
ON THE INVERSION OF THE GAUSS 
TRANSFORMATION 

P. G. ROONEY 

1. Introduction. The inversion theory of the Gauss transformation has 
been the subject of recent work by several authors. If the transformation is 
defined by 

1.1 f{x) = %\<t>{x)) = ( 4 T T ) ^ J e-ï(x-tY~<t>(t)dt, 

then operational methods indicate that 

exp(-D*)f(x) = 0(x), 

under a suitable definition of the differential operator. Hirschmann and 
Widder (5; chap. 8) have shown that this is indeed the case if the operator 
is defined by use of the formula 

2 1 /»«+?'a 

e 
2 1 /*a+?co 

v = K m - - - , K(s,t)esyds, 

where 
K(s,t) = (ir//)*exp (s2/±t). 

Also Widder (8; § 1) makes use of the formula 

2 (*°° •> 

e~v = 7T~" I e~*1 cosytdt 
Jo 

to define exp (— D2). 
A more straightforward approach seems to be to use the power series for 

This we shall do here, defining 

1.2 e-D''f(x) = £ ( - l)"f2"\x)/nl 

This approach seems to have been originally suggested by Eddington (2). 
Eddington did not study the convergence of this series other than to note 
that for some very simple Gauss transforms, the series diverges. Widder (8; 
§ 1) remarks that for some very simple transforms the series is not even 
summable in the Abel sense. Pollard (6; § 8) showed that if <t> Ç L2 (— °° , °° ), 
the series converges in the L2-sense to </>, that is 
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*(*) = l.i.m.2: ( - \)'fln\x)/n\, 
r->co n=0 

but nothing seems to be known of the pointwise convergence of the series. 
Here we propose to give sufficient conditions for the series to converge and 

to be Abel summable to <j>(x). This occupies §§ two and three respectively. 
In § four we make some applications of our results to the study of Hermite 
polynomials. 

2. Convergence of the series. Theorem 1 gives sufficient conditions 
for the series II to converge at a point to the mean value of <j> there. 

THEOREM 1. If 

(i) <t> e L(- 5,6) d> 0, and |*|\r(x°~')2/80(O Ç L ( - œ,oo), 

for some X > 3, 
(ii) <f> is of bounded variation in a neighbourhood of Xo, then CS (cj)(x)) exists 

for all x} and the series 1.2 converges at x = x0 to %[<j>(xo + ) + 0 (x0 — ) } . 

Proof. The existence of ^ (<f>(x)) is clear. Now by (3; 10.13(7) and 10.13(2)), 

D2re~ïx2 = 2-2re~lx2H2r(\x) = éT i z>!(- l)rL7^x2). 

But since f(x) is a bilateral Laplace transform, it follows from (1; chap. 3 
§ 2) that we may differentiate the integral f o r / under the integral sign as 
often as we choose. Thus 

fr\x) = LJi^
LJ_œe~Hx-trL;^(x - t)2)4>(t)dL 

Hence if sn(x) denotes the nth partial sum of the series 1.2, we have, using 
(3; 10.12(38)), 

*.(*o) = Z (~ D7 ( 2 r )(xo)/r: 

= 7TTÏ f e-^'-^t, L7HH*o-t)2)4>(t)dt 
(47T) J— oo fTo 

1/2X , 1/2X a x0 - n „xo + n ~ oo \ 

_ œ + JXo _ ̂  + J^ + wl/2xj4(i(x0 - 0*)*(0* 
= /! + /s + n. 

Consider I3. By (3; 10.18(14)), 
e-ix\Ll(x)\ < T(a + 1 + ») /n! I'(a + 1), a > 0. 

Hence 
i r i ^ r (» + 3/2) f ^-(:ro-();!/8uc/'ii/// 

CO 

r ( « + 3/2) Ç ,x-(I0-o2/8 I . / . X I J / 

< A —r, : T72xTx I , i/2\ te \<$>\t)\dt. 
nl(xQ + n ) JXQ + n 
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But from Stirling's formula, T(n + S/2)/n\ = 0(n2) as n —» oo, and thus 

r ( « + 3/2)/w!(*0 + w"x)x = 0(1) as n -> «,, 

so that J3 = o(l) as w —> oo. Similarly A = o(l) a s w - ^ œ. 
Now by (3; 10.15(2)) and using Stirling's formula, since X > 3, 

Ll(\x2)~ (2/7r)V2/8sin ((n + 3/4)**)/* 

as w-> °°, uniformly in — n1/2X < x < w1/2X. Hence 

I 1/2X 

h ~ * Jx„ - ^ ^ ^"=1 ^ ' ^ 1/2X 

— co J — oo Jxo + fl 

For JO we have if n > 0, 

• / X Q ~t~ " • Jxo + w 

so that IQ = o(l) as n -^ oo, and similarly Ib = 0(1) as w -^ œ. 
But by the Fourier integral theorem, 

Ii->ï{4>(xo + ) + 4>(xo - ) } , 

so that 

hm sn(xo) = e{0(xo + ) + 0(xo - )}, 

and the theorem is proved. 

3. Abel summability of the series. 

THEOREM 2. If 

2. 0(xo + ) and <p(xo — ) exist, 

//^w & (</>(x)) exists for all x, and the series II is Abel summable for x = Xo to 
^{<l)(xo + ) + <t>(x0 - ) } . 

Proof. The existence of ^?(#(x)) is clear. If 

*(*,') = Z ( - t)rfr\x)/r\, 0 < * < 1, 

we must show that w(x0, 1 — ) = §{0(xo + ) + </>(̂ o — )}. But as in the proof 
of Theorem 1, 

fr\x) = -^f / V W L 7 * ( i ( * - y)2)4>(y)dy. 

so that using (3; 10.12(17)), if 0 < t < 1, 
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oo /»oo 

u(x0,t) = (iTTpH tT e~i<r°-"rL7HU^-y)2)<t>(y)dy 

= 7OT ^ ' ^ " E t'L7Hï{x»-y?)4>{y)dy 

provided we justify the interchange of summation and integration. 
For this it suffices to show that 

oo /»oo t) 

K(x0,t) = ( 4 T ) - * E f e~i<r,~^7*(i(*o-:y)!)0(:y)|d:y 

is finite. But from (3; 10.18(15)) it follows that 

\L~Hx)\ <2e*x, 

so that 

2C(*o,o < ~^fz-^) J_^(I0~"r/8l*(y)l*v < œ 

for 0 < / < 1, and the interchange is justified. 
Hence if 0 < / < 1, 5 > 0, 

1 /»co 9 

J
»X0 —Ô f*XQ+& /»oo 

+ + = /i + /2 + /,,. 
~ o o J TO — Ô Jxft+8 

f XQ—8 *J xo+5 

Consider J». Since e~(XG~v)?'t/4(l~t) decreases for y > x0, we have 

= <^wl><*" ,''' ,<'~v' ,"~'>* |*w|* 
8'2t/4(l~t) /»oo 2 

Similarly 7i —-> 0 as / —> 1 —. 
Finally from (7; chap. VII, Theorem 2b and corollaries 2b.2 and 2b.3), 

72-*!{0(a;o + ) + ct>(xo - ) ) • 

COROLLARY. 7f 

and x0 is in the Lebesgue set of <£, then <g (</>(x)) exists for all x, and the series II 
is Abel summable for x — XQ to <j>(xo). 

The proof is identical with the proof of the theorem except that we do 
not use (7; Chap. VII, Corollary 2b.3). 
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Jt may be mentioned that 

r+? 
provides, with x0 = 0, an example of a function satisfying the hypotheses 
of Theorem 2, but not those of Theorem 1. 

4. Applications. Theorem 1 yields various results about Hermite poly­
nomials. For example, it follows from (3; 10.13(30)) that 

& (Hn(ax)) = (1 - 4a*)iHHtt(ax/(l ~ 4a2)^), - \ < a < \. 

Now from (3; 101.3(13)), 

n'TT <K*\ i@bY -n(n~ l)...(n-r + l)Hn_7(bx), r < n 
D Hn(bx) = ) n 

{() , r > n. 
Hence from Theorem 1 we have, if — \ < a < \, 

Hn(ax) = (1 - 4a )2 2^ ; 

• ( - 4a2 / ( l - ±a2))rHn-2r(ax/0 - 4a2)*), 

or changing ax/(I — 4a2)* to x, and letting X = (1 — 4a2)*, 

the result being clearly valid now for all X. 
Another interesting application comes about as follows. An easy calculation 

shows that for all real v, 

2?((1 + 4 » * ) - V V / ( 1 + 4 , , ) ) = evV = / ( * ) , 

and it follows easily from differentiating this formula that 

&«1 + V)-3/2x/ l2/(1+4,2)) = */*' = g(x). 

Theorem 1 can be applied to these functions if — \ < v < §. Hence since, 
from (3; (10.13(7)) 

f'\x) = 2 ) V V = ( - l)VrevVH,T(wx), 

and using (3; 10.13(10)) and Leibnitz's rule, 

g™\x) = D*rxe9'* = * D a V V + 2rD2r~lev^ 

= ( - l)V r-VV(2ivxH2 r(ivx) - 4riJ2r_1(mr))/2? 

= ( - l ) V ^ V V J 7 2 H a ( « w ) / 2 t . 

Thus from Theorem 1, if — | < z; < §, 

W n ^ ^ » ( W - 1) . . . ( » - 2 r + 1 ) , 2 nr,«-2rrr , x 

Hn{\x) =2-, ~ j (A - 1) X Hn~2r(x), 
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(1+4?; ) 2 e = e 2^ v H2r yivx)/r\, 

and 
oo 

(l+4z; ) xe = (2tv ) e 2^ v H2r+\ {ivx)/r\, 

whence on dividing we obtain 

(l+4z/ ) -e = 2-é v HïT (wx)/r\ 

and 

(l+4v2)-3/2-2iv2xe4v,x,-,(1+4',-) = £ vir+1HiT+1(ivx)/r\ 

Now for every v, — ^ < v < ^, each series of the last pair converges uniformly 
with respect to x for x in any closed bounded region of the complex x-plane. 
This follows for the first series, for example from the M-test on making use 
of the inequality 

\H2r(x)\ < 22r+1r!e**2 

given in (3; 10.18(16)), and for the second series similarly. Hence by the 
principal of analytic continuation, the series converge to the indicated sums 
for all complex x, and another appeal to analytic continuation with respect 
to v shows that the formulae hold for all complex v with \v\ < \. Finally, 
changing ivx to x, and adding, we obtain, in agreement with (4; 19.7(11)), 

1 + 2VX + 4:V 4^2/(1+4^2) ^ 

~~(Y+~4?f^~~e = 0 v 

valid for all complex x, and all complex v with \v\ < J. 
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