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Pricing Intertemporal Risk When Investment
Opportunities Are Unobservable

Scott Cederburg*

Abstract
The intertemporal capital asset pricing model (ICAPM) predicts that an unobservable fac-
tor capturing changes in expected market returns should be priced in the cross section.
My Bayesian framework accounts for uncertainty in the intertemporal risk factor and
gauges the effects of prior information about investment opportunities on model inferences.
Whereas an uninformative prior specification produces weak evidence that intertemporal
risk is priced, incorporating prior information about market-return predictability generates
a large space of ex ante reasonable priors in which the estimated intertemporal risk factor
is positively priced. Overall, the cross-sectional tests reject the capital asset pricing model
(CAPM) and indicate support for the ICAPM.

I. Introduction
The intertemporal capital asset pricing model (ICAPM) of Merton (1973)

and Campbell (1993) predicts that factors that capture unexpected shifts in the
investment opportunity set should be priced in the cross section. The capital asset
pricing model (CAPM) is likely to be inadequate for explaining the cross sec-
tion of expected returns under this framework, and the ICAPM frequently serves
as theoretical motivation for additional factors in empirical multifactor models.
Importantly, Campbell’s (1993) ICAPM identifies a specific additional factor that
is generated by time variation in expected market returns. As such, the ICAPM is
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an important theory for understanding asset prices because it ties together time-
series and cross-sectional aspects of returns (Fama (1991)).

A primary difficulty in testing the ICAPM of Campbell (1993) is that its im-
plied intertemporal risk factor, which captures unanticipated changes in expected
future market returns, is unobservable. Furthermore, the return-predictability lit-
erature demonstrates that market-return forecasts are marked by considerable un-
certainty (e.g., Kandel and Stambaugh (1996), Barberis (2000)). Empirical imple-
mentations of Campbell’s (1993) ICAPM estimate the intertemporal risk factor
using market-return forecasts, so uncertainty in the latent factor is an important
consideration in tests of the model.

In this article, I adopt a Bayesian approach that is well suited to test the
cross-sectional implications of the ICAPM given the unobservability of the in-
tertemporal risk factor. I specifically examine whether exposure to intertemporal
risk is priced in the cross section of stocks using tests that consider the full pos-
terior distribution of the factor time series, such that the resulting prices of risk
reflect uncertainty in the estimated factor. In addition, I explore the effects of
prior information about market-return dynamics on estimates of the intertempo-
ral risk factor and the subsequent ICAPM tests. Informative priors are potentially
important in this setting given that the data are relatively uninformative about the
return-predictability relation.

Prior information about investment opportunities is available from several
potential sources. As an important example, it may be expected ex ante that re-
alizations of the intertemporal risk factor of Campbell (1993) will be negatively
correlated with market returns. In particular, the intertemporal risk factor corre-
sponds to the discount-rate component in the Campbell (1991) decomposition of
returns into the components of discount-rate and cash-flow news. Positive shocks
to discount rates have a negative influence on current market returns, and the im-
plied negative relation between the intertemporal risk factor and the market factor
is important for ICAPM inferences. In the extreme, if the intertemporal risk fac-
tor is perfectly negatively correlated with the market factor, then the CAPM beta
of each firm is an adequate summary of risk exposure (Campbell (1993)). Al-
ternatively, if market returns also reflect news about cash-flow expectations, then
the two ICAPM factors may each produce a substantial incremental impact on
expected returns.

I use the predictive-system approach of Pástor and Stambaugh (2009) to
model the market risk premium and the risk-free rate, and the estimation pro-
cedure generates the posterior distribution of the time series for the intertemporal
risk factor. The predictive-system approach has two advantages that are partic-
ularly useful in this context. First, whereas a predictive regression assumes that
the market risk premium is an exact linear function of observed state variables,
a predictive system allows for imperfect prediction and better reflects uncertainty
in return forecasts. Second, the predictive-system approach allows me to directly
place priors on economically interesting aspects of the return-predictability rela-
tion. Specifically, in some tests I specify informative prior beliefs about the R2

from a predictive regression for market excess returns as well as the correlation
between shocks to current returns and the market risk premium.
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I begin by testing the ICAPM over the 1952–2014 period with an intertem-
poral risk factor that is estimated from the predictive system with uninformative
priors. In this specification, the intertemporal risk factor is only modestly corre-
lated with the market factor, with a posterior average correlation of −0.23, such
that the additional factor may contain important incremental information about
expected returns. Given the posterior of the intertemporal risk factor, I test the
ICAPM using the full cross section of individual stocks. The results show that
the market factor is positively priced in the cross section with a posterior mean of
0.63% per month (90% credible interval of 0.25%–1.01%), and the 90% credible
interval of the intercept includes 0.1 The intertemporal risk factor has a positive
price-of-risk posterior mean of 0.52% per month in the base specification, but
the price of risk has a large posterior standard deviation of 0.44%, and the 90%
credible interval is −0.11% to 1.30%. Much of the uncertainty in the price of in-
tertemporal risk is inherited from uncertainty about the latent factor; the posterior
standard deviation of intertemporal risk factor realizations for a given month is
3.48% on average. Overall, the results for the intercept and market factor are in
line with ICAPM predictions, but there is only weak evidence that intertemporal
risk is priced in the cross section given uninformative priors.

I next consider the effects of prior information about the dynamics of the
market risk premium, which can inform and potentially sharpen estimates of the
intertemporal risk factor. To systematically study the impact of informative pri-
ors, I form a 2-dimensional space based on the predictive-system prior parame-
ters that are particularly important for ICAPM inferences. The first dimension is
a prior parameter for the R2 in a predictive regression of monthly excess market
returns on the market risk premium, and I consider a range of 0%–3% for this
prior. The second dimension is the correlation between shocks to current returns
and the market risk premium, ρmm , and the priors have means ranging from −0.9
to 0.0 to place greater focus on ρmm<0, as suggested by the Campbell (1991) de-
composition. These two prior parameters are particularly interesting because they
inform parameters that are i) relatively difficult to learn about from the data and
ii) important for determining the relation between the two factors in the ICAPM.

To better understand the prior-parameter space and gauge which sets of priors
are ex ante most sensible, I use a prior predictive analysis with stock return vari-
ance ratios. The k-year variance ratio is defined following Poterba and Summers
(1988) as the variance of k-year cumulative returns divided by k times the variance
of 1-year returns. I show analytically that the k-year variance ratio is a function
of the R2 and ρmm parameters that define the grid space, with opposing effects
from mean reversion and uncertainty about future expected returns. Over a long
1802–1951 period that predates the ICAPM testing period, historical variance ra-
tios reach a low of 0.58 at an 8-year horizon, indicating substantial mean reversion
in returns. After generating the prior distributions of 2- to 8-year variance ratios
from the predictive system given each set of prior parameters, I demonstrate that
priors associated with higher return predictability and a relatively large negative

1I calculate the 90% credible interval for a given parameter as the range that contains 90% of the
posterior probability mass with equal 5% tails.
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correlation between shocks to current returns and the market risk premium are
most consistent with the estimated variance ratios from historical stock returns.

I test the ICAPM using the estimated intertemporal risk factor associated
with each set of prior parameters. The results for the price of market risk and in-
tercept are similar to the specification with uninformative priors, such that ICAPM
predictions are supported for these two parameters. More importantly, inferences
about the pricing of intertemporal risk vary across the priors. Whereas many of
the prior specifications produce little evidence that intertemporal risk is priced in
the cross section, there is a relatively large region of the prior-parameter space
in which exposure to intertemporal risk receives a large, positive reward. As a
specific example, the prior specification with R2

=2% and a prior mean of −0.45
for ρmm produces a posterior of the price of intertemporal risk that is centered
at 0.97% per month, and the 90% credible interval is located well above 0. Im-
portantly, the region of the prior-parameter space in which intertemporal risk is
positively priced has substantial overlap with the region that is deemed to be ex
ante reasonable based on the prior predictive analysis.

Across the specifications with reasonable priors and positive ICAPM results,
the estimated intertemporal risk factors share important characteristics. First, the
posteriors of the predictive-regression R2 indicate substantial market-return pre-
dictability, with posterior means in the range of 2.4%–2.8%. Second, shocks to
current returns and the market risk premium are moderately negatively correlated
with posterior means of ρmm of approximately −0.4. Third, the risk-free-rate and
market-risk-premium components of the intertemporal risk factor are negatively
correlated, such that increases in the real risk-free rate tend to occur contempora-
neously with decreases in the risk premium. The negative relation between these
shocks tends to smooth the intertemporal risk factor relative to alternative spec-
ifications. These aspects of return dynamics combine to produce intertemporal
risk factors that have a moderately negative correlation with the market factor of
approximately −0.3 to −0.4. In the cases with positive ICAPM results, the pre-
dictive system thus indicates that news about both cash flows and discount rates
plays an important role in stock returns.

As previously noted, the ICAPM is important for understanding asset prices
in this context because it ties together the time-series and cross-sectional aspects
of returns. The cross-sectional tests in my article provide evidence of an additional
priced risk factor in the cross section of stocks, which constitutes a rejection of
the CAPM. Under specific sets of ex ante reasonable priors about market-return
predictability, this additional factor is also consistent with time-series properties
of returns and corresponds to the intertemporal risk factor in Campbell’s (1993)
ICAPM. My findings thus provide empirical support for the theoretical prediction
of the ICAPM that intertemporal risk is priced in the cross section of stocks.

This article contributes to the literature that tests the cross-sectional im-
plications of the ICAPM. Several studies test the ICAPM using estimated in-
tertemporal risk factors that are disciplined to be consistent with time-series as-
pects of returns (e.g., Campbell (1996), Hodrick, Ng, and Sengmueller (1999),
Brennan, Wang, and Xia (2004), Campbell and Vuolteenaho (2004), Campbell,
Polk, and Vuolteenaho (2010), Campbell, Giglio, and Polk (2013), Maio (2013),
and Campbell, Giglio, Polk, and Turley (2018)). Whereas the bulk of previous
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research tests the ICAPM using portfolios, my article and that of Boons (2016)
test the ICAPM among individual stocks to avoid potential problems with port-
folio formation. I make contributions to the literature by explicitly accounting for
uncertainty in the latent intertemporal risk factor and investigating the role of prior
information about investment opportunities in inferences about intertemporal risk.

This article is also related to the literature that investigates uncertainty and
informative priors in asset pricing. Kandel and Stambaugh (1996), Avramov
(2002), (2004), Cremers (2002), Avramov and Chordia (2006), Pástor and
Stambaugh (2009), (2012), Wachter and Warusawitharana (2009), (2015),
Pettenuzzo, Timmermann, and Valkanov (2014), and Avramov, Cederburg, and
Lučivjanská (2018) consider informative prior beliefs about return predictability
and the effects of this prior information on related economic decisions. I introduce
informative priors about market-return predictability, similar to these studies, and
investigate the impact on empirical ICAPM tests. Shanken (1987), Harvey and
Zhou (1990), Pástor and Stambaugh (1999), (2000), Pástor (2000), and Guidolin
and Liu (2016) consider informative priors about the performance of asset pricing
models, whereas I specify uninformative priors for cross-sectional test parame-
ters. Finally, Geweke and Zhou (1996) consider uncertainty in latent factors in
tests of the arbitrage pricing theory.

The rest of the article is organized as follows: Section II describes the
model and estimation procedure. Section III estimates the intertemporal risk fac-
tor and tests the ICAPM using uninformative priors. Section IV introduces prior
information about market-return dynamics and tests the ICAPM under various
informative-prior specifications. Section V concludes.

II. Methodology
In this section, I develop an approach for testing the cross-sectional implica-

tions of the ICAPM. Section II.A develops a method to estimate the intertemporal
risk factor implied by the model. Section II.B presents the cross-sectional test
framework. Section II.C outlines estimation, and Section II.D discusses the data.

A. Construction of the Intertemporal Risk Factor
I test the intertemporal asset pricing model of Campbell (1993), (1996),

which provides a discrete-time counterpart to Merton’s (1973) ICAPM.
Campbell (1993) considers an economy with time-varying expected market re-
turns and Epstein and Zin (1989), (1991) investors. Within this economy, he de-
velops an intertemporal asset pricing equation,

(1) Etr e
i ,t+1+

Vi i

2
= γ Vim + (γ − 1)Vih ,

where lowercase letters denote natural logs, r e
i ,t+1 is the excess return on stock i , Vi i

is the variance of stock i’s returns, the Vi i/2 term arises from Jensen’s inequality
with log returns,

(2) Vim = covt

(
r e

i ,t+1,r e
m,t+1

)
,
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where r e
m,t+1 is the excess market return, and Vih is a term related to intertemporal

risk defined as

(3) Vih = covt

(
r e

i ,t+1, (Et+1−Et )
∞∑
j=1

ρ jrm,t+1+ j

)
.

The Vim term measures exposure to market risk, as in the static CAPM. The Vih

term is stock i’s covariance with changes in expected discounted future market
returns, which captures the stock’s exposure to shifts in the investment opportunity
set.2,3

Equation (1) implies that changes in expected future market returns can enter
as an additional priced risk factor in the cross section. In particular, a represen-
tative investor with γ >1 requires a positive reward for exposure to the intertem-
poral risk factor, such that stocks that tend to earn poor returns contemporaneous
to worsening investment opportunities will have higher expected returns. Shocks
to expected market returns are unobservable, however, which is a primary diffi-
culty when testing the ICAPM. Researchers typically approach this problem in
one of two ways. In the first test design, several macroeconomic state variables
are directly included as additional factors, and the significant pricing of these fac-
tors is attributed to the intertemporal hedging motives of the ICAPM. However,
ICAPM theory implies that additional state variables should only be priced to the
extent that they forecast investment opportunities, and directly including macroe-
conomic variables exacerbates potential problems of “factor fishing” (Campbell
(1996)). The second approach puts economic constraints on ICAPM factors, al-
lowing a factor to be priced only to the extent that it contains information about
investment opportunities. I take this approach by directly estimating the intertem-
poral risk factor implied by the Vih term in equation (1),

(4) fh,t+1 = (Et+1−Et )
∞∑
j=1

ρ jrm,t+1+ j .

As Campbell (1996) notes, this approach is less likely to result in spurious factors
because any successful factor must tie together the cross-sectional and time-series
aspects of the data.

I adopt a Bayesian approach to test the ICAPM for two primary reasons.
First, my tests consider the full posterior distribution of the time series of fac-
tor realizations { fh,t}

T
t=1 to explicitly account for uncertainty in the intertemporal

risk factor, such that the posterior distribution of the price of intertemporal risk
reflects this uncertainty. Second, in some specifications, I introduce prior infor-
mation about investment opportunities using the predictive-system approach of
Pástor and Stambaugh (2009). The predictive system allows me to transparently

2Campbell et al. (2018) develop an ICAPM with stochastic volatility, which produces an additional
factor. I consider the Campbell (1993) version of the ICAPM with homoscedastic shocks for analytical
tractability.

3The ρ parameter in equation (3) is a log-linearization parameter defined by ρ=1−exp(E(ct−

wt )), where ct and wt are the logs of consumption and wealth, respectively. Following Campbell
(1996), I set ρ=0.9949.
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introduce prior beliefs about economically meaningful aspects of returns, such as
the R2 from a predictive regression of market excess returns on the market risk
premium.

I use a modified version of Pástor and Stambaugh’s (2009) predictive system
to estimate the intertemporal risk factor. I first separate the real risk-free rate and
the market risk premium for modeling purposes, so equation (4) becomes4

(5) fh,t+1 = (Et+1−Et )
∞∑
j=1

ρ jr f ,t+1+ j + (Et+1−Et )
∞∑
j=1

ρ jr e
m,t+1+ j .

The changes in expectations of future risk-free rates and market risk premiums
are then estimated from the predictive-system vector autoregression (VAR),

r e
m,t = r e

m,t−1+ ηm,t ,(6a)
rn,t = r f ,t +π t−1+ ηn,t ,(6b)
πt = π t−1+ ηπ ,t ,(6c)
xt = (I −φx )Ex +φx xt−1+ ηx ,t ,(6d)

r e
m,t = (1−φm)Em +φmr e

m,t−1+ ηm,t ,(6e)
r f ,t+1 = (1−φr )Er +φrr f ,t + ηr ,t ,(6f)
π t = (1−φπ )Eπ +φππ t−1+ ηπ ,t ,(6g)
ηt ∼ N(0,6).(6h)

Pástor and Stambaugh (2009) estimate a version of this VAR with equations (6a),
(6d), (6e), and (6h), and my approach expands the system by incorporating com-
ponents related to the risk-free rate and inflation. In particular, equations (6a)–(6c)
of the VAR describe the dynamics of observed market excess returns, the nom-
inal risk-free rate (rn,t ), and realized inflation (πt ). The conditional expectation
of market excess returns is the market risk premium, r e

m,t−1. The realized nomi-
nal risk-free rate earned in period t is the sum of the real risk-free rate, r f ,t , and
expected inflation, π t−1, plus a measurement error term, and realized inflation
is equal to expected inflation plus an error term.5 A vector of observable state
variables xt follows a VAR process given by equation (6d). Equations (6e)–(6g)
model latent first-order autoregression (AR(1)) processes for the market risk pre-
mium, real risk-free rate, and expected inflation. Finally, equation (6h) specifies
that the error terms from equations (6a)–(6g) are jointly normally distributed with
covariance matrix 6.

In contrast to a predictive regression, the predictive system allows for imper-
fect return prediction. Information from state variables in the predictive system
affects the latent-process estimates of the market risk premium, real risk-free rate,
and expected inflation through correlated errors from equation (6d) and equations

4As Cochrane ((2005), p. 9) notes, “Our economic understanding of interest rate variation turns
out to have little to do with our understanding of risk premia, so it is convenient to separate the two
by looking at interest rates and excess returns separately.” Equation (5) closely approximates equation
(4) because the monthly risk-free rate is always relatively close to 0.

5The notation for risk-free rates reflects the timing of the period when the rate is earned. Thus, the
real risk-free rate denoted by r f ,t is earned during period t but known at time t−1.
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(6e)–(6g). Furthermore, if the latent processes are not perfect linear functions of
the state variables, there may be a correlation between the errors in the obser-
vations of market excess returns, nominal interest rates, and realized inflation in
equations (6a)–(6c) and the errors in equations (6e)–(6g). For instance, as further
discussed in Section IV, shocks to current returns and the market risk premium are
ex ante likely to be negatively correlated. The predictive system given by equa-
tion (6) allows this information to be incorporated into the estimates of the latent
processes.6

Given the AR(1) structures of r e
m,t and r f ,t+1, the change in expectations of

future market returns will be a function of the current-period shocks to the mar-
ket risk premium and the real risk-free rate. The intertemporal risk factor from
equation (5) may be written as

(7) fh,t+1 =
ηm,t+1

φm(1−φmρ)
+

ηr ,t+1

φr (1−φrρ)
,

where ηm,t+1 and φm are defined in equation (6e), ηr ,t+1 and φr are defined in equa-
tion (6f), and ρ is the discounting term from equation (3).7 This factor is the
change in the infinite sum of expected discounted future market returns given the
predictive system in equation (6).

Before proceeding, I note that several alternative methods are available for
estimating the intertemporal risk factor. Modeling choices affect the latent-factor
estimates, which can, in turn, affect ICAPM inferences. I show in Section C.1
of Appendix C in the Supplementary Material that estimating the intertemporal
risk factor with a Bayesian predictive regression produces similar results for the
price of intertemporal risk under uninformative priors. I use the predictive system
because of its previously noted advantages, but my findings and conclusions about
the ICAPM are conditional on the empirical design.

B. A Cross-Sectional Test of the ICAPM
From equation (1), the ICAPM implies a 2-factor model with a market risk

factor and an intertemporal risk factor capturing unexpected changes in expected
market returns. I develop a regression-based approach to test the ICAPM’s cross-
sectional implications that has a similar structure to a Fama and MacBeth (1973)
methodology. More specifically, I use a hierarchical Bayes method to estimate the
system of equations,

r e
i ,t ,y = αi ,y +β

m
i ,yr

e
m,t ,y +β

h
i ,y fh,t ,y + εi ,t ,y , εi ,t ,y ∼ N(0,σ 2

i ,y),(8a)

r e
i ,y +

s2
i ,y

2
= λ0,y + λm,yβ

m
i ,y + λh,yβ

h
i ,y + εi ,y , εi ,y ∼ N(0,σ 2

y ),(8b)

λy = λ+ εy , εy ∼ N(0, Vλ),(8c)

6In Section C.1 of Appendix C in the Supplementary Material, I use a diagnostic tool from Pástor
and Stambaugh (2009) to check whether the predictive-regression assumption of an exact linear rela-
tion between the expected market return and predictive state variables holds in the data. The results
show that returns are imperfectly predicted, which provides additional motivation for adopting the
predictive-system approach.

7See Appendix A of the Supplementary Material for the derivation.
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where t denotes a month within a 3-year period y; r e
i ,t ,y and r e

m,t ,y are log real excess
returns in month t of period y for asset i and the market, respectively; fh,t ,y is the
intertemporal risk factor described in the previous section in month t of period y;
and r e

i ,y and s2
i ,y are the mean and variance of returns for asset i in period y. I test

the model using the full cross section of individual stocks.
The system of equations in equations (8a)–(8c) measures the prices of risk

in the cross section. Factor loadings for each firm i are estimated in equation (8a)
during each period y, and firm betas are allowed to vary across periods.8 Equation
(8b) specifies a cross-sectional regression in each period y. The s2

i ,y/2 term is a
Jensen’s inequality adjustment analogous to the term in the asset pricing equation
(1), so the left-hand side of equation (8b) measures the average excess return
for stock i . Thus, equations (8a) and (8b) measure the relation between factor
loadings and average returns in each period. If a particular risk factor is priced
in the cross section, exposure to the factor should be systematically rewarded
over time. Therefore, I aggregate the price-of-risk estimates from each period to
produce the full-period price of risk, λ, in equation (8c). If a component of the
vector λ is different from 0, there is evidence that the corresponding risk factor is
systematically priced in the cross section. In the remainder of the article, I refer
to λ when discussing a price of risk.

C. Estimation
I estimate the model using the Markov chain Monte Carlo (MCMC) proce-

dure described in Appendix B of the Supplementary Material. The prior distribu-
tions for the predictive system in equation (6) are uninformative for the ICAPM
test in Section III.B, and the tests in Section IV incorporate informative priors as
described in Section IV.A. Throughout the article, I specify uninformative priors
for the hierarchical Bayes parameters in equation (8) in the cross-sectional tests.

For each prior specification, the predictive-system MCMC is run for 500,000
iterations, and the first 100,000 draws are discarded as a burn-in period. To reduce
the serial correlation in parameter draws across iterations, I keep every fourth
posterior draw of the parameters, such that the remaining 100,000 draws display
relatively low serial correlation. The intertemporal risk factor is calculated for
each draw using equation (7). Finally, I run the MCMC for the hierarchical Bayes
model for 100,000 iterations conditional on the draws from the predictive system.
The first 20,000 draws are discarded as a burn-in period, and inferences are based
on the remaining 80,000 posterior draws.

D. Data
I test the ICAPM over the period Jan. 1952–Dec. 2014.9 This 63-year sample

period produces 21 3-year subperiods in the cross-sectional test. Monthly stock

8The rolling-window design for estimating betas allows firm risk exposures to flexibly vary across
periods, but the method produces an inherent trade-off between using a longer period to more precisely
estimate firm factor loadings and allowing loadings to vary more frequently by using shorter windows.
Specifying a fixed window length of 3 years appears to provide a good balance given the current setup.
Alternative methods avoid fixing a window length and allow for time variation in parameters (e.g.,
Bianchi, Guidolin, and Ravazzolo (2017)).

9Given that the intertemporal risk factor is dependent on a model for the risk-free rate, I choose
a starting date for the sample period that follows the Treasury–Federal Reserve Accord of 1951,
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return data are from the Center for Research in Security Prices (CRSP), and all or-
dinary common stocks with share codes of 10 or 11 that are listed on the New York
Stock Exchange, American Stock Exchange, or National Association of Securi-
ties Dealers Automated Quotations (NASDAQ) are included in the sample. The
sample includes a total of 100,908 firm-periods with an average of 4,805 firms
per 3-year period. In months in which a firm is delisted, missing stock returns are
replaced by the delisting return in CRSP.10 To avoid potential survivorship bias to
the extent possible, a firm is included in the sample for a given period if it has
more than six monthly returns over the 3-year period. Equation (8a) includes only
the months with available returns for firm-periods with incomplete return data.

The market factor in the cross-sectional test is proxied by the value-weighted
CRSP stock market index. The predictive system in equation (6) used to estimate
the intertemporal risk factor models the market excess return, nominal risk-free
rate, and realized inflation. For estimation, I use value-weighted CRSP index ex-
cess returns, the 1-month Treasury-bill rate, and personal consumption expendi-
ture (PCE) inflation. I also use four state variables: the term spread (the difference
between yields on 10-year and 1-year Treasury bonds), the default spread (the dif-
ference between yields on Baa and Aaa bonds as rated by Moody’s), the dividend
yield (the dividend yield on the CRSP value-weighted index calculated following
Cochrane (2008)), and the short-term risk-free rate (the yield on 3-month Treasury
bills).11 Summary statistics for state variables and returns are shown in Table 1.

III. ICAPM Tests with Uninformative Priors
This section tests the ICAPM using uninformative priors for the predictive-

system parameters. Section III.A discusses estimates from the predictive system
and reports characteristics of the intertemporal risk factor. Section III.B presents
the results from testing the ICAPM.

A. Estimates of the Intertemporal Risk Factor
The intertemporal risk factor is calculated from unexpected shocks to the

market risk premium and real interest rate, as shown in equation (7). To provide
intuition on the dynamics of this factor, Figure 1 shows the time series of the
market risk premium, real risk-free rate, and expected inflation from the predictive
system. The system is estimated using uninformative priors.12 Each plot shows the
posterior mean and a 90% credible interval for the variable over the period Jan.
1952–Dec. 2014, and National Bureau of Economic Research (NBER) recessions
are shaded.

following Campbell (1996). The Federal Reserve maintained a low-interest-rate peg prior to the ac-
cord, so risk-free rates behaved quite differently before the sample period begins.

10See Shumway (1997) for a discussion of delisting bias.
11All interest rate and inflation data are from the Federal Reserve Bank of St. Louis (http://research

.stlouisfed.org/fred2/), and the returns and ex-dividend returns on the value-weighted CRSP index are
from CRSP. PCE inflation, excluding food and energy, is seasonally adjusted. I use Consumer Price
Index inflation prior to the PCE data start date of Jan. 1959.

12Additional information about prior parameters is available in Appendix B of the Supplementary
Material. Table C.IV of the Supplementary Material shows posterior means for the predictive-system
parameters.
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TABLE 1
Summary Statistics

Table 1 presents summary statistics for predictive-system state variables and returns. Panel A shows the average and
standard deviation of the logs of value-weighted Center for Research in Security Prices (CRSP) real stock market portfolio
excess returns, the 1-month Treasury bill rate, and personal consumption expenditure (PCE) inflation. Panel B reports
summary statistics for the state variables used in the predictive system. The term spread is the difference in yields
between 10-year and 1-year Treasury bonds, the default spread is the difference in yields of Baa- and Aaa-rated bonds
based on Moody’s ratings, the dividend yield is the dividend yield for the value-weighted CRSP stock market index,
and the short rate is the yield on 3-month Treasury bills. Panel C shows the pooled mean and standard deviation of real
individual stock excess returns over the sample period and the average number of firms in each period. The means of
log variables are reported as the mean plus half of the variance as a Jensen’s inequality adjustment. The sample period
is Jan. 1952–Dec. 2014.

Panel A. Prediction Variable Summary Statistics

Real Market Nominal Risk- Realized
Excess Return Free Rate Inflation

Statistic r em,t rn,t πt

Mean 0.59 0.36 0.25
Standard deviation 4.35 0.25 0.21

Panel B. State Variable Summary Statistics

Statistic Term Spread Default Spread Dividend Yield Short Rate

Mean 0.96 0.97 3.14 4.51
Standard deviation 1.10 0.45 1.16 3.04

Panel C. Stock Return Summary Statistics

Statistic Real Excess Return No. of Stocks

Mean 0.74 4,805
Standard deviation 17.79

The estimated market risk premium in Graph A of Figure 1 displays sub-
stantial time variation. Consistent with theoretical and empirical evidence, the ex-
pected excess market return tends to increase during recessions and decline in ex-
pansionary periods. Estimates of the risk premium range from over 1% per month
for some of the 1950s and during the recent financial crisis to negative values dur-
ing the peak periods that precede some recessions in the sample. The market risk
premium in any given month is estimated with considerable uncertainty, however;
the 90% credible interval has a range of 1.74% per month on average.

Graphs B and C of Figure 1 show the real risk-free rate and expected in-
flation, respectively. The real interest rate varies less than the market risk pre-
mium, with the posterior mean ranging from −0.20% to 0.71% per month over
the sample period. The series is procyclical, consistent with Ang, Bekaert, and
Wei (2008). As anticipated, expected inflation displays spikes in the inflationary
periods of the 1970s and 1980s and low, stable inflation in the post-1990 period.
Both series are estimated with more precision compared with the market risk pre-
mium, and the posterior distributions are tightly distributed around their means.
The average ranges of the 90% credible intervals of the real interest rate and ex-
pected inflation are 0.16% and 0.15% per month, respectively.

The intertemporal risk factor, fh,t , from equation (7) is determined by unex-
pected changes in the market risk premium and the real interest rate as well as the
persistence of each process. The factor therefore inherits the uncertainty in these
estimates. Given the relatively diffuse posterior distribution for the market risk
premium, I proceed to further analyze uncertainty in the forecasts of the market
risk premium. The following analysis of the predictive system with uninformative
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FIGURE 1
Predictive-System Estimates of Latent Processes

Figure 1 shows estimates of the time series of the market risk premium (Graph A), real interest rate (Graph B), and
expected inflation (Graph C) from the predictive system in equation (6) under the base specification with uninformative
priors. The solid lines represent the posterior means, and the dotted lines show the 90% credible intervals for the latent
processes. Each variable is expressed in percentages per month. The sample period is Jan. 1952–Dec. 2014, and
National Bureau of Economic Research (NBER) recessions are shaded.
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priors also provides a baseline for investigating the specifications with informative
priors in Section IV.

Figure 2 shows the posterior distributions of the predictive-regression R2

(Graph A) and the correlation between shocks to the current market return and
the market risk premium, ρmm (Graph B). The R2 for each posterior draw is from
a predictive regression of monthly market excess returns on the draw of the market
risk premium. The ρmm parameter measures the correlation between the errors in
equations (6a) and (6e) in each draw.

The predictive system with uninformative priors produces evidence that mar-
ket returns are predictable. The mean of the predictive R2 posterior distribution in
Graph A of Figure 2 is approximately 2.2%, which is comparable in magnitude to
the R2 of 2.6% obtained from an ordinary least squares (OLS) predictive regres-
sion using the term spread, default spread, dividend yield, and short-term interest
rate as state variables. The posterior distribution of the predictive R2 is relatively
diffuse, with a 90% credible interval spanning from 1.2% to 3.0%.
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FIGURE 2
Posteriors of Important Features of Market-Return Predictability

Figure 2 shows posterior distributions for the predictive-regression R 2 (Graph A) and the ρmm parameter (Graph B) from
the predictive system in equation (6) under uninformative priors. The R 2 in each posterior draw is from a predictive re-
gression of monthly excess market returns on the time series of the market risk premium for that draw. The ρmm parameter
measures the correlation between shocks to current market returns and the market risk premium. The sample period is
Jan. 1952–Dec. 2014.

0% 1% 2% 3% 4% 5%

R2

–1.0 –0.5 0.0 0.5 1.0

Graph A. Predictive Regression R2

Graph B. Correlation between Return and
Risk Premium Shocks

The posterior distribution of ρmm in Graph B of Figure 2 suggests that the
correlation between shocks to market returns and the market risk premium is neg-
ative. The posterior mean of the correlation is −0.24, and most of the posterior
distribution lies below 0. Economically, a negative value of ρmm is consistent with
a valuation framework in which shocks to future discount rates produce a portion
of current return variance, as suggested by Campbell (1991) and others.

The predictive system also derives information from the state variables when
forecasting market returns. As shown by Pástor and Stambaugh (2009), the effects
of the state variables can be translated into predictive-regression slopes of market
excess returns on the variables. Figure 3 graphs the posterior distributions of the
implied regression slopes for the variables of term spread, default spread, divi-
dend yield, and short rate. The term spread and dividend yield are positive return
predictors with posterior means of 0.15 (90% credible interval of 0.00–0.33) and
0.24 (90% credible interval of 0.06–0.48), respectively. The short rate is a nega-
tive predictor with a posterior mean of −0.12 (90% credible interval of −0.24 to
−0.03). Finally, the default spread is the least reliable predictor, with a positive
posterior mean and a 90% credible interval of−0.14 to 0.30. Information from the
term spread and short rate may particularly be important for ICAPM inferences
because these state variables have predictive content for future market returns, but
their innovations exhibit relatively low correlation with the market factor. In con-
trast, dividend-yield shocks are highly negatively correlated with current market
returns, such that the information about investment opportunities contained in this
variable is aligned with market-factor realizations.
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FIGURE 3
Posteriors of Implied Predictive-Regression Slopes for State Variables

Figure 3 shows posterior distributions for the predictive-regression slopes implied by the predictive system in equation
(6) under uninformative priors. The predictive-regression slopes are calculated from the predictive-system parameters
following Pástor and Stambaugh (2009). The slopes measure the relation between the market risk premium and the term
spread (Graph A), default spread (Graph B), dividend yield (Graph C), and short rate (Graph D). The sample period is
Jan. 1952–Dec. 2014.
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Graph D. Implied Slope for Short RateGraph C. Implied Slope for Dividend Yield

Table 2 shows time-series summary statistics for the intertemporal risk factor,
which is calculated as the shock to the infinite sum of discounted future expected
returns following equation (7). I specifically report the posterior average of the
time-series mean, standard deviation, and correlation with the market factor. The
90% credible intervals for these statistics are in square brackets. The factor has an
average mean of 0.00% and an average time-series standard deviation of 4.39%.
This level of variation is similar in magnitude to that of the market factor, which
has a standard deviation of 4.35%, as shown in Table 1. The 90% credible interval
of the standard deviation ranges from 1.67% to 9.04%, such that the volatility of
the intertemporal risk factor varies substantially across draws. The intertemporal
risk factor is likely negatively correlated with the market factor, as expected. The
degree of correlation is modest, however, with an average correlation of −0.23
across the posterior draws and a 90% credible interval of −0.48 to 0.05. Low
correlation indicates that the intertemporal risk factor may contain important in-
cremental information relative to the market factor. Finally, Table 2 reports the
time-series average of the posterior standard deviation of the intertemporal risk
factor. In an average month, the standard deviation of the posterior distribution
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TABLE 2
Time-Series Statistics for the Intertemporal Risk Factor

Table 2 presents statistics for the intertemporal risk factor, which is estimated based on the predictive system in equa-
tion (6) with uninformative priors. The mean, standard deviation, and correlation with the market factor reported for the
intertemporal risk factor are calculated as averages of these time-series statistics across posterior draws, and the num-
bers in square brackets show the 90% credible interval for the posterior distribution of each statistic. The average factor
uncertainty is the time-series mean of the posterior standard deviation of the monthly intertemporal risk factor. The mean
and standard deviations are reported in percentages per month. The sample period is Jan. 1952–Dec. 2014.

Intertemporal
Statistic Risk Factor

Mean 0.00
[−0.29, 0.28]

Standard deviation 4.39
[1.67, 9.04]

Correlation with market factor −0.23
[−0.48, 0.05]

Average factor uncertainty 3.84

of the factor realization for the month is 3.84%, indicating that substantial uncer-
tainty exists about the additional factor in the ICAPM.

B. ICAPM Test Results
Table 3 shows the estimated prices of risk for the factor models. The reported

estimates are means of the posterior distributions, and posterior 90% credible in-
tervals are in square brackets. Consistent with theoretical predictions, estimates
for the CAPM indicate that market risk is positively rewarded, with a posterior
mean of 0.75% per month and a 90% credible interval of 0.22%–1.29%, and
the model intercept is centered at −0.01%. This finding of a substantial positive
price of risk for market exposure among individual stocks is in line with research
by Davies (2010) and Lewellen (2015).13 The root-mean-square error (RMSE),
which measures the pricing errors in 3-year average returns of the model ex-
pressed in percentages per month, is 2.28% on average for the CAPM. The model
thus achieves some gains relative to pricing errors assuming equal expected re-
turns across all stocks; the RMSE without considering beta is 3.40% per month.

Table 3 also reports results for the ICAPM. The market factor continues to
carry a positive price-of-risk estimate of 0.63% per month with a 90% credible
interval of 0.25%–1.01%. The posterior mean of the intercept is 0.20%, and the
90% credible interval includes 0. The price of risk for the intertemporal risk fac-
tor, λh , has a positive posterior mean at 0.52%. However, the posterior standard
deviation of this estimate is quite large (0.44%), such that the 90% credible in-
terval for λh is −0.11% to 1.30% per month. Despite the relatively low degree of

13Davies (2010) shows that the hierarchical Bayes approach mitigates the errors-in-variables (EIV)
problem relative to the standard Fama–MacBeth (1973) technique. Using the Fama–MacBeth ap-
proach, there is still support for a positive price of market risk among individual stocks. Using the
full sample of firms, a Fama–MacBeth test relating returns to contemporaneous betas produces esti-
mates of an intercept of 0.53% (standard error of 0.20%) and a price of risk of 0.18% (standard error
of 0.09%). This sample includes firms with partial return data during the period, which may exacer-
bate the EIV bias due to the inclusion of betas that are imprecisely estimated from a few data points.
Conditioning on firms with no missing returns during each 3-year period introduces a potential sur-
vivorship bias but reduces the EIV bias, and resulting estimates show an intercept of 0.50% (standard
error of 0.18%) and price of risk of 0.38% (standard error of 0.13%).
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TABLE 3
Estimated Prices of Risk for ICAPM Factors under Uninformative Priors

Table 3 reports the prices of risk for the intertemporal capital asset pricing model (ICAPM) market and intertemporal
risk factors. The intertemporal risk factor is estimated based on the predictive system in equation (6) with uninformative
priors. The table shows estimates for the prices of risk from the system of equations in equations (8a)–(8c), along with
the root-mean-square error (RMSE). The capital asset pricing model (CAPM) is included for comparison. The numbers
in square brackets show the 90% credible interval for the posterior distribution of each parameter. The sample period is
Jan. 1952–Dec. 2014.

Et r ei +
Vii

2
=λ0+λmβ

m
i +λhβ

h
i

Model λ0 λm λh RMSE

CAPM −0.008 0.753 2.280
[−0.583, 0.566] [0.217, 1.286] [2.279, 2.282]

ICAPM under uninformative priors 0.203 0.628 0.515 1.918
[−0.199, 0.597] [0.254, 1.006] [−0.112, 1.302] [1.726, 2.168]

evidence that intertemporal risk is priced, the ICAPM tends to produce gains in
model fit relative to the CAPM, with an average RMSE of 1.92%.14

Overall, the results in this section provide mixed evidence about the ICAPM.
The intertemporal risk factor is estimated with considerable uncertainty, and
this uncertainty is inherited by the posterior for the price of intertemporal risk.
Although the posterior mean of λh is positive, the 90% credible interval includes
0. Hence, the ICAPM specification with uninformative priors produces only weak
evidence that intertemporal risk is priced in the cross section of stocks.

IV. ICAPM Tests with Prior Information about Investment
Opportunities

This section tests the ICAPM with economically motivated priors on aspects
of market-return predictability. Incorporating prior information will influence the
estimated intertemporal risk factor and may affect inferences about the pricing of
intertemporal risk. Section IV.A develops informative priors for predictive-system
parameters and analyzes prior predictions relative to historical information.
Section IV.B presents empirical results from cross-sectional ICAPM tests across
prior specifications.

A. Informative Priors in the Predictive System

1. Prior Parameters

I specify informative priors for parameters that govern the market risk pre-
mium in the predictive system. The predictive system has prior parameters for the

14In Section C.1 of Appendix C in the Supplementary Material, I estimate the intertemporal risk
factor using a predictive-regression approach rather than the predictive system. The intertemporal
risk factor derived from the predictive regression is apparently estimated with much less uncertainty;
the standard deviation of the factor posterior draws averages 1.98% across months. Imposing the
constraint that the market risk premium is an exact linear function of state variables in the predictive
regression makes it easier to learn about the market risk premium (Pástor and Stambaugh (2012)),
and this assumption of the predictive regression is violated in the data, as shown in Section C.1 of
Appendix C in the Supplementary Material. Nevertheless, the ICAPM inferences using the predictive-
regression approach are similar to the base case; the posterior for the price of intertemporal risk has a
positive mean but a 90% credible interval that includes 0.
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long-run expectation (Em) and persistence parameter (φm) from equation (6e) as
well as the relevant variance and covariance elements of6 in equation (6h). Pástor
and Stambaugh (2009) develop methods to conveniently express covariance-
matrix priors for the predictive system in terms of economically meaningful quan-
tities. In particular, the prior distribution for the relevant elements of 6 is deter-
mined by setting parameters that correspond to priors about i) the R2 from a pre-
dictive regression of market excess returns on the market risk premium and ii)
the correlation between shocks to current returns and the market risk premium in
equations (6a) and (6e), ρmm .

I primarily concentrate on informative priors for R2 and ρmm because these
aspects of the dynamics of the market risk premium are most important for
ICAPM inferences. I form a 2-dimensional grid over the prior parameters for
R2 and ρmm . In the predictive R2 dimension, I consider a range of 0%–3% for
a monthly predictive-regression R2.15 The prior contains information equivalent
to a pseudosample with T/2 monthly observations, where T is the number of
months in my empirical sample. In the second dimension, the prior distribution
of ρmm is approximately uniform in each specification but with different bounds
across cases. Specifically, the lower bound of the ρmm prior remains at −0.9, and
the upper bound takes values between −0.9 and 0.9 across grid points, such that
the prior mean of ρmm ranges from −0.9 to 0.0 across the prior-parameter values.
Concentrating on the space of priors with negative means of ρmm is motivated by
the Campbell (1991) decomposition as well as empirical evidence from LeRoy
and Porter (1981), Shiller (1981), Campbell and Ammer (1993), Van Binsbergen
and Koijen (2010), and others that market returns tend to be negatively related to
discount-rate shocks. I specify 13 equally spaced grid points in each dimension to
generate 169 prior-parameter combinations.

ICAPM inferences are much less sensitive to the prior distributions for the
Em and φm parameters in equation (6e). To facilitate the prior predictive analy-
sis introduced in Section IV.A.2, I specify a somewhat informative prior for the
persistence parameter, such that φm ∈[0,1] is normally distributed, with a mean
of 0.97 and a relatively large standard deviation of 0.50. I show in Appendix C
of the Supplementary Material that the ICAPM inferences are very similar for a
specification with uninformative priors on φm . Finally, the long-run expectation
(Em) is normally distributed, with a mean equal to the sample mean market excess
return and a large standard deviation of 10. It is important to note that I continue to
specify uninformative priors for the cross-sectional test parameters in the system
of equations in equations (8a)–(8c), such that prior information is only introduced
within the predictive system to estimate the intertemporal risk factor for use in the
ICAPM test.

15A range of 0%–3% for the monthly predictive-regression R2 prior parameter encompasses most
in-sample-regression R2 figures from previous studies, which are often around 1%. The prior param-
eter pertains to the R2 from a hypothetical monthly predictive regression on the market risk premium,
which is likely to exceed the typical R2 figures from empirical studies that condition on specific state
variables to model the variation in expected returns.
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2. Prior Predictive Analysis

Perspective on the region of the prior-parameter space that is reasonable can
be gained using a prior predictive analysis with variance ratios. Following Poterba
and Summers (1988), the k-period variance ratio is defined as

(9) VR(k) =
Var(r e

m,t→t+k)
kVar(r e

m,t )
,

where r e
m,t→t+k is the k-period cumulative log excess market return. A variance

ratio of 1 indicates that variance grows linearly with the horizon, which is the
prediction from independent and identically distributed (IID) models. Within a
predictive system, variance ratios depend on R2 and ρmm . Specifically, I show in
Appendix A of the Supplementary Material that the k-period variance ratio can
be expressed as

(10) VR(k) = 1+ A(k)(R2)1/2(1− R2)1/2ρmm + B(k)R2,

where A(k) and B(k) are positive constants that increase with the horizon k when
the equity premium is persistent (i.e., φm>0). If ρmm<0 as expected, the last
two terms of the variance ratio in equation (10) have opposite signs. The first of
these terms captures the effect of mean reversion, which has a negative effect on
multiperiod variance ratios. Mean reversion has a stronger negative effect on the
variance ratio when shocks to current and future returns are highly negatively cor-
related (i.e., ρmm is negative and large) and when expected returns vary substan-
tially over time (i.e., R2 is high). The second term shows the additional variance in
cumulative multiperiod returns that is generated through time variation in the per-
sistent expected return. This term is large when the market risk premium is highly
variable (i.e., R2 is high). In sum, the R2 and ρmm parameters that are important
for ICAPM inferences interact to determine variance ratios.

An advantage of using variance ratios to investigate the prior-parameter
space is that historical variance ratios can be calculated using annual return data
and do not require data on any additional state variables. As such, prior beliefs
about R2 and ρmm can be formed using estimated historical variance ratios from
a long sample period that predates my ICAPM testing period. In particular, I use
annual data on real stock market returns from Jeremy Siegel that span the period
1802–1951, giving a 150-year time series of returns that could have been used
to form prior beliefs at the beginning of the sample period. Table 4 reports his-
torical variance-ratio estimates for horizons of 2–8 years, following Poterba and
Summers (1988). Consistent with past literature, the estimated variance ratios are
below 1 and decrease in horizon to reach 0.58 at an 8-year horizon, which is in-
dicative of relatively strong mean-reversion effects in historical stock returns.

Given a set of prior-parameter values for R2 and ρmm , I use a prior predic-
tive analysis to consider whether the implied prior beliefs are consistent with the
variance ratios from historical data. Specifically, I draw 100,000 time series of
1,800 monthly stock market excess returns from their prior distribution given a
set of prior parameters and the structure of the predictive system in equation (6). I
then compound the monthly stock returns to produce 150-year samples of annual
stock returns and calculate variance ratios for horizons of 2–8 years. This process
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TABLE 4
Stock Market Variance Ratios, 1802–1951

Table 4 shows variance ratios for horizons of 2–8 years using annual real log stock market returns. Variance ratios are
defined as the variance of k -year cumulative returns divided by k times the variance of 1-year returns. The sample period
is 1802–1951.

Horizon Variance Ratio

2 years 0.990
3 years 0.859
4 years 0.801
5 years 0.738
6 years 0.635
7 years 0.603
8 years 0.576

produces the implied prior distributions for variance ratios at each horizon length
for each set of prior parameters. Finally, I examine whether the observed histor-
ical variance ratios lie within the 90% credible intervals across the 2- to 8-year
horizons.

Figure 4 shows the region of the prior-parameter space that produces prior
beliefs about variance ratios that are consistent with pre-1952 data. The shaded
area denotes prior-parameter combinations for which the historical variance ratios
lie within the 90% credible intervals.16 In general, prior specifications with more
predictable returns and a relatively strong negative correlation between shocks to
current returns and the market risk premium are most consistent with observed
variance ratios. This finding is in line with equation (10) because these parameter
combinations will generate substantial mean-reversion effects to produce prior
distributions for variance ratios that are centered well below 1. Based on the prior
predictive analysis, the shaded region in Figure 4 represents the portion of the
prior-parameter space that is most reasonable given historical return information.

3. Estimates of the Intertemporal Risk Factor under Informative Priors

I estimate the predictive system in equation (6) for each combination of
R2 and ρmm priors to produce draws for the intertemporal risk factor. Figure 5
summarizes the posterior distributions of the predictive-regression R2 (Graph A)
and ρmm (Graph B) from the predictive systems across prior specifications. The 7
subplots report results for different R2 priors ranging from 0% to 3%, and each
subplot shows the posteriors associated with 7 prior parameters for ρmm that pro-
duce prior means ranging from −0.9 to 0.0. The 49 cases displayed in the figure
are a subset of the 169 prior-parameter combinations from the grid developed in
Section IV.A.1. For each prior-parameter combination, the box shows the median
and the 25th and 75th percentiles of the posterior distribution, and the whiskers
encompass the 90% credible interval. The R2

=0.0% prior produces a degenerate
prior at 0% for the standard deviation of shocks to the market risk premium, such
that ρmm is not well defined, and Graph B is left empty for this case.

16Figure 4 shows results from interpolating across the grid points based on the percentage of draws
in which the historical variance ratios lie within the 90% credible interval. Appendix C of the Sup-
plementary Material contains a version of Figure 4 without interpolation that indicates whether the
variance ratios lie within the 90% credible intervals at each of the 169 grid points.
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FIGURE 4
Region of the Prior-Parameter Space That Is Consistent with Historical Variance Ratios

Figure 4 shows the region of the prior-parameter space in which the historical variance ratios at horizons of 2–8 years
lie within the 90% credible interval of the variance ratios from a prior predictive analysis. The prior-parameter space is
a 2-dimensional grid over prior parameters corresponding to the predictive-regression R 2 and the correlation between
shocks to current returns and the market risk premium, ρmm . Historical variance ratios are calculated using annual data
on real stock market returns from 1802–1951.

0% 1% 2% 3%
Prior on R2

–0.9

–0.6

–0.3

0.0

Three general patterns emerge from the posterior distributions of R2 and
ρmm in Figure 5. First, priors associated with low levels of return predictability
(i.e., R2

=0.5% or 1.0%) produce posteriors of predictive R2 that are shifted up-
ward relative to the prior distributions and relatively similar across ρmm priors,
with posterior means ranging from 0.9% to 1.0% for R2

=0.5% specifications
and 1.6%–1.7% with R2

=1.0% priors. Across these priors, the posteriors of ρmm

indicate a relatively large negative correlation between shocks to current returns
and the market risk premium; the posterior means range from −0.80 to −0.60 in
these cases. Second, specifications with prior R2

=1.5%–3.0% and a large nega-
tive prior mean of −0.90 for ρmm produce posteriors that are distinctive relative
to cases with looser priors on ρmm . The predictive R2 posteriors are quite diffuse
and centered near their priors, and the posterior distributions of ρmm are highly
concentrated, with posterior means ranging from −0.89 to −0.84 across prior R2

parameters.
The third pattern in Figure 5 is that the group of specifications with R2 priors

from 1.5% to 3.0% and ρmm prior means ranging from −0.6 to 0.0 produce rela-
tively similar posterior distributions. Specifically, these cases produce evidence of
substantial return predictability, with R2 posterior means between 2.4% and 2.8%.
The posteriors also indicate relatively low negative correlations between shocks to
current returns and the market risk premium, with posterior means of ρmm ranging
from −0.42 to −0.31. Overall, this set of specifications shows the most similarity
to the results for uninformative priors in Section III in terms of the magnitudes
of R2 and ρmm , but the posteriors for the informative-prior cases in Figure 5 are
noticeably tighter compared with the corresponding posteriors in Figure 2.
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FIGURE 5
Posteriors of Important Features of Market-Return Predictability across Prior Specifications

Figure 5 shows quantiles of the posterior distributions of the R 2 from a predictive regression of market excess returns on
the market risk premium (Graph A) and the correlation between shocks to current returns and the market risk premium,
ρmm (Graph B), across specifications of the predictive-system prior parameters for the predictive-regression R 2 and the
correlation between shocks to current returns and the market risk premium. The box shows the median and 25th and
75th percentiles, and the whiskers encompass the 90% credible interval. The intertemporal risk factor is estimated with
the predictive system in equation (6), with informative priors as described in Section IV.A. The predictive-regression R 2

is based on monthly returns. The sample period is Jan. 1952–Dec. 2014.
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Graph A. Posteriors of Predictive Regression R2

Graph B. Posteriors of Correlation between Shocks to Current Return and Market Risk Premium

Figure 6 shows the posteriors of the implied predictive-regression slopes for
the state variables across prior specifications. The dividend yield is an important
predictor in all cases, with the magnitude of its relation to returns increasing in
the prior R2 parameter. The term-spread and short-rate state variables, conversely,
are primarily important for the group of priors with R2

=1.5%–3.0% and a prior
mean of ρmm from −0.6 to 0.0. The role of these state variables for this set of
prior specifications is again relatively similar to that of the uninformative case,
with posteriors that are similarly located but more concentrated compared with
those in Figure 3. As previously discussed, the abilities of the term-spread and
short-rate variables to predict returns are potentially important for producing an
intertemporal risk factor with information that is orthogonal to the market factor.
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FIGURE 6
Posteriors of Implied Predictive-Regression Slopes

for State Variables across Prior Specifications

Figure 6 shows quantiles of the posterior distributions for the predictive-regression slopes implied by the predictive
system in equation (6) across specifications of the prior parameters for the predictive-regression R 2 and the correlation
between shocks to current returns and the market risk premium. The predictive-regression slopes are calculated from
the predictive-system parameters following Pástor and Stambaugh (2009). The box shows the median and 25th and 75th
percentiles, and the whiskers encompass the 90% credible interval. The slopes measure the relation between the market
risk premium and the term spread (Graph A), default spread (Graph B), dividend yield (Graph C), and short rate (Graph
D). The sample period is Jan. 1952–Dec. 2014.
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Graph A. Posteriors of Implied Predictive Regression Slope for Term Spread

Graph B. Posteriors of Implied Predictive Regression Slope for Default Spread

(continued on next page)

The posterior for the intertemporal risk factor is calculated using equation
(7) for each prior specification. The characteristics of the intertemporal risk factor
are influenced by the R2 and ρmm features of the market risk premium as well as
the relation between the risk-free-rate and market-risk-premium components of
the factor. In particular, the market-risk-premium component will be particularly
important when R2 is high because strong predictability implies that the market
risk premium is highly variable. Furthermore, large negative values of ρmm indi-
cate that the market-risk-premium component of the intertemporal risk factor will
be closely related to the market factor, whereas lower degrees of correlation imply
that the intertemporal risk factor contains more orthogonal information. Finally,
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FIGURE 6 (continued)
Posteriors of Implied Predictive-Regression Slopes

for State Variables across Prior Specifications
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Graph C. Posteriors of Implied Predictive Regression Slope for Dividend Yield

Graph D. Posteriors of Implied Predictive Regression Slope for Short Rate
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the relation between the risk-free-rate and market-risk-premium components is
important. For example, if an improvement in economic conditions in a given
month tends to produce an increase in the expected real risk-free rate and a de-
crease in the market risk premium, then the two components will partially offset
when they are combined to calculate the realization of the intertemporal risk fac-
tor for that month. In contrast, combining risk-free-rate and market-risk-premium
components that are unrelated will produce a more volatile intertemporal risk
factor.

Figure 7 displays the posteriors of time-series statistics for the estimated
intertemporal risk factor associated with each set of priors. Graph A shows the
posteriors of the time-series standard deviation, and Graph B focuses on the cor-
relation between the two risk factors in the ICAPM.17 For the R2

=0.0% cases,

17Figures corresponding to the posterior of the mean of the intertemporal risk factor and the time-
series average for the posterior standard deviation of draws of the intertemporal risk factor are available
in Section C.1 of Appendix C in the Supplementary Material.
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FIGURE 7
Posteriors of Statistics for the Intertemporal Risk Factor across Prior Specifications

Figure 7 shows quantiles of the posterior distributions of time-series statistics for the intertemporal risk factor across
specifications of the predictive-system prior parameters for the predictive-regression R 2 and the correlation between
shocks to current returns and the market risk premium. Graph A displays the posteriors of the time-series standard devi-
ation of the intertemporal risk factor, fh,t . Graph B shows the posteriors of the correlation between the market factor and
the intertemporal risk factor. The box shows the median and 25th and 75th percentiles, and the whiskers encompass the
90% credible interval. The intertemporal risk factor is estimated with the predictive system in equation (6) with informative
priors as described in Section IV.A. The standard deviation of the intertemporal risk factor is expressed in percentages
per month. The sample period is Jan. 1952–Dec. 2014.
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Graph A. Posteriors of the Time-Series Standard Deviation of the Intertemporal Risk Factor

Graph B. Posteriors of Correlation between Market and Intertemporal Risk Factors
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there is no variation in the market risk premium, such that the intertemporal risk
factor is determined entirely by variation in expected risk-free rates. The standard
deviation of the intertemporal risk factor has a posterior mean of 3.26% (90%
credible interval of 2.30%–6.64%), and the posterior mean of the correlation be-
tween the risk factors is −0.54 (90% credible interval of −0.68 to −0.25) in this
case.

The posteriors of the intertemporal risk factor show varying patterns across
the remaining prior-parameter space, as shown in Figure 7. Given priors of rela-
tively low market-return predictability (i.e., R2 priors of 0.5% or 1.0%), the de-
gree of variation in the market risk premium is fairly low and uncertain (consistent
with the R2 posteriors in Graph A of Figure 5). Furthermore, the risk-free-rate and
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market-risk-premium components of the intertemporal risk factor are nearly un-
correlated for these prior specifications, and the risk-free-rate component is partic-
ularly important with lower levels of market-return predictability. These features
combine to generate the relatively diffuse posteriors of the intertemporal risk fac-
tor’s standard deviation and correlation with the market factor that are shown in
Figure 7.

Figure 7 shows that the posteriors in the prior-parameter space with higher
degrees of return predictability (i.e., prior R2 of 1.5% or higher) have interest-
ing patterns. In particular, the characteristics of the intertemporal risk factor are
quite different for the prior specifications with a prior mean of−0.9 for ρmm com-
pared with the models with prior means of −0.6 to 0.0. The intertemporal risk
factor is highly volatile and strongly negatively correlated with the market fac-
tor across the ρmm=−0.9 prior specifications, with the average factor standard
deviation ranging from 7.33% to 7.44% and the average correlation with the mar-
ket factor ranging between −0.77 and −0.70 across the R2

=1.5%–3.0% cases.
The risk-free-rate and market-risk-premium components show little correlation in
these models, and the relatively strong variation in the market risk premium im-
plies that the intertemporal risk factor is largely dominated by the variation in the
market risk premium. In contrast, the average factor standard deviations for the
ρmm=−0.6 to 0.0 cases are much lower at 4.45%–5.85%, and these prior specifi-
cations also produce intertemporal risk factors that are less negatively correlated
with the market factor, with average correlations of −0.42 to −0.30. An impor-
tant feature of this prior-parameter space is that shocks to the risk-free-rate and
market-risk-premium components have an average correlation of−0.42 to−0.36,
which is consistent with real rates increasing simultaneously with a declining mar-
ket risk premium. The two shocks thus tend to partially offset and modulate the
intertemporal risk factor.

Finally, the lower correlation between the market factor and the intertempo-
ral risk factor implies a greater role for cash-flow risk for the set of priors with
ρmm=−0.6 to 0.0 compared with the ρmm=−0.9 priors. I confirm in Section C.1
of Appendix C in the Supplementary Material that the discount-rate risk domi-
nates for the models with priors of a strong negative correlation between shocks
to current returns and the market risk premium, whereas the cash-flow risk is quite
important for the weaker-correlation cases. Large negative values of the ρmm prior
parameter encourage the predictive system to concentrate on information in state
variables with innovations that are strongly correlated with current market returns,
consistent with the dependence of the ρmm=−0.9 priors on the dividend-yield
state variable in Figure 6. With looser priors on ρmm , however, the predictive sys-
tem allows for stronger roles from the term-spread and short-rate variables that
may contain additional information about macroeconomic conditions but have
shocks that are less closely related to realized returns.

B. Cross-Sectional Test Results
Figure 8 shows the results from testing the ICAPM in the cross section of

stocks given each set of prior parameters. Specifically, the figure plots the poste-
rior distributions of the intercept (Graph A), the price of risk for the market factor
(Graph B), and the price of risk for the intertemporal risk factor (Graph C). The
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FIGURE 8
Posteriors of Prices of Risk for ICAPM Factors across Prior Specifications

Figure 8 shows quantiles of the posterior distributions of the intercept (λ0) in Graph A, the price of risk for the market
factor (λm ) in Graph B, and the price of risk for the intertemporal risk factor (λh ) in Graph C across specifications of the
predictive-system prior parameters for the predictive-regression R 2 and the correlation between shocks to current returns
and the market risk premium. The box shows the median and 25th and 75th percentiles, and the whiskers encompass the
90% credible interval. The intertemporal risk factor is estimated with the predictive system in equation (6), with informative
priors as described in Section IV.A. The intercept and prices of risk for intertemporal capital asset pricing model (ICAPM)
factors are expressed in percentages per month. The sample period is Jan. 1952–Dec. 2014.
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(continued on next page)

posterior draws come from estimating the system of equations in equations (8a)–
(8c) given the posterior of the intertemporal risk factor in each case. Graphs A
and B show that the posteriors of the intercept and the price of market risk are
similar across prior specifications, with the 90% credible intervals of the intercept
containing 0 and the posteriors for the price of market risk lying almost entirely
above 0 in all cases. These parameter estimates are thus in line with the ICAPM
predictions for each prior specification.

The posteriors in Graph C of Figure 8 indicate that the intertemporal risk
factor is positively priced for several sets of prior parameters. Multiple prior-
parameter combinations with relatively high market-return predictability along
with loose priors on ρmm produce large, positive posterior means of λh and 90%
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FIGURE 8 (continued)
Posteriors of Prices of Risk for ICAPM Factors across Prior Specifications
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credible intervals that do not contain 0. Specifically, these conditions hold for all
sets of priors in Figure 8 with R2

=2.0%–3.0% and ρmm prior means from −0.45
to 0.00 as well as the ρmm=−0.60 prior with R2

=2.5% or 3.0%. Across these
cases, the posterior mean of λh ranges from 0.78% to 1.08% per month, such
that the estimated intertemporal risk factor carries a large, positive price of risk in
support of ICAPM predictions under these prior specifications. The strong evi-
dence from these cross-sectional tests of an additional priced risk factor in the
cross section of stocks also constitutes a rejection of the CAPM.

There is little evidence that the estimated intertemporal risk factor is priced
in the remaining cases in Figure 8. The R2

=0.0% priors produce posteriors of
λh that are centered at −0.19% per month (90% credible interval of −0.66 to
0.28). Given that the intertemporal risk factor is equivalent to the risk-free-rate
component in this case, this result indicates that exposure to unexpected shocks
to the real risk-free rate is not priced in the cross section. The other cases with
priors of relatively low market-return predictability (i.e., prior R2 values of 0.5%
or 1.0%) similarly produce little evidence that intertemporal risk is priced; the
90% credible interval for each posterior distribution of λh contains 0 in each case.
Finally, the priors with relatively high return predictability of R2

=2.0%–3.0%
along with a prior ρmm parameter of −0.9 produce negative posterior means of
λh ranging from −0.42% to −0.36%. The 90% credible intervals each contain 0,
such that there is little evidence that the intertemporal risk factor is priced under
these prior specifications.

Based on the analysis of the intertemporal risk factors in Section IV.A.3, the
group of prior specifications for which intertemporal risk is strongly positively
priced corresponds to estimated intertemporal risk factors that share important
characteristics. The intertemporal risk factors in these specifications are relatively
less volatile and have weaker negative correlations with the market factor com-
pared with the sets of priors for which intertemporal risk is unpriced. Further-
more, cash-flow risk plays a particularly important role in these cases relative to
the specifications in which intertemporal risk is not priced. These priors produce
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posteriors of the predictive-system parameters and the time series of the intertem-
poral risk factor that most closely resemble the posteriors with uninformative pri-
ors from Section III, but the informative priors produce posteriors with relatively
more precision compared with the uninformative-prior case. The ICAPM test re-
sults indicate that the additional information from the priors is helpful in establish-
ing that intertemporal risk is positively priced in accord with model predictions.

The results in Figure 8 show the existence of an additional priced risk fac-
tor, such that the single-factor CAPM is rejected. Under several prior specifi-
cations, the priced risk factor corresponds to the intertemporal risk factor from
Campbell’s (1993) ICAPM, such that it ties together the time-series and cross-
sectional aspects of returns. As a final step in the analysis, I consider these results
in the context of the prior predictive analysis in Section IV.A.2. In particular, I
investigate whether there is a region of the prior-parameter space that is ex ante
reasonable given the variance-ratio analysis and simultaneously produces positive
results for the ICAPM.

Figure 9 shows the regions of the prior-parameter space that are consistent
with historical variance ratios (light shading), the 90% credible interval of the
price of intertemporal risk that does not include 0 (medium shading), and the
overlapping region (dark shading). Figure 9 shows that there is a relatively large
region of ex ante reasonable prior parameters that produce evidence that intertem-
poral risk is priced in the cross section of stocks. The overlapping region com-
prises prior-parameter values for R2 in excess of 1.5% and prior means of ρmm that
range from−0.7 to−0.3. These prior-parameter combinations are simultaneously

FIGURE 9
Region of the Prior-Parameter Space in Which Intertemporal Risk Is Priced

Figure 9 shows the region of the prior-parameter space in which 0 is not in the 90% credible interval of the price of risk
for the intertemporal risk factor in dark gray, the region from Figure 4 in which the historical variance ratios at horizons of
2–8 years lie within the 90% credible interval of the variance ratios from a prior predictive analysis in light gray, and the
overlapping region in black. The prior-parameter space is a 2-dimensional grid over prior parameters corresponding to
the predictive-regression R 2 and the correlation between shocks to current returns and the market risk premium, ρmm .
Historical variance ratios are calculated using annual data on real stock market returns from 1802–1951, and the sample
period for intertemporal capital asset pricing model (ICAPM) tests is Jan. 1952–Dec. 2014.
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capable of i) producing long-horizon variance ratios that match the low estimates
from historical data and ii) generating intertemporal risk factors in which the mar-
ket risk premium plays an important role but is not forced to be strongly negatively
related to market returns. Overall, the results in this section indicate that there is
a relatively large region of the prior-parameter space in which the cross-sectional
implications of the ICAPM are supported.

V. Conclusion
The ICAPM of Campbell (1993) predicts that exposure to unexpected

changes in expected future market returns may be priced in the cross section of
stocks. The fact that changes in expected market returns are unobservable, how-
ever, makes testing the cross-sectional implications of the model more difficult. I
introduce a Bayesian approach to test the ICAPM that accounts for uncertainty in
the intertemporal risk factor and allows for economically motivated priors on the
relation of market-return predictability.

Whereas there is only weak evidence that intertemporal risk is priced under
uninformative priors, I find that ICAPM predictions are strongly supported within
a relatively large region of an informative prior-parameter space. In particular, the
intertemporal risk factor carries a large, positive price-of-risk estimate for prior
specifications with substantial market-return predictability and loose priors on the
correlation between shocks to current returns and the market risk premium. The
estimated intertemporal risk factors in these cases are characterized by a strong
role of cash-flow risk in market-return variance and a relatively low correlation
with the market factor. Much of this prior-parameter space overlaps with a region
that is deemed to be ex ante reasonable given historical stock market variance
ratios from the presample period, indicating support for the cross-sectional impli-
cations of the ICAPM.

Supplementary Material
Supplementary Material for this article is available at https://doi.org/10.1017/

S0022109018000972.
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