TWISTED GROUP RINGS WHOSE UNITS FORM AN FC-GROUP

VICTOR BOVDI

ABSTRACT. Let $U(K_{\lambda}G)$ be the group of units of the infinite twisted group algebra $K_{\lambda}G$ over a field K. We describe the FC-centre ΔU of $U(K_{\lambda}G)$ and give a characterization of the groups G and fields K for which $U(K_{\lambda}G) = \Delta U$. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.

1. Introduction. Let G be a group, K a field and $\lambda: G \times G \mapsto U(K)$ a 2-cocycle of G with respect to the trivial action of G. Then the twisted group algebra $K_{\lambda}G$ of G over the field K is an associative K-algebra with basis $\{u_g \mid g \in G\}$ and with multiplication defined for all $g, h \in G$ by

$$u_g u_h = \lambda_{g,h} u_{gh}, \quad (\lambda_{g,h} \in \lambda)$$

and using distributivity.

Let $U(K_{\lambda}G)$ be the group of units of $K_{\lambda}G$ and let ΔU be its subgroup consisting of all elements with finitely many conjugates in $U(K_{\lambda}G)$. This subgroup ΔU is called the FC-*centre* of $U(K_{\lambda}G)$. Clearly, if $\Delta U = U(K_{\lambda}G)$, then $U(K_{\lambda}G)$ is an FC-group (group with finite conjugacy classes).

The problem to study the group of units of group rings with FC property was posed by S. K. Sehgal and H. J. Zassenhaus [1]. For a field K of characteristic 0 they described all groups G without subgroups of type p^{∞} for which the group of units of the group algebra of G over K is an FC-group. This was spelling for arbitrary groups by H. Cliff and S. K. Sehgal [2].

In this paper we describe the subgroup ΔU when $K_{\lambda}G$ is infinite. Let $t(\Delta U)$ be the group of all elements of finite order of ΔU . Then ΔU is a solvable group of length at most 3 and the subgroup $t(\Delta U)$ is nilpotent of class at most 2. This is new even for group algebras. We use this result for the characterization of those cases when $U(K_{\lambda}G)$ has FC property, and obtain a generalization of the Cliff-Sehgal-Zassenhaus theorem for twisted group algebras.

Research supported by the Hungarian National Foundation for Scientific Research No. T014279. Received by the editors September 27, 1993.

AMS subject classification: Primary: 16S35; secondary: 20C07, 20C25.

[©] Canadian Mathematical Society 1995.

2. The FC-centre of $U(K_{\lambda}G)$. By a theorem of B. H. Neumann [3] the elements of finite order in ΔU form a normal subgroup which we denote by $t(\Delta U)$, and the factorgroup $\Delta U/t(\Delta U)$ is a torsion free abelian group. Evidently, $\bar{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is a subgroup in $U(K_{\lambda}G)$, while U(K) is a normal subgroup in \bar{G} , with factorgroup $\bar{G}/U(K)$ isomorphic to G.

If x is a nilpotent element of the ring $K_{\lambda}G$ then the element y = 1 + x is a unit in $K_{\lambda}G$ and is referred to as a unipotent element of $U(K_{\lambda}G)$.

Let $\zeta(G)$ be the centre of the group *G* and $[g, h] = g^{-1}h^{-1}gh$ $(g, h \in G)$.

LEMMA 1. Let $K_{\lambda}G$ be an infinite twisted group algebra. Then all unipotent elements of the subgroup ΔU are central in ΔU .

PROOF. Let y = 1 + x be a unipotent element of ΔU and $v \in \Delta U$. Then for a positive integer k we have $x^k = 0$ and by induction on k we will prove vx = xv.

The subgroup $\overline{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is infinite and by Poincaré's theorem the centralizer *S* of the subset $\{v, y\}$ of \overline{G} is a subgroup of finite index in \overline{G} . Since \overline{G} is infinite, *S* is infinite and fy = yf for all $f \in S$. Then xf is nilpotent and 1 + xf is a unit in $K_{\lambda}G$. We can see easily that the set $\{(1 + xf)^{-1}v(1 + xf) \mid f \in S\}$ is finite. Let v_1, \ldots, v_t be the elements of this set and $W_i = \{f \in S \mid (1 + xf)^{-1}v(1 + xf) = v_i\}$. Then $S = \bigcup W_i$ and there exists an index j such that W_j is infinite. Fix an element $f \in W_j$. Any element $q \in W_j, q \neq f$ satisfies

$$(1+xf)^{-1}v(1+xf) = (1+xq)^{-1}v(1+xq)$$

and

$$v(1+xf)(1+xq)^{-1} = (1+xf)(1+xq)^{-1}v.$$

Then

$$v\{(1+xq) + (xf - xq)\}(1+xq)^{-1} = \{(1+xq) + (xf - xq)\}(1+xq)^{-1}v,$$

$$v(1+x(f-q)(1+xq)^{-1}) = (1+x(f-q)(1+xq)^{-1})v$$

and

(1)
$$vx(f-q)(1+xq)^{-1} = x(f-q)(1+xq)^{-1}v.$$

Now we use the induction mentioned above. For k = 1 the statement is trivial; so we suppose it is true for all $1 \le n < k$, where $k \ge 2$ is any given integer.

If $m \ge 2$, then by induction hypothesis $x^m v = v x^m$ for all $v \in \Delta U$. Clearly, if $i \ge 1$ then

$$x(f-q)x^{i}q^{i}v = (f-q)x^{i+1}q^{i}v = (f-q)vx^{i+1}q^{i} = vx(f-q)x^{i}q^{i}.$$

From (1) we have

$$vx(f-q)\left(1-xq+x^2q^2+\dots+(-1)^{k-1}x^{k-1}q^{k-1}\right)$$

= $x(f-q)\left(1-xq+x^2q^2+\dots+(-1)^{k-1}x^{k-1}q^{k-1}\right)v.$

So (f - q)(vx - xv) = 0.

Now suppose $xv \neq vx$. The element $q^{-1}f \in \overline{G}$ can be written as λu_h ($\lambda \in U(K), h \in G$). By $vx - xv = \sum_{i=1}^{s} \alpha_i u_{g_i} \neq 0$ we have

$$\sum_{i=1}^s \lambda \alpha_i u_h u_{g_i} - \sum_{i=1}^s \alpha_i u_{g_i} = 0.$$

If $h \in G$ satisfies this equation, then $g_1 = hg_j$ for some j, and the number of such elements h is finite. Since $W_j = \{\lambda u_h \mid \lambda \in U(K)\}$ is an infinite set, there exist h and different elements $\lambda_1, \lambda_2 \in K$ such that $\lambda_1 u_h, \lambda_2 u_h \in W_j$. Then $(\lambda_i u_h - 1)(vx - xv) = 0$, (i = 1, 2) and we obtain $(\lambda_1 u_h - \lambda_2 u_h)(vx - xv) = 0$. This condition is satisfied only if vx = xv but does not hold.

LEMMA 2. Let $K_{\lambda}G$ be an infinite twisted group algebra, H a finite subgroup of ΔU and L_H the subalgebra of $K_{\lambda}G$ generated by H. Then the group of units $U(L_H)$ of the algebra L_H is contained in ΔU , and the factorgroup $U(L_H)/(1 + J(L_H))$ is abelian.

PROOF. If *H* is a finite subgroup of ΔU and L_H is the subalgebra of $K_{\lambda}G$ generated by *H*, then L_H is an algebra of finite rank over *K* and its radical $J(L_H)$ is nilpotent. Then $U(L_H)$ is a subgroup of ΔU and by Lemma 1 all unipotent elements of $U(L_H)$ are central in ΔU . Therefore $1 + J(L_H)$ is a central subgroup of ΔU and $J(L_H) \subset \zeta(L_H)$, where $\zeta(L_H)$ is the centre of L_H . Then by Theorem 48.3 in [4] (p. 209)

(2)
$$L_H = L_H e_1 \oplus \cdots \oplus L_H e_n \oplus N,$$

where $L_H e_i$ is a semiprime algebra (*i.e.* $L_H e_i / J(L_H e_i)$ is a division ring), N is a commutative artinian radical algebra, e_1, \ldots, e_n are pairwise orthogonal idempotents. By Lemma 13.2 in [4] (p. 57) any idempotent e_i is central in L_H and $U(L_H e_i)$ is isomorphic to the subgroup $\langle 1 - e_i + ze_i | z \in U(L_H) \rangle$ of $U(L_H)$.

Since $U(L_H e_i)$ is a subgroup of the FC-group ΔU it is an FC-group, too. As $J(L_H e_i)$ is nilpotent (see [5]),

(3)
$$U(L_H e_i) / (1 + J(L_H e_i)) \cong U(L_H e_i / J(L_H e_i)).$$

By Scott's theorem [7], in the skewfield $L_H e_i / J(L_H e_i)$ every nonzero element is either central or its conjugacy class is infinite. Thus the FC-group $U(L_H e_i) / (1 + J(L_H e_i))$ is abelian.

Decomposition (2) implies

$$L_H/J(L_H) \cong L_H e_1/J(L_H e_1) \oplus \cdots \oplus L_H e_n/J(L_H e_n)$$

and

$$U(L_H)/(1+J(L_H)) \cong U(L_H/J(L_H)) \cong U(L_He_1/J(L_He_1)) \times \cdots \times U(L_He_n/J(L_He_n)).$$

Therefore $U(L_H)/(1 + J(L_H))$ is abelian.

THEOREM 1. Let $K_{\lambda}G$ be an infinite twisted group algebra and $t(\Delta U)$ the subgroup of ΔU consisting of all elements of finite order in ΔU . Then all elements of the commutator subgroup of $t(\Delta U)$ are unipotent and central in ΔU .

PROOF. Let *H* be a finite subgroup of $t(\Delta U)$ and L_H the subalgebra of $K_{\lambda}G$, generated by *H*. Then the elements of the subgroup $H_1 = H \cap (1 + J(L_H))$ are unipotent and (by Lemma 1) central in ΔU . The subgroup $H(1 + J(L_H))$ is contained in $U(L_H)$ and

$$H/H_1 = H/\left(H \cap \left(1 + J(L_H)\right)\right) \cong \left(H\left(1 + J(L_H)\right)\right)/\left(1 + J(L_H)\right).$$

By Lemma 2 the factorgroup $U(L_H)/(1+J(L_H))$ is abelian. So H/H_1 is abelian and the commutator subgroup of H is contained in H_1 and consists of unipotent elements.

Since the commutator subgroup of $t(\Delta U)$ is the union of the commutator subgroups of the finite subgroups of $t(\Delta U)$, all elements of the commutator subgroup of $t(\Delta U)$ are unipotent and central in ΔU .

THEOREM 2. Let $K_{\lambda}G$ be an infinite twisted group algebra where char(K) does not divide the order of any element of the subgroup ΔG . Then $t(\Delta U)$ is abelian.

PROOF. Let *H* be a finite subgroup of the commutator subgroup of $t(\Delta U)$. Then (by Theorem 1) *H* is contained in the centre of ΔU . The set $\{u_g^{-1}Hu_g \mid g \in \Delta G\}$ contains only a finite number of subgroups H_1, H_2, \ldots, H_t . The subgroup $L = H_1H_2 \cdots H_t$ is finite and is invariant under inner automorphism $f_g(x) = u_g^{-1}xu_g$ of the ring $K_{\lambda}\Delta G$, where $g \in \Delta G$. Let x_1, \ldots, x_s be all elements of *L*. Then $y_i = x_i - 1$ is a nilpotent element, and in the commutative ring *L* the elements y_1, \ldots, y_s commute. Therefore

$$J \cong \left\{ \sum_{i=1}^{s} \alpha_i y_i \mid \alpha_i \in K, x_i = y_i + 1 \in L \right\}$$

is a nilpotent subring. Let

$$F = \left\{ \sum_{i=1}^{s} \alpha_i y_i z_i \mid \alpha_i \in K, x_i = y_i + 1 \in L, z_i \in K_{\lambda} \Delta G \right\}.$$

Let us prove that *F* is a nilpotent right ideal of $K_{\lambda}\Delta G$. If $z = \sum_{j} \beta_{j} u_{g_{j}} \in K_{\lambda}\Delta G$ then $y_{i}z = \sum_{j} \beta_{j} u_{g_{j}} u_{g_{j}}^{-1} y_{i} u_{g_{j}}$, and $u_{g_{j}}^{-1} y_{i} u_{g_{j}}$ equals one of the elements y_{1}, \ldots, y_{s} . This and the nilpotency of the ring *J* imply that *F* is a nilpotent ring. By Passman's theorem [6], if char(*K*) does not divide the order of any element of ΔG then $K_{\lambda}\Delta G$ does not contain nilideals. Therefore F = 0, L = 1 and the commutator subgroup $t(\Delta U)$ is trivial so $t(\Delta U)$ is abelian.

COROLLARY. Let $K_{\lambda}\Delta G$ be an infinite twisted group algebra. Then ΔU is a solvable group of length at most 3, and the subgroup $t(\Delta U)$ is nilpotent of class at most 2.

3. The FC property of $U(K_{\lambda}G)$.

LEMMA 3. Let *L* be a subfield of the twisted group algebra $K_{\lambda}G$, where *K* is a subfield of *L*, $g \in G$ an element of order *n* and

$$\lambda_g = u_g^n = \lambda_{g,g} \lambda_{g,g^2} \cdots \lambda_{g,g^{n-1}}.$$

If $\alpha^n \neq \lambda_g$ for some $\alpha \in L$ and $\alpha u_g = u_g \alpha$ then $u_g - \alpha$ is a unit in $K_{\lambda}G$. Furthermore, if L is an infinite field then the number of such units is infinite.

PROOF. Let $\alpha \in L$, $\alpha^n \neq \lambda_g$ and $u_g \alpha = \alpha u_g$. Then $\lambda_g - \alpha^n$ is a nonzero element of L and

$$(\alpha^{n-1} + \alpha^{n-2}u_g + \dots + \alpha u_g^{n-2} + u_g^{n-1})(\lambda_g - \alpha^n)^-$$

is the inverse of $u_g - \alpha$. We know that the number of solutions of the equation $x^n - \lambda_g = 0$ in *L* does not exceed *n*. Thus in an infinite field *L* there are infinitely many elements not satisfying the equation $x^n - \lambda_g = 0$.

LEMMA 4. Let G be an infinite locally finite group where char(K) does not divide the order of any element of G. If $U(K_{\lambda}G)$ is an FC-group then G is abelian and $K_{\lambda}G$ is commutative.

PROOF. Let *W* be a finite subgroup of *G*. Then the subalgebra $K_{\lambda}W$ is a semiprime artinian ring and by the Wedderburn-Artin theorem

$$K_{\lambda}W = M(n_1, D_1) \oplus \cdots \oplus M(n_t, D_t),$$

where each D_k is a skewfield and $M(n_k, D_k)$ is a full matrix algebra. Let $e_{i,j}, e_{j,i}$ be matrix units in $M(n_k, D_k)$ and $i \neq j$. Then the unipotent elements $1 + e_{i,j}, 1 + e_{j,i}$ are central in $K_{\lambda}G$ (see Theorem 1) which is impossible if $i \neq j$. Thus $n_k = 1$ and $K_{\lambda}W$ is a direct sum of skewfields, $K_{\lambda}W = D_1 \oplus D_2 \oplus \cdots \oplus D_t$ and

$$U(K_{\lambda}W) = U(D_1) \times U(D_2) \times \cdots \times U(D_t).$$

By Scott's theorem [7] any nonzero element of a skewfield is either central or has an infinite number of conjugates. Therefore $K_{\lambda}W$ is a direct sum of fields and W is abelian. Since *G* is a locally finite group, *G* is abelian and $K_{\lambda}G$ is a commutative algebra.

LEMMA 5. Let $K_{\lambda}G$ be infinite and char(K) does not divide the order of any element of the normal torsion subgroup L of G. If $U(K_{\lambda}G)$ is an FC-group then all idempotents of $K_{\lambda}L$ are central in $K_{\lambda}G$.

PROOF. Let the idempotent $e \in K_{\lambda}L$ be noncentral in $K_{\lambda}G$. Then there exists $g \in G$ such that $eu_g \neq u_g e$. The subgroup $H = \langle g^{-i} \operatorname{supp}(e)g^i \mid i \in \mathbb{Z} \rangle$ is finite and for any $a \in G$ the subalgebra $K_{\lambda}H$ of $K_{\lambda}L$ is invariant under the inner automorphism $\phi(x) = u_a^{-1}xu_a$. It is easy to see (by Lemma 4) that $K_{\lambda}H$ is a commutative semisimple K-algebra of finite rank and the idempotent $e \in K_{\lambda}H$ is a sum of primitive idempotents. Consequently, there exists a primitive idempotent f of $K_{\lambda}H$ which does not commute with u_g . Then the idempotents f and $u_g^{-1}fu_g$ are orthogonal and $(u_g f)^2 = u_g fu_g f = u_g^2 (u_g^{-1}fu_g)f = 0$. By Theorem 1 the unipotent element $1 + u_g f$ commutes with u_g and $(1 + u_g f)u_g = u_g(1 + u_g f)$ implies $u_g f = fu_g$, which is impossible. Thus, all idempotents of $K_{\lambda}L$ are central in $K_{\lambda}G$.

LEMMA 6. Let $U(K_{\lambda}G)$ be an FC-group and t(G) the set of all elements of finite order in G. Then

- 1. G is an FC-group;
- 2. *if there exists an infinite subfield* L *in the centre of* $K_{\lambda}G$ *such that* $L \supseteq K$ *then* t(G) *is central in* G *and* $\lambda_{g,h} = \lambda_{h,g}$ ($h \in t(G), g \in G$).

PROOF. If $U(K_{\lambda}G)$ is an FC-group then $\overline{G} = \{\lambda u_g \mid \lambda \in U(K), g \in G\}$ is an FC-group. Clearly U(K) is normal in \overline{G} and $G \cong \overline{G}/U(K)$. We conclude that G is an FC-group as it is a homomorphic image of the FC-group \overline{G} .

Let *L* be an infinite field which satisfies condition 2 of the lemma. Then by Lemma 3 for any $h \in t(G)$ there exists a countable set $S = \{\alpha_i \in L \mid i \in \mathbb{Z}\}$ such that $u_h - \alpha_i$ is a unit for all $i \in \mathbb{Z}$. Suppose that $u_g u_h \neq u_h u_g$ for some $g \in G$. Next we observe that the equality

$$(u_h - \alpha_i)u_g(u_h - \alpha_i)^{-1} = (u_h - \alpha_j)u_g(u_g - \alpha_j)^{-1}$$

holds only in case $\alpha_i = \alpha_i$. Since

$$(u_h - \alpha_i)(u_h - \alpha_j)^{-1} = 1 + (\alpha_j - \alpha_i)(u_h - \alpha_j)^{-1},$$

we obtain $(\alpha_i - \alpha_j)(u_g u_h - u_h u_g) = 0$ and $\alpha_i = \alpha_j$. It follows that the set

$$\left\{(u_h-\alpha_j)u_g(u_h-\alpha_j)^{-1}\mid i\in\mathbb{Z}\right\}$$

is infinite which contradicts the condition that $U(K_{\lambda}G)$ is an FC-group. Then $u_g u_h = u_h u_g$, therefore [g, h] = 1, $t(G) \subseteq \zeta(G)$ and $\lambda_{g,h} = \lambda_{h,g} (h \in t(G), g \in G)$.

LEMMA 7. Let G be an abelian torsion group, $K_{\lambda}G$ a commutative semisimple algebra and v an idempotent of $K_{\lambda}G$. If $K_{\lambda}Gv$ contains a finite number of idempotents then $K_{\lambda}Gv$ is a direct sum of finitely many fields.

PROOF. If e_1, \ldots, e_s are all the idempotents of $K_{\lambda}Gv$, then

$$L = \langle \operatorname{supp}(e_1), \ldots, \operatorname{supp}(e_t) \rangle$$

is a finite subgroup in G and $K_{\lambda}Lv$ is a direct sum of finitely many fields,

$$K_{\lambda}Lv = (K_{\lambda}Lv)f_1 \oplus \cdots \oplus (K_{\lambda}Lv)f_t,$$

where f_1, \ldots, f_t are orthogonal primitive idempotents of $K_{\lambda}Lv$. The corresponding direct sum in $K_{\lambda}Gv$ is

$$K_{\lambda}Gv = (K_{\lambda}Gv)f_1 \oplus \cdots \oplus (K_{\lambda}Gv)f_t.$$

We show that the element $0 \neq x \in (K_{\lambda}Gv)f_i$ is a unit. $R = \langle L, \text{supp}(x) \rangle$ is a finite subgroup and $K_{\lambda}Rv$ is a direct sum of finitely many fields,

$$K_{\lambda}Rv = (K_{\lambda}Rv)l_1 \oplus \cdots \oplus (K_{\lambda}Rv)l_t,$$

and each idempotent f_i is either equal to an idempotent l_j or is a sum of these idempotents. If $f_i = l_j$ then $xf_i \in (K_\lambda R\nu)l_j$ and x is a unit in $(K_\lambda L\nu)f_i$. If $f_i = l_{i_1} + l_{i_2}$ $(l_{i_1}, l_{i_2} \in K_\lambda L\nu)$ then $(K_\lambda L\nu)f_i = (K_\lambda L\nu)l_{i_1} \oplus (K_\lambda L\nu)l_{i_2}$, but this does not hold. THEOREM 3. Let $K_{\lambda}G$ be an infinite twisted group algebra of $char(K_{\lambda}G) = p$, such that t(G) contains a p-element and either the field K is perfect or for any element $g \in G$ of order p^k , the element $u_g^{p^k}$ is algebraic over the prime subfield of K. Then $U(K_{\lambda}G)$ is an FC-group if and only if G is an FC-group and satisfies the following conditions:

- 1. p = 2 and |G'| = 2;
- 2. t(G) is central in G and $t(G) = G' \times H$, where H is abelian, and has no 2-elements;
- 3. $K_{\lambda}H$ is a direct sum of a finite number of fields;¹
- 4. $\{\lambda_{h,h^{-1}}^{-1}\lambda_{h^{-1},g}\lambda_{h^{-1}g,h} \mid h \in H\}$ is a finite set for all $g \in G$.

PROOF (NECESSITY). By Lemma 6 G is an FC-group. Let g be an element of order p^k . Then $u_g^{p^k} = \lambda_g \in U(K)$ and in the perfect field K we can take a p^k -th root of λ_g which we denote by μ . If K_0 is the prime subfield of K and λ_g is algebraic over K_0 then $K_0(\lambda_g)$ is a finite field and so it is perfect. Thus $u_g - \mu$ is nilpotent and $1 + \mu - u_g$ and (by Theorem 1) $1 - (u_g - \mu)u_g$ is central in $U(K_\lambda G)$. Then for any $b \in G$ by

$$u_b\big(1-(u_g-\mu)u_a\big)=\big(1-(u_g-\mu)u_a\big)u_b$$

implies

(4)
$$u_b u_g u_a - \mu u_b u_a - u_g u_a u_b + \mu u_a u_b = 0.$$

Each u_g can be written in the form $\mu + (u_g - \mu)$ and so $\mu^{-1}u_g = 1 + \mu^{-1}(u_g - \mu)$. Thus $\mu^{-1}u_g$ is an unipotent element and it commutes with u_b and u_a . Then (4) can be written as

(5)
$$u_g u_b u_a - u_g u_a u_b - \mu u_b u_a + \mu u_a u_b = 0.$$

If [a, b] = 1 then, by (5), we have $(\lambda_{a,b} - \lambda_{b,a})(u_g - \mu) = 0$. From this equation we get that the coefficient of u_g must be zero and $\lambda_{a,b} = \lambda_{b,a}$. Thus, $u_b u_a = u_a u_b$.

Let $[a, b] \neq 1$. Then by (5), $u_g u_b u_a = -\mu u_a u_b$ and $u_g u_a u_b = -\mu u_b u_a$. So

(6)
$$\begin{cases} u_g = -\mu [u_a^{-1}, u_b^{-1}]^{-1}, \\ u_g = -\mu [u_a^{-1}, u_b^{-1}]. \end{cases}$$

Consequently $u_g^2 = \mu^2$ and $(u_g \mu^{-1})^2 = 1$. Note that in (6) g may be any p-element, further a and b may be any noncommuting elements of G. This is possible only if p = 2. Then the commutator subgroup \overline{G}' of group $\overline{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is of order 2 and coincides with the Sylow 2-subgroup of \overline{G} . Thus $\overline{G}' \subseteq \zeta(\overline{G})$ and \overline{G} is a nilpotent group of class at most 2. Let

$$L = \langle \mu u_h \mid \mu \in U(K), h \in t(G) \rangle.$$

Then L/U(K) is nilpotent torsion group and its 2-Sylow subgroup is of order 2. Here L is abelian because \overline{G}' is of order 2 and it is a subgroup in L. Therefore t(G) is abelian and

¹ If $K_{\lambda}H$ is a group ring then *H* is a finite abelian group.

 $t(G) = S \times H$, where $S = \langle g | g^2 = 1 \rangle$ is the Sylow 2-subgroup of t(G) and all elements of *H* are of odd order.

We show that $K_{\lambda}H$ is central in $K_{\lambda}G$. Let $h \in H, a \in G$ and $[u_a, u_h] \neq 1$. Then $[u_a, u_h] = \mu u_g$ and

(7)
$$\lambda u_{a^{-1}h^{-1}ah} = \mu u_g.$$

It is clear that $[a, h] \in H$ and the order of [a, h] is odd because H is normal in G. Since g is a 2-element, (7) does not hold. Thus $K_{\lambda}H$ is central in $K_{\lambda}G$ and $t(G) \subseteq \zeta(G)$.

Let us prove that $K_{\lambda}H$ contains only a finite number of idempotents. Suppose $K_{\lambda}H$ contains an infinite number of idempotents e_1, e_2, \ldots If $d, b \in G$ and $[b, d] = g \neq 1$ then $g^2 = 1$ and (by Lemma 5) $1 - e_i + u_d e_i$ is a unit. Clearly,

$$(1 - e_i + u_d e_i)^{-1} u_b (1 - e_i + u_d e_i) = u_b (1 - e_i + \mu u_g e_i),$$

where $\mu = \lambda_{d,d^{-1}}^{-1} \lambda_{b,b^{-1}}^{-1} \lambda_{d^{-1},b} \lambda_{d^{-1}b,d} \lambda_{d^{-1}bd,b^{-1}}$.

If $i \neq j$ then $1 - e_i + \mu u_g e_i \neq 1 - e_j + \mu u_g e_j$. Indeed, if $1 - e_i + \mu u_g e_i = 1 - e_j + \mu u_g e_j$, then $(e_i - e_j)(\mu u_g - 1) = 0$. Since $e_i - e_j \in K_{\lambda}H$ and $u_g \notin K_{\lambda}H$, the last equality is true only in case i = j. Therefore if $i \neq j$ then $1 - e_i + \mu u_g e_i \neq 1 - e_j + \mu u_g e_j$ and u_b has an infinite number of conjugates, which does not hold. Thus $K_{\lambda}H$ contains a finite number of idempotents e_1, e_2, \ldots, e_t , and (by Lemma 7) $K_{\lambda}H$ is a direct sum of a finite number of fields.

Since $\{u_g^{-1}u_hu_g \mid g \in G\}$ is a finite set, we obtain condition 4 of the theorem.

SUFFICIENCY. Let the conditions of the theorem be satisfied. We prove that $U(K_{\lambda}G)$ is an FC-group.

Let $G' = \langle a \mid a^2 = 1 \rangle$ be the commutator subgroup of G and $\mu^2 = \lambda_{a,a}$. Thus the ideal $\Im = K_{\lambda}G(u_a - \mu)$ is nilpotent.

In $K_{\lambda}G$ we choose a new basis $\{w_g \mid g \in G\}$,

$$w_g = egin{cases} u_g, & ext{if } g \in G \setminus \langle a
angle, \ \mu^{-1} u_g, & ext{if } g \in \langle a
angle. \end{cases}$$

Let $G = \bigcup b_j \langle a \rangle$ be the decomposition of the group G by the cosets of $\langle a \rangle$. Any element $x + \Im \in K_\lambda G / \Im$ can be written as

$$\begin{aligned} x + \mathfrak{I} &= \sum_{i} \alpha_{i} w_{b_{i}} + \sum_{i} \beta_{i} w_{b_{i}} w_{a} + \mathfrak{I} \\ &= \sum_{i} \alpha_{i} w_{b_{i}} + \sum_{i} \beta_{i} w_{b} (w_{a} - 1) + \sum_{i} \beta_{i} w_{b_{i}} + \mathfrak{I} = \sum_{i} (\alpha_{i} + \beta_{i}) w_{b_{i}} + \mathfrak{I}. \end{aligned}$$

We show that $K_{\lambda}G/\Im$ is commutative. Indeed

$$(w_g + \Im)(w_h + \Im) = w_g w_h + \Im = w_h w_g [w_g, w_h] + \Im,$$

and the commutator $[w_g, w_h]$ is either 1 or w_a . If $[w_g, w_h] = w_a$ then

$$w_g w_h + \Im = w_h w_g w_a + \Im = w_h w_g (w_a - 1) + w_h w_g + \Im = w_h w_g + \Im.$$

VICTOR BOVDI

We will construct the twisted group algebra $K_{\mu}H$ of the group $H = G/\langle a \rangle$ over the field K with the system of factors μ .

Let $R_l(G/\langle a \rangle)$ be a fixed set of representatives of all left cosets of the subgroup $\langle a \rangle$ in *G* and $H = \langle h_i = b_i \langle a \rangle \mid b_i \in R_l(G/\langle a \rangle) \rangle$. Let t_{h_i} denote element $w_{b_i} + \Im$. If $h_i h_j = h_k$, then $b_i b_j = b_k a^s$ ($s = \{0, 1\}$), and

$$t_{h_i}t_{h_j} = w_{b_i}w_{b_j} + \Im = \lambda_{b_i,b_j}w_{b_ka^s} + \Im = \lambda_{b_i,b_j}\lambda_{b_k,a^s}^{-1}w_{b_k}w_{a^s} + \Im$$

= $\lambda_{b_i,b_j}\lambda_{b_k,a^s}^{-1}w_{b_k} + \lambda_{b_i,b_j}\lambda_{b_k,a^s}^{-1}w_{b_k}(w_{a^s} - 1) + \Im = \lambda_{b_i,b_j}\lambda_{b_k,a^s}^{-1}w_{b_k} + \Im.$

Let $\mu_{h_i,h_j} = \lambda_{b_i,b_j} \lambda_{b_k,a^s}^{-1}$ and $\mu = \{\mu_{a,b} \mid a, b \in H\}$. Let $\{t_h \mid h \in H\}$ be a basis of the twisted group algebra $K \mu H$ with the system of factors μ . Clearly $t_{h_i} t_{h_j} = \mu_{b_i,b_j} t_{h_k}$.

Let t(H) be the set of elements of finite order of H and $H = \bigcup c_i t(H)$ the decomposition of the group H by the cosets of the subgroup t(H). Then $x, x^{-1} \in U(K_{\mu}H)$ can be written as

$$x = \sum_{i=1}^{t} \alpha_i t_{c_i}$$
 and $x^{-1} = \sum_{i=1}^{s} \beta_i t_{d_i}$,

where α_i, β_j are nonzero elements of $K_{\mu}t(H)$. The subgroup

$$L = \langle \operatorname{supp}(\alpha_1), \ldots, \operatorname{supp}(\alpha_t), \operatorname{supp}(\beta_1), \ldots, \operatorname{supp}(\beta_s) \rangle$$

is finite and $K_{\mu}L$ is a direct sum of fields

(8)
$$K_{\mu}L = e_1K_{\mu}L \oplus \cdots \oplus e_nK_{\mu}L$$

Let $xe_k = \sum_{i=1}^n \gamma_i t_{c_i}$ and $x^{-1}e_k = \sum_{i=1}^m \delta_i t_{d_i}$, where γ_i, δ_j are nonzero elements of the field $K_{\mu}Le_k$.

We know [8], that a torsion free abelian group is orderable. Therefore we can assume that

 $c_{i_1}t(H) < c_{i_2}t(H) < \cdots < c_{i_n}t(H)$

and

$$d_{j_1}t(H) < d_{j_2}t(H) < \cdots < d_{j_m}t(H).$$

Then $c_{i_1}d_{j_1}t(H)$ is called the *least* and $c_{i_n}d_{j_m}t(H)$ is called the *greatest* among the elements of the form $c_{i_s}d_{j_q}t(H)$. It is easy to see that $c_{i_1}d_{j_1}t(H) < c_{i_n}d_{j_m}t(H)$ if n > 1 or m > 1. Therefore $\gamma \delta_1 t_{c_{i_1}} t_{d_{j_1}} \neq \gamma_n \delta_m t_{c_{i_n}} t_{d_{j_m}}$. Since $x^{-1}e_k x e_k = e_k$, we have n = m = 1, $x e_k = \gamma t_{c_r}$ and $x^{-1}e_k = \gamma^{-1}t_{c_r}^{-1}$. Thus x and x^{-1} can be written as

$$x = \sum_{i=1}^{t} \gamma_i t_{c_i}$$
 and $x^{-1} = \sum_{i=1}^{t} \gamma_i^{-1} t_{c_i}^{-1}$,

where $\gamma_1, \ldots, \gamma_t$ are orthogonal elements.

Let $\phi: K_{\lambda}G/\mathfrak{I} \mapsto K_{\mu}H$ be an isomorphism of these algebras. If $x \in U(K_{\lambda}G)$ then $\phi(x + \mathfrak{I}) = \sum_{i=1}^{t} \gamma_i t_{c_i}$ where $\gamma_i \in K_{\mu}Le_i$. It is easy to see that there exists an abelian subgroup \overline{L} of G such that $L = \overline{L}/\langle a \rangle$. The algebra $K_{\lambda}\overline{L}$ is commutative and its radical is a nilpotent ideal equal to $\mathfrak{I} \cap K_{\lambda}\overline{L}$. Since $K_{\mu}\overline{L}/(\mathfrak{I} \cap K_{\lambda}\overline{L}) \cong K_{\lambda}L$, the classical method

of lifting idempotents yields idempotents f_1, \ldots, f_t in $K_{\mu}\bar{L}$ such that $f_1 + \cdots + f_t = 1$ and $f_i + \Im = e_i$. Then $x = xf_1 + \cdots + xf_t$ and $\phi(xf_i + \Im) = \gamma_i t_{c_i}$, where $h_i = b_i \langle a \rangle$, $b_i \in G$. There exists an element $v_i \in K_{\lambda}\bar{L}f_i$ such that $\phi(v_i + \Im) = \gamma_i$ and $\phi(v_i w_{g_i} + \Im) = \gamma_i t_{h_i}$. We can find an element $r \in \Im$ such that $xf_i = (v_i + rf_i)w_{g_i}$.

Clearly $s_i = v_i + rf_i$ is a unit in $K_{\mu}Lf_i$ and is central in $K_{\lambda}G$. So s_1, \ldots, s_i are orthogonal and $x = \sum_{i=1}^t s_i w_{g_i}, x^{-1} = \sum_{i=1}^t s_i^{-1} w_{g_i}^{-1}$. Since $s_i \in \zeta(K_{\lambda}G), x^{-1}w_g x = \sum_{i=1}^t w_{g_i}^{-1}w_g w_{g_i}$ for any $g \in G$. By condition 4 our theorem w_g has a finite number of conjugates, because G is an FC-group. Thus $U(K_{\lambda}G)$ is an FC-group.

LEMMA 8. Let K be a field such that char(K) does not divide the order of any element of t(G), $K_{\lambda}t(G)$ a commutative algebra that does not contain a minimal idempotent. Then for any idempotent $e \in K_{\lambda}t(G)$ there exists an infinite set of idempotents $e_1 = e, e_2, ...$ such that

(9)
$$e_k e_{k+1} = e_{k+1} \quad (k \in \mathbb{N}).$$

PROOF. Suppose $K_{\lambda}t(G)$ does not contain a minimal idempotent. First we prove that for any idempotent there exists an infinite set of idempotents e_1, e_2, \ldots in $K_{\lambda}t(G)$ satisfying condition (9).

Let e_1 be an idempotent of $K_{\lambda}t(G)$ and $H_1 = \langle \operatorname{supp}(e_1) \rangle$. Then the ideal $K_{\lambda}t(G)e_1$ is not minimal and so contains a proper ideal \mathfrak{F}_1 of $K_{\lambda}t(G)$. Let $0 \neq x_1 \in \mathfrak{F}_1$ and $H_2 = \langle H_1, \operatorname{supp}(x_1) \rangle$. Then $\overline{\mathfrak{F}_1} = \mathfrak{F}_1 \cap K_{\lambda}H_2$ is an ideal of $K_{\lambda}H_2$ and $\overline{\mathfrak{F}_1}$ is generated by the idempotent e_2 because H_2 is a finite subgroup of t(G) and the commutative algebra $K_{\lambda}H_2$ is semiprime. It is easy to see that $e_1 = e_2 + f, f \neq 0$ and $e_1e_2 = e_2$. Indeed, if f = 0, then $e_1 = e_2$ and $K_{\lambda}t(G)e_1 = K_{\lambda}t(G)e_2 \subset \mathfrak{F}_1$, which does not hold. The ideal $K_{\lambda}t(G)e_2$ contains a proper ideal \mathfrak{F}_2 of $K_{\lambda}t(G)$. We choose a nonzero element $0 \neq x_2 \in \mathfrak{F}_2$ and consider the subgroup $H_3 = \langle H_2, \operatorname{supp}(x_2) \rangle$. The ideal $\overline{\mathfrak{F}_2} = \mathfrak{F}_2 \cap K_{\lambda}H_3$ is generated by the idempotent e_3 and $e_2e_3 = e_3 \neq e_2$. This method enables us to construct an infinite number of idempotents e_1, e_2, \ldots , satisfying condition (9), which completes the proof.

LEMMA 9. Let K be a field such that char(K) does not divide the order of any element of t(G), and $U(K_{\lambda}G)$ an FC-group. If the commutative algebra $K_{\lambda}t(G)$ contains an infinite number of central idempotents f_1, f_2, \ldots and $g = [a, b] (a, b \in G)$ is an element of order n then the commutators $[u_a, u_b]$ and [a, b] have the same order and

(10)
$$(f_i - f_j)(1 - [u_a, u_b]) = 0$$

for some $i \neq j$.

PROOF. Let $g = [a, b] \neq 1$ where $a, b \in G$. By B. H. Neumann's theorem G/t(G) is abelian, thus $g \in t(G)$ and $1 - f_i + u_b f_i$ is a unit in $K_{\lambda}G$. The element u_a has a finite number of conjugates in $U(K_{\lambda}G)$ and

$$(1 - f_i + u_b^{-1} f_i)u_a(1 - f_i + u_b f_i) = u_a(1 - f_i + [u_a, u_b] f_i).$$

Consequently there exist *i* and *j* (i < j), such that

$$1 - f_i + [u_a, u_b]f_i = 1 - f_j + [u_a, u_b]f_j$$

and

(11)
$$(f_i - f_j)(1 - [u_a, u_b]) = 0.$$

If *n* is the order of g = [a, b] then

$$[u_a, u_b] = \lambda_{a^{-1}, a}^{-1} \lambda_{b^{-1}, b}^{-1} \lambda_{a^{-1}, b^{-1}} \lambda_{a^{-1}b^{-1}, a} \lambda_{a^{-1}b^{-1}a, b} u_g$$

and $[u_a, u_b]^n = \gamma \in U(K)$. Then by (11) we have $\gamma(f_i - f_j) = f_i - f_j$. So $\gamma = 1$ and $[u_a, u_b]^n = 1$.

THEOREM 4. Let $K_{\lambda}G$ be an infinite twisted group algebra, and char(K) does not divide the order of any element of t(G). If $K_{\lambda}t(G)$ contains only a finite number of idempotents then $U(K_{\lambda}G)$ is an FC-group if and only if G is an FC-group and the following conditions are satisfied:

- 1. all idempotents of $K_{\lambda}t(G)$ are central in $K_{\lambda}G$;
- 2. $\{\lambda_{h,h^{-1}}^{-1}\lambda_{h^{-1},g}\lambda_{h^{-1}g,h} \mid h \in H\}$ is a finite set for every $g \in G$;
- 3. $K_{\lambda}t(G)$ is a direct sum of a finite number of fields;
- 4. *if* $K_{\lambda}t(G)$ *is infinite then it is central in* $K_{\lambda}G$.

PROOF (NECESSITY). By Lemmas 4, 6 and 7 $K_{\lambda}t(G)$ is commutative, G is an FCgroup and all idempotents of $K_{\lambda}t(G)$ are central in $K_{\lambda}G$. Since $\{u_g^{-1}u_hu_g \mid g \in G\}$ is a finite set, condition 2 of the theorem is satisfied.

Since $K_{\lambda}t(G)$ contains only a finite number of idempotents (by Lemma 7) $K_{\lambda}t(G)$ is a direct sum of a finite number of fields. Let $K_{\lambda}t(G)$ be infinite and $K_{\lambda}t(G)e_i$ a field in this direct decomposition of $K_{\lambda}t(G)$. Lemma 5 implies that $K_{\lambda}t(G)e_i$ is invariant under the inner automorphism $\psi(x) = u_g^{-1}xu_g$ for any $g \in G$. Since $\langle u_g, K_{\lambda}t(G)e_i \setminus \{0\}\rangle$ is an FC-group there exists a infinite subfield L_g of $K_{\lambda}t(G)e_i$ such that $yu_g = u_gy$ for every $y \in L$. Let $H = \langle g, t(G) \rangle$. Then $K_{\lambda}H$ is subalgebra of $K_{\lambda}G$ and (by Lemma 6) $K_{\lambda}t(G)$ is central in $K_{\lambda}H$.

SUFFICIENCY. Let $K_{\lambda}t(G)$ be a direct sum of fields,

$$K_{\lambda}t(G)=F_1\oplus F_2\oplus\cdots\oplus F_t.$$

Then $F_i = K_{\lambda}t(G)e_i$, where e_i is a central idempotent in $K_{\lambda}G$. It is easy to see that $K_{\lambda}G$ is a direct sum of ideals

(12)
$$K_{\lambda}G = K_{\lambda}Ge_1 \oplus \cdots \oplus K_{\lambda}Ge_t.$$

Let us prove that $K_{\lambda}Ge_q$ is isomorphic to a crossed product $F_q * H$ of the group H = G/t(G) and the field F_q .

Let $R_l(G/t(G))$ be a fixed set of representatives of all left cosets of the subgroup t(G)in G. Any element $x \in K_\lambda Ge_q$ can be written as

$$x = e_q u_{c_1} \gamma_1 + \dots + e_q u_{c_s} \gamma_s,$$

where $\gamma_k \in K_{\lambda}t(G), c_k \in R_l(G/t(G))$. If $c_ic_j = c_kh(h \in t(G))$ then $u_{c_i}u_{c_i} = u_{c_ic_i}\lambda_{c_ic_i} = u_{c_kh}\lambda_{c_ic_i} = u_{c_k}u_h\lambda_{c_i}^{-1}\lambda_{c_ic_i}$.

$$= c_i + c_j + c_i + c_j + c_i + c_j + c_i + c_$$

We will construct the crossed product $F_q * H$, where

 $H = \left\{ h_i = c_i t(G) \mid c_i \in R_l(G/t(G)) \right\}.$

Let $\alpha \in F_q$ and σ be a map from H to the group of automorphism $\operatorname{Aut}(F_q)$ of the field F_q such that $\sigma(h_i)(\alpha) = u_{c_i}^{-1} \alpha u_{c_i}$ and let $\mu_{h_i,h_j} = u_h \lambda_{c_k,h}^{-1} \lambda_{c_i,c_j}$.

Clearly, the set $\mu = \{\mu_{a,b} \in U(F_q) \mid a, b \in H\}$ of nonzero elements of the field F_q satisfies

$$\mu_{a,bc}\mu_{b,c} = \mu_{ab,c}\mu_{a,b}^{\sigma(c)}$$

and

$$\alpha^{\sigma(a)\sigma(b)} = \mu_{a,b}^{-1} \alpha^{\sigma(ab)} \mu_{a,b},$$

where $\alpha \in F_q$ and $a, b, c \in H$.

Then $F_q * H = \{\sum_{h \in H} w_h \alpha_h \mid \alpha_h \in F_q\}$ is a crossed product of the group H and the field F_q and we have $w_{d_i} w_{d_j} = w_{d_k} \mu_{d_i, d_j}$ and $\alpha w_{d_i} = w_{d_i} \alpha^{\sigma(d_i)}$.

Clearly, $F_q * H$ and $K_\lambda Ge_q$ are isomorphic because

$$u_{c_i} \alpha u_{c_j} = u_{c_i} u_{c_j} (u_{c_i}^{-1} \alpha u_{c_j}) = u_{c_k} \mu_{c_i, c_j} \alpha^{\sigma(c_j)}$$

We know [5] that the group of units of the crossed product K * H of the torsion free abelian group H and the field K consists of the elements $w_h \alpha$, where $\alpha \in U(K)$, $h \in H$.

By (12), for every $y \in U(K_{\lambda}G)$,

$$y = u_{c_1}\gamma_1 + \dots + u_{c_t}\gamma_t$$

and

$$y^{-1} = u_{c_1}^{-1} \gamma_1^{-1} + \dots + u_{c_t}^{-1} \gamma_t^{-1},$$

where $\gamma_1, \ldots, \gamma_t$ are orthogonal elements.

Let $x = \delta_1 u_{d_1} + \cdots + \delta_t u_{d_t} \in U(K_\lambda G)$. Then

$$yxy^{-1} = u_{c_1}\gamma_1\delta_1u_{d_1}u_{c_1}^{-1}\gamma_1^{-1} + \cdots + u_{c_t}\gamma_1\delta_tu_{d_t}u_{c_t}^{-1}\gamma_t^{-1}.$$

If $K_{\lambda}t(G)$ is infinite then $K_{\lambda}t(G) \subseteq \zeta(K_{\lambda}G)$ and

$$yxy^{-1} = \sum_{i=1}^{t} \delta_i u_{c_i} u_{d_i} u_{c_i}^{-1} = \sum_{i=1}^{t} \delta_i \lambda_{c_i, c_i^{-1}}^{-1} \lambda_{c_i, d_i} \lambda_{c_i d_i, c_i^{-1}} u_{c_i d_i c_i^{-1}}.$$

Since *G* is an FC-group, by condition 2 of the theorem, *x* has a finite number of conjugates, so $U(K_{\lambda}G)$ is an FC-group.

If $K_{\lambda}t(G)$ is finite then F_q is a finite field and

$$y^{-1}xy = \sum_{i=1}^{t} \gamma_i^{-1} u_{c_i}^{-1} \delta_i u_{d_i} u_{c_i} \gamma_i = \sum_{i=1}^{t} \lambda_{c_i, c_i^{-1}}^{-1} \lambda_{c_i^{-1}, d_i} \lambda_{c_i^{-1} d_i, c_i} \gamma_1^{-1} \delta_i^{\sigma(c_i^{-1})} \gamma_i^{\sigma(c_i^{-1} d_i^{-1} c_i)} u_{c_i^{-1} d_i c_i}$$

Since G is an FC-group and F_q is a finite field, x has a finite number of conjugates, so $U(K_{\lambda}G)$ is an FC-group.

VICTOR BOVDI

THEOREM 5. Let $K_{\lambda}G$ be infinite and char(K) does not divide the order of any element of t(G). If $K_{\lambda}t(G)$ contains an infinite number of idempotents then $U(K_{\lambda}G)$ is an FC-group if and only if G is an FC-group and the following conditions are satisfied:

- 1. $K_{\lambda}t(G)$ is central in $K_{\lambda}G$ and contains a minimal idempotent;
- 2. $\{\lambda_{h,h^{-1}}^{-1}\lambda_{h^{-1},g}\lambda_{h^{-1}g,h} \mid h \in H\}$ is a finite set for any $g \in G$;
- 3. the commutator subgroups of G and of $\overline{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ are isomorphic and G' is either a finite group or isomorphic to the group $\mathbb{Z}(q^{\infty}) (q \neq p)$, and there exists an $n \in \mathbb{N}$, such that the field K does not contain the primitive q^n -th root of 1;
- 4. for every finite subgroup H of the commutator subgroup of \tilde{G} the element $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is a idempotent of $K_{\lambda}t(G)$, and $K_{\lambda}t(G)(1 e_H)$ is a direct sum of a finite number of fields;²

PROOF (NECESSITY). By Lemmas 4, 6 and 7 $K_{\lambda}t(G)$ is commutative, G is an FC-group and all idempotents of $K_{\lambda}t(G)$ are central in $K_{\lambda}G$.

Let us prove that $K_{\lambda}t(G)$ contains a minimal idempotent. Suppose the contrary. Let $a, b \in G$ and $1 \neq [a, b] = g$. Since g is an element of finite order n, by Lemma 9, $[u_a, u_b]^n = 1$ and

$$f = \frac{1}{n}(1 + [u_a, u_b] + [u_a, u_b]^2 + \dots + [u_a, u_b]^{n-1})$$

is an idempotent. By Lemma 11, for 1 - f one can construct an infinite sequence of idempotents $e_1 = 1 - f, e_2, \ldots$, satisfying (9). By Lemma 9,

$$(1 - [u_a, u_b])(e_i - e_j) = 0,$$

where i < j. Consequently $([u_a, u_b])^k (e_i - e_j) = (e_i - e_j)$ for all k and $f(e_i - e_j) = e_i - e_j$. This implies $(1 - f)(e_i - e_j) = 0$. Since $e_1 = 1 - f$, $e_1(e_i - e_j) = 0$. If we multiply this equality from the right by the elements e_2, \ldots, e_{j-1} , by (9) we obtain $e_{j-1} - e_j = 0$. Now we arrived at a contradiction, which proves that $K_{\lambda}t(G)$ contains a minimal idempotent.

It is easy to see that t(G) is infinite, otherwise $K_{\lambda}t(G)$ would contain a finite number of idempotents. $K_{\lambda}t(G)$ contains a minimal idempotent *e*, and so there exist only a finite number of elements $g \in t(G)$, such that $eu_g = e$. Consequently $K_{\lambda}t(G)e$ is an infinite field and contains *K* as a subfield. Then as in the proof of Theorem 4, $K_{\lambda}t(G)$ is central in $K_{\lambda}G$.

Since $\{u_g^{-1}u_hu_g \mid g \in G\}$ is a finite set, we obtain condition 2 of the theorem. Suppose $c \in G'$ and

$$c = [a_1, b_1][a_2, b_2] \cdots [a_n, b_n].$$

Since $K_{\lambda}t(G)$ is central in $K_{\lambda}G$ and $1 - e_i + e_iu_{b_k} \in U(K_{\lambda}t(G))$ we have

$$\prod_{k=1}^{n} (1 - e_i + e_i u_{b_k}^{-1}) u_{a_k} (1 - e_i + e_i u_{b_k}) = \prod_{k=1}^{n} \left(u_{a_k} (1 - e_i + e_i [u_{a_k}, u_{b_k}]) \right)$$
$$= \prod_{k=1}^{n} (u_{a_k}) \left(\prod_{k=1}^{n} (1 - e_i + e_i [u_{a_k}, u_{b_k}]) \right)$$

² If $K_{\lambda}G$ is a group ring, then 1 and 3 imply 4 (see [6] p. 690, Lemma 4.3, also [10]).

for all $i \in \mathbb{N}$. Since each $u_{a_1}, u_{a_2}, \ldots, u_{a_k}$ has a finite number of conjugates, there are only a finite number of different elements of the form $\prod_{k=1}^{n} (1 - e_i + e_i[u_{a_k}, u_{b_k}])$. These elements will be denoted by w_1, \ldots, w_l . Let

$$W_r(c) = \left\{ i \in \mathbb{N} \mid \prod_{k=1}^n (1 - e_i + e_i[u_{a_k}, u_{b_k}]) = w_r \right\}.$$

It is easy to see that the set of natural numbers \mathbb{N} is the union of the subsets $W_i(c)$ (i = 1, ..., t), of which at least one is infinite. If $W_1(c)$ is infinite and $i, j \in W_1(c)$ then

(13)
$$(e_i - e_j) \left(1 - \prod_{k=1}^n [u_{a_k}, u_{b_k}] \right) = 0.$$

This implies that if

$$\prod_{k=1}^{n} [u_{a_k}, u_{b_k}] = \gamma \in U(K)$$

then $\gamma = 1$.

Now we prove that the commutator subgroups of *G* and of $\overline{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ are isomorphic. It is easy to see that the map $\tau(\lambda u_g) = g(\lambda \in U(K), g \in G)$ is a homomorphism from \overline{G} to *G*. Every element $h \in \overline{G}'$ can be written as

$$h = [u_{a_1}, u_{b_1}][u_{a_2}, u_{b_2}] \cdots [u_{a_n}, u_{b_n}].$$

As we have shown above, if $h = \lambda \in U(K)$ then $\lambda = 1$. Thus, τ is an isomorphism from \overline{G}' to G'.

Let *H* be a finite subgroup of \bar{G}' . Then $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is an idempotent of $K_{\lambda}t(G)$. Suppose that $K_{\lambda}t(G)(1 - e_H)$ contains an infinite number of idempotents e_1, e_2, \ldots . If $H = \{h_1, h_2, \ldots, h_s\}$, then, as it is shown above, for every $h_i \in H$,

$$\mathbb{N} = W_1(h_i) \cup \cdots \cup W_{r(i)}(h_i),$$

where j = 1, 2, ..., s, and for every $k \neq l$, $W_k(h_j)$ and $W_l(h_j)$ have empty intersection.

It is clear that there exists an infinite subset $M = W_{i_1}(h_1) \cap \cdots \cap W_{i_s}(h_s)$. If $i, j \in M$, then by (13), we have $(e_i - e_j)(1 - h_r) = 0$ for any r. Then

(14)
$$e_i - e_j = \frac{1}{|H|} \sum_{r=1}^{s} (h_r(e_i - e_j)) = e_H(e_i - e_j)$$

Since $e_i - e_j \in K_{\lambda}t(G)(1 - e_H)$, by (14),

$$e_i - e_j = (1 - e_H)(e_i - e_j) = (e_i - e_j) - e_H(e_i - e_j) = 0.$$

Thus, $K_{\lambda}t(G)(1 - e_H)$ contains a finite number of idempotents, and by Lemma 7, it can be given as a direct sum of a finite number of fields.

Let us prove that there exists only finitely many elements of prime order in G'.

Suppose the contrary. If $a, b \in G$ then $1 \neq [a, b] = g \in t(G)$. As we have seen above, if $h \in G'$, then there exists $\mu \in U(K)$ such that the order of the element μu_h equals the

VICTOR BOVDI

order of *h*. Then there exists a countably infinite subgroup *S*, generated by elements of prime order, such that $\langle g \rangle \cap S = 1$. By Prüfer's theorem [9] *S* is a direct product of cyclic subgroups $S = \prod_j \langle a_j \rangle$. If q_j is the order of the element a_j , then

$$e_j = \frac{1}{q_j} \left(1 + \mu u_{a_j} + (\mu u_{a_j})^2 + \dots + (\mu u_{a_j})^{q_j - 1} \right)$$

is a central idempotent and $x_i = 1 - e_i + e_i u_a \in U(K_\lambda G)$. By Lemma 9, $(e_i - e_j)(1 - \mu u_g) = 0$. Since $g \notin S$, we have i = j, which does not hold. Consequently G' contains only a finite number of elements of prime order and satisfies the minimum condition for subgroups (see [8]). Then

$$G' \cong P_1 \times P_2 \times \cdots \times P_t \times H,$$

where $P_i = \mathbb{Z}(q^{\infty})$ and $|H| < \infty$. Let us prove that either $G' = \mathbb{Z}(q^{\infty})$ or |G'| is finite.

Let $a, b \in G$ and $1 \neq [a, b] = g \in t(G)$. Suppose there exists l such that $g \notin P_l = \langle a_1, a_2, \dots \mid a_1^q = 1, a_{j+1}^q = a_j \rangle$. Then

$$e_k = \frac{1}{q^k} \left(1 + \mu u_{a_k} + (\mu u_{a_k})^2 + \dots + (\mu u_{a_k})^{q^k - 1} \right)$$

is an idempotent, and $(e_i - e_j)(1 - \mu u_g) = 0$. This is true only for i = j, if $g \notin P_l$, which is impossible. Thus, $G' \cong \mathbb{Z}(q^{\infty})$ or G' is a finite subgroup.

Let *K* be a field which contains a primitive q^n -th root ϵ_n of 1 for all *n* and

$$P_1 = \langle a_1, a_2, \dots \mid a_1^q = 1, a_{j+1}^q = a_j \rangle.$$

Put

$$e_j = \frac{1}{q^j} \Big(1 + \epsilon_j \mu u_{a_j} + (\epsilon_j \mu u_{a_j})^2 + \dots + (\epsilon_j \mu u_{a_j})^{q^j-1} \Big).$$

If $i \neq j$ then the element $(e_i - e_j)(1 - \mu u_g) \neq 0$ and by Lemma 9 this is impossible. Thus there exists $n \in \mathbb{N}$ such that K does not contain a primitive q^n -th root ϵ_n of 1.

SUFFICIENCY. Let us prove that any element $u_g(g \in G)$ has a finite number of conjugates in $U(K_{\lambda}G)$.

Let $\bar{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$. We prove that $H = \langle [u_g, \bar{G}] \rangle$ is a finite subgroup in \bar{G}' . If \bar{G}' is finite, it is obvious. If \bar{G}' is infinite then it is isomorphic to a subgroup of the group $\mathbb{Z}(q^{\infty})$. Any element of \bar{G} is of the form μu_h ($\mu \in U(K), h \in G$) and

$$[u_g, \mu u_h] = \lambda_{g,g^{-1}}^{-1} \lambda_{h,h^{-1}}^{-1} \lambda_{g^{-1},h^{-1}}^{-1} \lambda_{g^{-1}h^{-1},g}^{-1} \lambda_$$

Since *G* is an FC-group, and for a fixed element *g* the set $\{\lambda_{h,h^{-1}}^{-1}\lambda_{h^{-1},g}\lambda_{h^{-1}g,h} \mid h \in H\}$ is finite, the number of commutators $[u_g, \mu u_h]$ is finite. These commutators generate a finite cyclic subgroup *H* of $\mathbb{Z}(q^{\infty})$. The element $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is a idempotent in $K_{\lambda}t(G)$ and by condition 4 of the theorem, $K_{\lambda}t(G)(1 - e_H)$ is a direct sum of a finite number of fields $K_{\lambda}t(G)(1 - e_H)f_i$ (i = 1, ..., s).

In $K_{\lambda}t(G)$ we have the decomposition

$$K_{\lambda}t(G) = K_{\lambda}t(G)e_H \oplus K_{\lambda}t(G)f_1 \oplus \cdots \oplus K_{\lambda}t(G)f_t.$$

Then

$$K_{\lambda}G = K_{\lambda}Ge_H \oplus K_{\lambda}Gf_1 \oplus \cdots \oplus K_{\lambda}Gf_l.$$

If $x \in U(K_{\lambda}G)$ then

$$x = xe_H + xf_1 + \dots + xf_t$$

and

$$x^{-1} = x^{-1}e_H + x^{-1}f_1 + \dots + x^{-1}f_t.$$

Consequently

$$x^{-1}u_g x = x^{-1}e_H u_g x e_H + x^{-1}f_1 u_g x f_1 + \dots + x^{-1}f_t u_g x f_t.$$

We show that the element xe_H is central in $U(K_{\lambda}G)$. If $x = \alpha_1 u_{h_1} + \cdots + \alpha_t u_{h_t}$, then

$$u_g x e_H = \alpha_1 u_g u_{h_1} e_H + \dots + \alpha_t u_g u_{h_t} e_H = \alpha_1 u_{h_1} u_g [u_g, u_{h_1}] e_H + \dots + \alpha_t u_{h_t} u_g [u_g, u_{h_t}] e_H$$

and $[u_g, u_h] \in H$. Clearly, $[u_g, u_{h_k}]e_H = e_H$ and

$$u_g x e_H = \alpha_1 u_{h_1} u_g e_H + \dots + \alpha_t u_{h_t} e_H = x e_H u_g$$

 $K_{\lambda}Gf_i$ is a crossed product F * H of the group H = G/t(G) and the field $F = K_{\lambda}t(G)f_i$. We know (see [5]) that the group of units of the crossed product F * H of a torsion free abelian group H and a field F consists of the elements αu_h ($\alpha \in U(F), h \in H$). The unit xf_i can be given as $\alpha_i u_{h_i}$ ($h_i \in G$), where α_i is central in $U(K_{\lambda}Gf_i)$. Thus

$$x^{-1}f_{i}u_{g}xf_{i} = u_{h_{i}}^{-1}\alpha_{i}^{-1}u_{g}\alpha_{i}u_{h_{i}} = u_{h_{i}}^{-1}u_{g}u_{h_{i}} = \lambda_{h_{i}^{-1},h_{i}}^{-1}\lambda_{h_{i}^{-1},g}\lambda_{h_{i}^{-1},g}\lambda_{h_{i}^{-1}g,h_{i}}u_{h_{i}^{-1}g,h_{i}}$$

Therefore

$$x^{-1}u_g x = u_g + \sum_{i=1}^{l} \lambda_{h_i^{-1}, h_i}^{-1} \lambda_{h_i^{-1}, g} \lambda_{h_i^{-1}, g, h_i} u_{h_i^{-1}g h_i}.$$

Since *G* is an FC-group, by condition 2 of the theorem, u_g has a finite number of conjugates in $U(K_{\lambda}G)$.

REFERENCES

- 1. S. K. Sehgal and H. J. Zassenhaus, Group rings whose units form an FC-group, Math. Z. 153(1977), 29-35.
- 2. H. Cliff and S. K. Sehgal, Group rings whose units form an FC-group, Math. Z. 161(1978), 169–183.
- 3. B. H. Neumann, Groups with finite clasess of conjugate elements, Proc. London Math. Soc. 1(1951), 178–187.
- 4. A. Kertész, Lectures on artinian rings, Akadémiai Kiadó, Budapest, 1987.
- 5. A. A. Bovdi, Group rings, Kiev, UMK VO, 1988.
- 6. D. S. Passman, *The algebraic structure of group rings*, John Wiley & Sons, New York, Sydney, Toronto, 1977.
- 7. W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8(1957), 303-305.
- 8. L. Fuchs, Abelian groups, Budapest, Publishing House of Hungar. Acad. Sci., 1959.
- 9. A. G. Kurosh, Theory of Groups, New York, Chelsea, 1955.
- J. S. Richardson, Primitive idempotents and the socle in group rings of periodic abelian groups, Compositio Math. 32(1976), 203–223.

Department of Mathematics Bessenyei Teachers' Training College Nyíregyháza Hungary