## ADDENDUM TO "TAUBERIAN THEOREMS FOR BOREL-TYPE METHODS OF SUMMABILITY"

BY<br>D. BORWEIN AND E. SMET

We will use the notation and definitions given in [2, p. 167 and p. 173]. In addition, we say that $s_{n}=0(1)\left(B^{\prime}, \alpha, \beta\right)$ if $A_{\alpha, \beta}(x)$ exists for all $x \geq 0$ and $\alpha^{-1} \int_{0}^{x} A_{\alpha, \beta}(t) d t$ is bounded on $[0, \infty)$. We will also use the notations " $s_{n} \rightarrow$ $s\left(B^{\prime}, \alpha, \beta\right)$ " and " $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta\right)$ " interchangeably.

We need the following lemma, the proof of which is readily obtained by use of [2, Lemma $1(\mathrm{i})]$.

Lemma 1. Let

$$
F_{\alpha, \beta}(x)=\alpha^{-1} \int_{0}^{x} A_{\alpha, \beta}(t) d t
$$

exist for all $x \geq 0$. Then

$$
F_{\alpha, \beta+\delta}(x)=\int_{0}^{x} h(x-t) F_{\alpha, \beta}(t) d t
$$

where $\delta>0$ and $h(u)=u^{\delta-1} e^{-u} / \Gamma(\delta)$.
The following result is due to Borwein [1, Theorem 2].
Theorem A. $s_{n} \rightarrow s(B, \alpha, \beta+1)$ if and only if $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta\right)$.
A simplified version of the proof of Theorem A yields the following.
Theorem B. $s_{n}=0(1)(B, \alpha, \beta+1)$ if and only if $s_{n}=0(1)\left(B^{\prime}, \alpha, \beta\right)$.
It is now immediate, in view of Theorems $A$ and $B$, that the following theorems are equivalent to the corresponding theorems in [2] with $\beta+1$ and $\mu+1$ in place of $\beta$ and $\mu$.

Theorem 1. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \mu\right)$ and $a_{n} \rightarrow 0\left(B^{\prime}, \alpha, \beta\right)$, then $\sum_{0}^{\infty} a_{n}=$ $s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 2. If $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta+\varepsilon\right)$ for some $\varepsilon>0$ and $s_{n}=0(1)\left(B^{\prime}, \alpha, \beta\right)$, then $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta+\delta\right)$ for any $\delta>0$.

Theorem 2*. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta+\varepsilon\right)$ for some $\varepsilon>0$ and $a_{n}=0(1)\left(B^{\prime}, \alpha, \beta\right)$, then $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta+\delta\right)$ for any $\delta>0$.

Theorem 3. If $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta+\varepsilon\right)$ for some $\varepsilon>0$ and $S_{\alpha, \beta+1}(x)$ is slowly decreasing, then $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 3*. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta+\varepsilon\right)$ for some $\varepsilon>0$ and $A_{\alpha, \beta+1}(x)$ is slowly decreasing, then $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 4. If $s_{n}=0(1)\left(B^{\prime}, \alpha, \mu\right)$ and $s_{n} \geq-K$ for all $n \geq 0$ where $K$ is a positive constant, then $s_{n}=0(1)\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 5. If $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \mu\right)$ and $s_{n} \geq-K$ for all $n \geq 0$ where $K$ is a positive constant, then $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 5*. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \mu\right)$ and $a_{n} \geq-K$ for all $n \geq 0$ where $K$ is a positive constant, then $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 6. If $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \mu\right)$ and if there are positive real numbers $A, a, \delta$ such that $\left|S_{\alpha, \mu+1}(z)\right| \leq A \exp (a|z|)$ whenever $\operatorname{Re} z \geq \delta$, then $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 6*. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \mu\right)$ and if there are positive real numbers $A$, $a$, $\delta$ such that $\left|A_{\alpha, \mu+1}(z)\right| \leq A \exp (a|z|)$ whenever $\operatorname{Re} z \geq \delta$, then $\sum_{0}^{\infty} a_{n}=$ $s\left(B^{\prime}, \alpha, \beta\right)$.

Theorem 7. If $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \mu\right)$ and $\left|a_{n}\right| \leq K^{n}$ for all $n \geq 0$ where $K$ is a positive constant, then $\sum_{0}^{\infty} a_{n}=s\left(B^{\prime}, \alpha, \beta\right)$.

In addition, we have the following result which is a more appropriate analogue to [2, Theorem 3] than the above Theorem 3.

Theorem 8. If $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta+\varepsilon\right)$ for some $\varepsilon>0$ and $\alpha^{-1} \int_{0}^{x} A_{\alpha, \beta}(t) d t$ is slowly decreasing, then $s_{n} \rightarrow s\left(B^{\prime}, \alpha, \beta\right)$.

Proof. Let

$$
F_{\alpha, \beta}(x)=\alpha^{-1} \int_{0}^{x} A_{\alpha, \beta}(t) d t, \quad F_{\alpha, \beta+\varepsilon}(x)=\alpha^{-1} \int_{0}^{x} A_{\alpha, \beta+\varepsilon}(t) d t .
$$

In view of Lemma 1 and [2, lemma 3], we have, by [2, Theorem 9] (with $\left.F(x)=F_{\alpha, \beta+\varepsilon}(x), f(x)=F_{\alpha, \beta}(x), h(u)=u^{\varepsilon-1} e^{-u} / \Gamma(\varepsilon)\right)$, that $F_{\alpha, \beta}(x)$ is bounded on $[0, \infty]$. Hence, by Theorem 2, $F_{\alpha, \beta+1}(x) \rightarrow s$ as $x \rightarrow \infty$. Thus, in view of Lemma 1, it follows by [2, Theorem 8] (with $F(x)=F_{\alpha, \beta+1}(x), f(x)=F_{\alpha, \beta}(x)$ ), that $F_{\alpha, \beta}(x) \rightarrow s$ as $x \rightarrow \infty$.

## References

[^0]University of Western Ontario, London, Ontario,
Canada.


[^0]:    1. D. Borwein, Relations between Borel-type methods of summability, Journal London Math. Soc., 35 (1960), 65-70.
    2. D. Borwein and E. Smet, Tauberian theorems for Borel-type methods of summability, Canad. Math. Bull., 17 (1974), 167-173.
