumption B(i) that there exists a convergent
subsequence {ak

x} of {an
x } such that ak

x → ax ∈ A(x) as k → ∞. Hence, by Proposition C.4(b)
of [13], for any n ≥ 1,

lim inf
k→∞

∫
S−{x}

u(y)q(dy | x, ak
x) ≥ lim inf

k→∞

∫
S−{x}

hn(y)q(dy | x, ak
x)

≥
∫

S−{x}
hn(y)q(dy | x, ax).

Letting n → ∞ on both sides above, it follows from the monotone convergence theorem that

lim inf
k→∞

∫
S−{x}

u(y)q(dy | x, ak
x) ≥

∫
S−{x}

u(y)q(dy | x, ax),

which implies that the function
∫
S−{x} u(y)q(dy | x, ·) is l.s.c. on A(x). This completes the

proof.

Define operators Tφ (for each fixed φ ∈ �s) and T on M+(S) as

Tφu(x) := c(x, φ)

α + q(x, φ)
+ 1

α + q(x, φ)

∫
S−{x}

u(y)q(dy | x, φ) for all x ∈ S,

T u(x) := inf
a∈A(x)

{
c(x, a)

α + q(x, a)
+ 1

α + q(x, a)

∫
S−{x}

u(y)q(dy | x, a)

}
for all x ∈ S.

(5.10)

Note that these operators are monotone, that is, u ≥ u′ implies that Tφu ≥ Tφu′, and similarly
for T .
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Lemma 5.3. Under Assumption A, the following assertions hold.

(a) For each φ ∈ �s , define a sequence {uφ
n } as

u
φ
0 := 0, u

φ
n+1 := Tφuφ

n for all n ≥ 0. (5.11)

Then {uφ
n } is increasing in n ≥ 0, and limn→∞ u

φ
n = Vα(φ).

(b) If, in addition, Assumption B holds, then the sequence {un} in (3.4) is increasing in n ≥ 0,
and limn→∞ un ≤ Vα(φ) for all φ ∈ �s .

Proof. (a) In view of the hypotheses on the model (2.1), uφ
n is well defined and u

φ
n ∈ M+(S)

for all n ≥ 0. Then (a) follows from the monotonicity of Tφ and the proof of Lemma 5.1(a).
(b) From (a), it suffices to prove that

un ≤ uφ
n and un ∈ M+(S) for all n ≥ 0 and φ ∈ �s. (5.12)

By (3.4) and (5.10), we know that

u0 = 0, un+1 = T un for all n ≥ 0. (5.13)

Obviously, (5.12) is true for n = 0. Suppose that un ≤ u
φ
n and un ∈ M+(S) for some n ≥ 0.

Since c(x, a) ≥ 0 and T is monotone, un+1 ≥ un for all n ≥ 0. Under Assumptions A and B,
from Lemma 5.2, we have

∫
S−{x} un(y)q(dy | x, ·) is l.s.c. on A(x) for each x ∈ S. Thus, by

Proposition A.3(a) of [13] and Lemma 8.3.8(a) of [14], un+1 ∈ M+(S). Moreover, (5.11) and
(5.13) give

un+1 = T un ≤ T uφ
n ≤ Tφuφ

n = u
φ
n+1,

where the first inequality follows from the inductive hypothesis and the second inequality is
shown below. In fact, by (5.10) we have

T uφ
n(x) ≤ c(x, a)

α + q(x, a)

+ 1

α + q(x, a)

∫
S−{x}

uφ
n(y)q(dy | x, a) for all x ∈ S and a ∈ A(x).

Multiplying both sides by α + q(x, a) and taking the expectation with respect to φ(· | x), we
obtain

(α + q(x, φ))T uφ
n(x) ≤ c(x, φ) +

∫
S−{x}

uφ
n(y)qφ(dy | x, φ),

which divided by α + q(x, φ) yields T u
φ
n ≤ Tφu

φ
n . Hence, (5.12) is valid for all n ≥ 0. By (a)

and letting n → ∞ in (5.12), we obtain limn→∞ un ≤ Vα(φ). This completes the proof.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. (a) Let {un} be as in (3.4), and let V ∗
α be as in Theorem 3.1(c). Since

0 = u0 ≤ u1 ≤ · · · ≤ un, the limit u∗ := limn→∞ un exists, and 0 ≤ u∗ ≤ Vα(φ) for all
φ ∈ �s (by Lemma 5.3(b)), which imply that

V ∗
α = inf

φ∈�s

Vα(φ) ≥ u∗ ≥ un ≥ 0 for all n ≥ 0. (5.14)

Then, to complete the proof of part (a), it suffices to show the converse, that is, u∗ ≥ V ∗
α .
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To this end, by the monotonicity of T and un, we have T u∗ ≥ T un = un+1. Letting n → ∞
on both sides, we obtain

T u∗ ≥ u∗. (5.15)

On the other hand, from the proof of Lemma 5.3(b), we know that un ∈ M+(S) for any n ≥ 0.
Hence, for any fixed x ∈ S and any n ≥ 1, by Lemma 5.2, Proposition A.3(a) of [13], and
Lemma 8.3.8(a) of [14], there exists an

x ∈ A(x) (depending on x and n) such that

u∗(x) ≥ un+1(x)

= inf
a∈A(x)

{
c(x, a)

α + q(x, a)
+ 1

α + q(x, a)

∫
S−{x}

un(y)q(dy | x, a)

}

= c(x, an
x )

α + q(x, an
x )

+ 1

α + q(x, an
x )

∫
S−{x}

un(y)q(dy | x, an
x ). (5.16)

Since an
x ∈ A(x) for all n ≥ 1, by Assumption B(ii), there exists a subsequence of {an

x }, denoted
by {ank

x }, such that a
nk
x → ax ∈ A(x) as k → ∞. Then, for any fixed k0 > 0, letting n = nk

in (5.16) and k → ∞, it follows from the monotonicity of un that

u∗(x) ≥ lim inf
k→∞

{
c(x, a

nk
x )

α + q(x, a
nk
x )

+ 1

α + q(x, a
nk
x )

∫
S−{x}

unk
(y)q(dy | x, ank

x )

}

≥ c(x, ax)

α + q(x, ax)

+ 1

α + q(x, ax)
lim inf
k→∞

∫
S−{x}

unk0
(y)q(dy | x, ank

x ) (for all k ≥ k0)

≥ c(x, ax)

α + q(x, ax)
+ 1

α + q(x, ax)

∫
S−{x}

unk0
(y)q(dy | x, ax) (by Lemma 5.2).

Letting k0 → ∞, by the monotone convergence theorem we obtain

u∗(x) ≥ c(x, ax)

α + q(x, ax)
+ 1

α + q(x, ax)

∫
S−{x}

u∗(y)q(dy | x, ax)

≥ inf
a∈A(x)

{
c(x, a)

α + q(x, a)
+ 1

α + q(x, a)

∫
S−{x}

u∗(y)q(dy | x, a)

}
,

which means that u∗ ≥ T u∗. This together with (5.15) gives u∗ = T u∗.
Moreover, since u∗ ∈ M+(S), from Lemma 5.2 and Lemma 8.3.8(a) of [14], it follows that

there exists a policy f ∗ ∈ F for which

u∗(x) = c(x, f ∗(x))

α + q(x, f ∗(x))

+ 1

α + q(x, f ∗(x))

∫
S−{x}

u∗(y)q(dy | x, f ∗(x)) for all x ∈ S.

Thus, by Lemma 5.1(a), we obtain u∗ ≥ Vα(f ∗) ≥ infφ∈�s Vα(φ) = V ∗
α , which together with

(5.14) gives
u∗ = Vα(f ∗) = V ∗

α . (5.17)

This completes the proof of part (a).
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(b) Since u∗ = T u∗ (just proved), (b) follows from (5.17) and (5.10).
(c) Suppose that f ∈ F attains the minimum on the right-hand side of (3.5). By (a) and

Lemma 5.1, we have V ∗
α ≥ Vα(f ), which together with Definition 2.2 yields the fact that f is

discounted cost optimal.
(d) The existence of a discounted cost optimal policy is ensured by (5.17).

5.3. Proof of Theorem 3.3

In the following, we prove Theorem 3.3 by using some properties of continuous-time Markov
chains in [2, Chapter 2].

Proof of Theorem 3.3. (a) Denote by

S0 := 0 and Sn+1 := inf{t > Sn : x(t) �= x(Sn)} for n = 0, 1, 2, . . . ,

the nth jumping time. Fix δ ≥ 0 and f ∈ F . For any x /∈ B, by a direct calculation we have

UB
δ (x, f ) = Ef

x

[∫ τ
f
B

0
e−δt g(x(t), f ) dt

]

= Ef
x

[∫ ∞

0
1{τf

B >t} e−δt g(x(t), f ) dt

]

=
∫ ∞

0
e−δt

∫
S

g(y, f ) Pf
x (x(u) /∈ B for all u ∈ [0, t], x(t) ∈ dy) dt

=
∫ ∞

0
e−δt

∫
S

g(y, f )

×
∞∑

m=0

Pf
x (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt

= lim
n→∞

n∑
m=0

∫ ∞

0
e−δt

×
∫

S

g(y, f ) Pf
x (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt,

where 1D denotes the indicator function of D. Define, for any n ≥ 0,

Un
δ (x, f ) :=

n∑
m=0

∫ ∞

0
e−δt

∫
S

g(y, f )

× Pf
x (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt.

(5.18)

Then
UB

δ (x, f ) = lim
n→∞ Un

δ (x, f ) for all x /∈ B. (5.19)

Now define operator T
f
B as follows. For each nonnegative measurable function u defined

on S − B,

T
f
B u(x) := g(x, f )

δ + q(x, f )

+ 1

δ + q(x, f )

∫
S−B−{x}

u(y)q(dy | x, f ) for all x /∈ B, (5.20)
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where g(x, f ) :=g(x,f (x)), q(x,f ) :=−q({x} | x, f (x)), and q(· | x, f ) := q(· | x, f (x)).
Then we have

Un+1
δ (x, f ) = T

f
B Un

δ (x, f ) for each n ≥ −1, (5.21)

where U−1
δ (x, f ) := 0 for any x /∈ B.

Indeed, by (5.18) and a straightforward calculation, we obtain

Un+1
δ (x, f )

=
n+1∑
m=0

∫ ∞

0
e−δt

∫
S

g(y, f )

× Pf
x (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt

=
∫ ∞

0
e−δt

∫
S

g(y, f ) Pf
x (S0 ≤ t < S1, x(S0) /∈ B, x(S0) ∈ dy) dt

+
n+1∑
m=1

∫ ∞

0
e−δt

∫
S

g(y, f )

× Pf
x (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt

= g(x, f )

∫ ∞

0
e−δt Pf

x (t < S1) dt

+
n+1∑
m=1

∫ ∞

0
e−δt

∫
S

g(y, f )

× Ef
x

[
Pf

x

(
Sm ≤ t < Sm+1,

m⋂
l=0

{x(Sl) /∈ B}, x(Sm) ∈ dy

∣∣∣∣ S0, x(S0), S1, x(S1)

)]
dt

= g(x, f )

∫ ∞

0
e−δte−q(x,f )t dt

+
n+1∑
m=1

∫ ∞

0
e−δt

∫
S

g(y, f )

× Ef
x

[
1{x(S0)/∈B,x(S1)/∈B}

× Pf
x

(
Sm ≤ t < Sm+1,

m⋂
l=2

{x(Sl) /∈ B}, x(Sm) ∈ dy

∣∣∣∣ S0, x(S0), S1, x(S1)

)]
dt

= g(x, f )

δ + q(x, f )

+
n+1∑
m=1

∫ ∞

0
e−δt

∫
S

g(y, f )

×
∫

S−B−{x}

∫ t

0
dPf

x (S1 ≤ v, x(S1) ∈ dz)

× Pf
x

(
Sm ≤ t < Sm+1,

m⋂
l=2

{x(Sl) /∈ B}, x(Sm) ∈ dy

∣∣∣∣ 0, x, S1 = v, x(S1) = z

)
dt
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= g(x, f )

δ + q(x, f )

+
n+1∑
m=1

∫ ∞

0
e−δt

∫
S

g(y, f )

×
∫

S−B−{x}

∫ t

0
q(dz | x, f )e−q(x,f )v dv

× Pf
x

(
Sm ≤ t < Sm+1,

m⋂
l=2

{x(Sl) /∈ B}, x(Sm) ∈ dy

∣∣∣∣ 0, x, S1 = v, x(S1) = z

)

= g(x, f )

δ + q(x, f )

+
∫

S−B−{x}
q(dz | x, f )

∫ ∞

0
e−q(x,f )ve−δv

×
[ n∑

m=0

∫ ∞

v

e−δ(t−v)

∫
S

g(y, f )

× Pf
z (Sm ≤ t < Sm+1, x(Sl) /∈ B, l = 0, 1, . . . , m, x(Sm) ∈ dy) dt

]
dv

= g(x, f )

δ + q(x, f )
+

∫
S−B−{x}

q(dz | x, f )

∫ ∞

0
e−q(x,f )ve−δvUn

δ (z, f ) dv

= g(x, f )

δ + q(x, f )
+ 1

δ + q(x, f )

∫
S−B−{x}

Un
δ (z, f )q(dz | x, f ).

Hence, letting n → ∞ in (5.21) and recalling (5.19)–(5.20), we obtain

UB
δ (x, f ) = g(x, f )

δ + q(x, f )
+ 1

δ + q(x, f )

∫
S−B−{x}

UB
δ (y, f )q(dy | x, f ) for all x /∈ B,

which implies (3.7).

On the other hand, suppose that u is a nonnegative solution of (3.7). Note that (3.7) can be
rewritten as

u(x) ≥ g(x, f )

δ + q(x, f )
+ 1

δ + q(x, f )

∫
S−B−{x}

u(y)q(dy | x, f ) = T
f
B u(x) for all x /∈ B;

(5.22)
hence, u(x) ≥ U−1

δ (x, f ) and also u(x) ≥ U0
δ (x, f ). Suppose that u(x) ≥ Un

δ (x, f ) for some
n ≥ −1. It follows from (5.20)–(5.22) that u(x) ≥ Un+1

δ (x, f ) for all x /∈ B and n ≥ −1.
Thus, the proof of (a) is complete by (5.19).

(b) UnderAssumptionsA and B, by Theorem 3.2, for any α > 0, there exists an α-discounted
cost optimal stationary policy fα ∈ F such that Vα(x, fα) = V ∗

α (x) for all x ∈ S. Choose

https://doi.org/10.1239/aap/1293113146 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113146


980 X. GUO AND L. YE

x0 ∈ S satisfying Assumption C(i). By (2.9) and the strong Markov property, we derive

hα(x) := Vα(x, fα) − Vα(x0, fα)

= Efα
x

[∫ ∞

0
e−αt c(x(t), fα) dt

]
− Vα(x0, fα)

= Efα
x

[∫ τ
fα
x0

0
e−αt c(x(t), fα) dt

]
+ Efα

x

[∫ ∞

τ
fα
x0

e−αt c(x(t), fα) dt

]
− Vα(x0, fα)

= Efα
x

[∫ τ
fα
x0

0
e−αt c(x(t), fα) dt

]
+ Efα

x [exp(−ατ
fα
x0 )Vα(x0, fα)] − Vα(x0, fα)

= Efα
x

[∫ τ
fα
x0

0
e−αt c(x(t), fα) dt

]
+ Efα

x [exp(−ατ
fα
x0 ) − 1]Vα(x0, fα).

Since c(x, a) ≥ 0 and exp(−ατ
fα
x0 ) ≤ 1, we have

Efα
x [exp(−ατ

fα
x0 ) − 1]Vα(x0, fα) ≤ hα(x) ≤ Efα

x

[∫ τ
fα
x0

0
e−αt c(x(t), fα) dt

]
. (5.23)

Hence, the desired result follows from (b) with δ := α, B =: {x0}, f := fα , and g := c in
(3.6)–(3.7).

(c) Let f ∈ F be any stationary policy. Then, under the current condition in (c), we have
q(B | x, f ) ≥ β for all x /∈ B and f ∈ F . Let u(x) = 1/β for all x /∈ B in (3.7). Then

1 +
∫

S−B

u(y)q( dy | x, f ) = 1 − q(B | x, f )

β
≤ 0 ≤ δu(x) for all x /∈ B and δ > 0,

since q(S | x, f ) = 0 for all x ∈ S and f ∈ F . Hence, it follows from (a) that

Ef
x

[∫ τ
f
B

0
e−δt dt

]
≤ 1

β
for all x /∈ B and f ∈ F .

Therefore, (c) follows by letting δ → 0 in the above inequality.
(d) Since e−x − 1 ≥ −x, it follows from (5.23) and part (b) that

−αVα(x0, fα) Efα
x [τfα

x0 ] ≤ hα(x) ≤ Efα
x

[∫ τ
fα
x0

0
e−αt c(x(t), fα) dt

]
≤ u(x), (5.24)

with u as in (b). On the other hand, by Assumption C(i), there exists a constant M̃ > 0 such that
0 ≤ αVα(x0, fα) ≤ M̃ < ∞. This fact together with (5.24), and taking B = {x0} and f = fα

in (c), implies that

−M̃

β
≤ hα(x) ≤ u(x),

which yields Assumption C.
(e) Obviously, (e) follows from (5.24) and the proof of part (d).
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5.4. Proof of Theorem 3.4

In the proof of Theorem 3.4, we develop a so-called average cost minimum nonnegative
solution approach.

Proof of Theorem 3.4. (a) To prove assertion (a), we first show that the function Jf (x, t)

satisfies (3.9) with equality, that is, for each x ∈ S and t ≥ 0,

Jf (x, t) = c(x, f )te−q(x,f )t

+
∫ t

0
e−q(x,f )s

[
q(x, f )c(x, f )s +

∫
S−{x}

Jf (y, t − s)q(dy | x, f )

]
ds. (5.25)

Then, we further prove that u(x, t) ≥ Jf (x, t) for any nonnegative measurable function u(x, t)

satisfying (3.9).
In order to prove (5.25), we apply the construction of pf (x, t, D) (for any fixed f ∈ F ):

for each x ∈ S, D ∈ B(S), t ≥ 0, and n ≥ 1, let

p
f
0 (x, t, D) := 1D(x)e−q(x,f )t ,

p
f
n (x, t, D) :=

∫ t

0
e−q(x,f )s

∫
S−{x}

p
f
n−1(y, t − s, D)q(dy | x, f ) ds, (5.26)

S
f
n (x, t, D) :=

n∑
k=0

p
f
k (x, t, D), (5.27)

m
f
0 (x, t) :=

∫ t

0

∫
S

c(y, f )S
f
0 (x, s, dy) ds

= c(x, f )te−q(x,f )t +
∫ t

0
q(x, f )e−q(x,f )sc(x, f )s ds, (5.28)

m
f
n (x, t) :=

∫ t

0

∫
S

c(y, f )S
f
n (x, s, dy) ds. (5.29)

Then it follows from (5.27) and Theorem 2.21 of [2] (or Theorem 2 of [5]) that

S
f
n (x, t, D) ↑ pf (x, t, D) as n → ∞.

Hence, from (3.8) and (5.29), we have

m
f
n (x, t) ↑ Jf (x, t) for all x ∈ S and t ≥ 0. (5.30)

On the other hand, by (5.26) and (5.29), for each n ≥ 1, we derive

m
f
n (x, t)

=
∫ t

0

∫
S

c(y, f )S
f
n (x, s, dy) ds

= m
f
0 (x, t) +

∫ t

0

∫
S

c(y, f )

n∑
k=1

p
f
k (x, s, dy) ds

= m
f
0 (x, t)

+
∫ t

0

∫
S

c(y, f )

n∑
k=1

(∫ s

0
e−q(x,f )r

∫
S−{x}

p
f
k−1(z, s − r, dy)q(dz | x, f ) dr

)
ds

https://doi.org/10.1239/aap/1293113146 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113146


982 X. GUO AND L. YE

= m
f
0 (x, t)

+
∫ t

0
e−q(x,f )r

∫
S−{x}

(∫ t

r

∫
S

c(y, f )

n∑
k=1

p
f
k−1(z, s − r, dy) ds

)
q(dz | x, f ) dr

= m
f
0 (x, t)

+
∫ t

0
e−q(x,f )r

∫
S−{x}

(∫ t−r

0

∫
S

c(y, f )

n−1∑
k=0

p
f
k (z, s, dy) ds

)
q(dz | x, f ) dr

= m
f
0 (x, t) +

∫ t

0
e−q(x,f )r

∫
S−{x}

m
f
n−1(z, t − r)q(dz | x, f ) dr,

which together with (5.28) gives

m
f
n (x, t) = c(x, f )te−q(x,f )t

+
∫ t

0
e−q(x,f )s

(
q(x, f )c(x, f )s +

∫
S−{x}

m
f
n−1(y, t − s)q(dy | x, f )

)
ds.

(5.31)

Thus, (5.25) immediately follows from (5.31) and (5.30).
Now suppose that a nonnegative function u(x, t) on S ×[0, ∞) satisfies (3.9). Since c(x, f )

and q(D | x, f ) are nonnegative for all x /∈ D, it follows from (3.9) and (5.28) that u(x, t) ≥
m

f
0 (x, t). Then, by induction and (5.31), we know that u(x, t) ≥ m

f
n (x, t) for all n ≥ 1. This

fact together with (5.30) completes the proof of part (a).
(b) Since the transition rates in model (2.1) are conservative, (3.10) still holds when the

function u is replaced by u + L with any constant L. Therefore, without loss of generality, we
may further assume that u ≥ 0.

Let û(x, t) = u(x) + ρt ≥ 0 for all x ∈ S and t ≥ 0, with u ≥ 0 and ρ as in (3.10). Then,
by (3.10) and q(S − {x} | x, f ) = q(x, f ), we have

c(x, f )te−q(x,f )t +
∫ t

0
e−q(x,f )s

(
q(x, f )c(x, f )s +

∫
S−{x}

û(y, t − s)q(dy | x, f )

)
ds

= c(x, f )te−q(x,f )t

+
∫ t

0
e−q(x,f )s

(
q(x, f )c(x, f )s +

∫
S−{x}

[u(y) + ρ(t − s)]q(dy | x, f )

)
ds

≤ c(x, f )te−q(x,f )t

+
∫ t

0
e−q(x,f )s(q(x, f )c(x, f )s + q(x, f )u(x) + ρ − c(x, f )

+ ρq(x, f )(t − s)) ds

= u(x) + ρt − u(x)e−q(x,f )t (by a straightforward calculation),

and so,

û(x, t) ≥ c(x, f )te−q(x,f )t

+
∫ t

0
e−q(x,f )s

(
q(x, f )c(x, f )s +

∫
S−{x}

û(y, t − s)q(dy | x, f )

)
ds.
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Hence, û(x, t) is a nonnegative solution to (3.9). By (a) we obtain

u(x) + ρt = û(x, t) ≥ Jf (x, t) for all x ∈ S and t ≥ 0.

Multiplying both sides by 1/t and letting t → ∞, from (3.8) and (2.10), we obtain the desired
result.

5.5. Proof of Theorem 3.5

We now prove Theorem 3.5 by using the average cost minimum nonnegative solution
approach and the optimality inequality method.

Proof of Theorem 3.5. By Assumption C, there exists a subsequence {αm} of {αn} with
αm ↓ 0, a constant ρ∗, and a real-valued measurable function h∗ on S such that

ρ∗ = lim
m→∞ αmV ∗

αm
(x0) ≥ 0 and h∗(x) := lim inf

m→∞ hαm(x) ≥ L∗. (5.32)

Then, for each m ≥ 1, Theorem 3.2(b) ensures the existence of a policy fm ∈ F (depending
on αm) such that

V ∗
αm

(x) = c(x, fm)

αm + q(x, fm)
+ 1

αm + q(x, fm)

∫
S−{x}

V ∗
αm

(y)q(dy | x, fm),

which together with |V ∗
αm

(x)q(x, fm)| < ∞ (by Assumption C(ii)) implies that

αmV ∗
αm

(x) = c(x, fm) +
∫

S

V ∗
αm

(y)q(dy | x, fm) for all x ∈ S and t ≥ 0. (5.33)

Moreover, by Assumption C and q(S | x, fm) ≡ 0, it follows from (5.33) that

αmV ∗
αm

(x0) + αmhαm(x) = c(x, fm) +
∫

S

[hαm(y) − L∗]q(dy | x, fm),

and so

αmV ∗
αm

(x0) + αmhαm(x) = c(x, fm) +
∫

S−{x}
[hαm(y) − L∗]q(dy | x, fm)

+ [hαm(x) − L∗]q({x} | x, fm(x)). (5.34)

On the other hand, for any fixed x ∈ S, Assumption B gives the existence of a subsequence
{fk(x)} of {fm(x)} and a∗

x ∈ A(x) such that

lim
k→∞ fk(x) = a∗

x and lim inf
k→∞ c(x, fk(x)) ≥ c(x, a∗

x).

These facts together with Lemma 8.3.7 of [14] (generalized Fatou’s lemma) and (5.32)–(5.34)
yield

ρ∗ ≥ c(x, a∗
x) +

∫
S−{x}

[h∗(y) − L∗]q(dy | x, a∗
x) + [h∗(x) − L∗]q({x} | x, a∗

x)

= c(x, a∗
x) +

∫
S

h∗(y)q(dy | x, a∗
x)

≥ inf
a∈A(x)

{c(x, a) +
∫

S

h∗(y)q(dy | x, a)} for all x ∈ S,

and so (a) follows.
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(b) Suppose that f ∈ F realizes the minimum in (3.11), so that

ρ∗ ≥ c(x, f (x)) +
∫

S

u∗(y)q(dy | x, f (x)) for all x ∈ S.

Thus, it follows from Theorem 3.4(b) that

ρ∗ ≥ J (0, x, f ) for all x ∈ S. (5.35)

On the other hand, in view of (5.32) and Assumption C(ii), we have

ρ∗ = lim
m→∞ αmV ∗

αm
(x0) = lim

m→∞ αmV ∗
αm

(x) for all x ∈ S.

This implies, by the well-known Tauberian theorem, that, for each π ∈ � and x ∈ S,

ρ∗ = lim
m→∞ αmV ∗

αm
(x)

≤ lim sup
m→∞

αmVαm(0, x, π)

= lim sup
αm↓0

αm

∫ ∞

0
e−αmt Eπ

x c(x(t), a(t)) dt

≤ lim sup
T →∞

1

T

∫ T

0
Eπ

x c(x(t), a(t)) dt

= J (0, x, π).

This inequality together with (5.35) gives J (0, x, f ) ≤ ρ∗ ≤ J (0, x, π) for all π ∈ � and
x ∈ S, which yields (b).
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