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THE ASYMPTOTIC RESPONSE OF A CALORIMETER

A. McNABB

(Received 8 April 1980)

Abstract

An algorithm is given for calculating the asymptotic behaviour of the temperature of the
fluid in an adiabatic calorimeter, and used to derive the asymptote for a finite cylinder.

1. Introduction

This note is concerned with the temperature changes which occur in the fluid of
a calorimeter when a body at a different temperature is immersed in it. Even for
bodies of a simple shape, and assuming these to be homogeneous isotropic
conductors, with the fluid in the calorimeter well stirred and no heat loss from
the system, it is not always easy to calculate the theoretical behaviour. However,
we show that the asymptotic behaviour of the fluid temperature is more easily
obtained, and present formulae describing this for the case of a finite cylinder
by way of illustration.

Imagine a homogeneous isotropic conductor, at a uniform temperature To,
quickly immersed in the well-stirred fluid of a thermally insulated calorimeter
which was initially at a uniform temperature Tx. The temperature response of
the conductor is assumed to be governed by the diffusion equation

KV2T=pC^- i n § , (1)
at

where § is the region occupied by the conducting body, and by the boundary
and initial conditions

T = To in § at / = 0 and T = 5 (0 on 3§,

where 5 ( 0 is the calorimeter temperature at time t and 8§ is the bounding
surface of §.

©Copyright Australian Mathematical Society 1981

348

https://doi.org/10.1017/S033427000000268X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000268X


|2] The asymptotic response of a calorimeter 349

The system is imagined to be completely insulated thermally so that, at all
cimes t > 0, the total energy content of the calorimeter, fluid and conductor is
constant. Let Vf, pf, Cy, Vc, pc, Cc; V, p, C denote the volumes, densities and
specific heats of the fluid, calorimeter and conducting body respectively. Then
this fixed total energy requirement ensures that

{Vj9jCf + VcPcCc)5(t) + pCfjfTdT = (V/P/Cf + KcPcCc)r, + VpCT0

= {VfPfCf + VcPcCc + VpC)Tx, (2)

where Tx is the final equilibrium temperature of the system. Equations (2) can
be used to calculate Tx.

Suppose for the sake of being definite that 71, > To, and we plot ?F(/) against
/. Then 5" starts at T, and decreases towards Tx, ultimately in a simple
exponential fashion. The integral <f>(f) defined by

* ^ * (3)

tends to a limit <j>x as t tends to infinity, and we show below how <f>TO may be
calculated.

2. Calculation of </>«,

Define the function

0(x) = r T \ 1 _ T ~ dt forx G 9, (4)
•'0 * 0 ^oo

and note that equation (1) implies

so that

V20 = - ^ f o r x e S . (6)

From equation (2), we also have

{Vjpfa + VcPcCc)C!i(t) - TJ + pCjjf(T - TJ dr = 0,
9

and so

•'0 -* I ~ l oo
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Now, on the boundary 9g of g , we have T = 5" for all f > 0, so that

f°V(x, /) - r j * = f °°(9" - r j rfr for x G as,
•'o yo

or

g(x) = - ^ ' ~ ^ ^ f o r x G 3 g . (8)

Suppose M satisfies the Poisson equation,
V2M = - 1 in@, with M = 0 on3g. (9)

Then

for x e g , (10)

and from equation (7) we see <j>x satisfies the equation

pC r r r , *\ — T^
~ T T III u ar —— V(fr^ =

so that

* 1 *0 A K g

Evidently, for a conductor of given shape defining a region g, we need to
calculate the mean value,

dT> (12)

where u satisfies the system (9).

3. A general formula for /

Let (7(x|xo) be the Green's function satisfying

V2C = -5(x - Xo) for x, Xo G g,

where S is the Dirac Delta function.
Then G can be written in the form

for J U X E g,2 2 K
where <j>n are a complete set of eigenfunctions with eigenvalues k\ of the
equations

V ^ + ^ - 0 i n g , <J,n = 0 onag , (13)
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rormalized so that

(see Morse and Feshbach [1], Section 7.2). Then

and

dr0

= ! / / / «(x) * - 1 / / / / / / C(iW </r0 *
9 §o

s
vi

///W
<r K

(14)

4. An example

Consider the case where Q is a cylinder of radius a and height 1h. For this
example we find, using cylindrical polar coordinates (r, z), that

K = 2ma2h,

r 2 d2

k2 - — + — = k
a 2 /i2

where C,, a^ are the positive zeros of J0(z) and cos(z), respectively (that is,
dm = (2m - l)w/2, m > 0). Thus

(2m - 1)C,VF '

and so

7 =
1

(16)
l,m>0 amL-,Klm

We may use the method of contour integration to evaluate partial sums over
either I or m (see Phillips [2], Section 50, for a description of this method). Thus
we find, on summing over /, that

1

6 £*. tfz Uz ) V
(17)
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where bm = (m — \)ir and zm = abm/h, and, on summing over m, that

where z, = C,h/a. Formula (17) is particularly appropriate when a ~3> h and (18)
is more useful in the reverse situation when / i » a.

5. Practical applications to calorimetry

Our function ^ can be written in the form

°° 5" — T /•«> '
2£—A, (19)

and so the expression <>„ can be regarded as a measure of the time the action
occurs. Equations (11), (12) and (19) give the formula

•'0 •* 1 ioo M i 0 7 v

where / is the geometric factor defined by equation (12). If the integral on the
left is computed from the experimental results for 5", then equation (20) may be
used to compute K/pC, the thermal diffusivity of the material of the immersed
conductor. Since equation (2) gives the specific heat pC, the thermal conductiv-
ity may be determined.
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