UNIQUE EXTENSION AND PRODUCT MEASURES

NORMAN Y. LUTHER

Following (2) we say that a measure μ on a ring \Re is semifinite if

$$
\mu(E)=\operatorname{lub}\{\mu(F) ; F \in \Re, F \subset E, \mu(F)<\infty\} \quad \text { for every } E \in \Re .
$$

Clearly every σ-finite measure is semifinite, but the converse fails.
In § 1 we present several reformulations of semifiniteness (Theorem 2), and characterize those semifinite measures μ on a ring \Re that possess unique extensions to the σ-ring \mathfrak{S} generated by \Re (Theorem 3). Theorem 3 extends a classical result for σ-finite measures (3, 13.A). Then, in $\S 2$, we apply the results of $\S 1$ to the study of product measures; in the process, we compare the "semifinite product measure" (1; 2, pp. 127ff.) with the product measure described in (4, pp. 229ff.), finding necessary and sufficient conditions for their equality; see Theorem 6 and, in relation to it, Theorem 7. Finally, in § 3, we investigate some extensions of the Fubini theory relative to semifiniteness.

1. The unique extension of a measure. Fix a set X, a ring \Re of subsets of X, and a measure μ on \Re. Let \mathfrak{S} be the σ-ring generated by \Re. We write μ^{*} for the outer measure induced by μ on the hereditary σ-ring $\mathfrak{5}$ generated by $\mathfrak{l i}$, and $\bar{\mu}$ for the restriction of μ^{*} to \mathbb{S}. Then $\bar{\mu}$ is a measure that extends μ (3, 10.A, 11.C, and 12.A). Following (2) we write \Re_{ϕ} for the class of sets in $\%$ of finite μ-measure; thus

$$
\Re_{\phi}=\{E \in \Re ; \mu(E)<\infty\}=\{E \in \Re ; \bar{\mu}(E)<\infty\} .
$$

Clearly \Re_{ϕ} is a ring of sets.
Our interest will not only involve extensions of μ to \mathfrak{S} but also measures on \mathbb{C} which agree with μ on \Re_{ϕ} (called semi-extensions of μ). Clearly every extension of μ is a semi-extension of μ. We shall show later (Theorem 1) that $\bar{\mu}$ is the maximal semi-extension of μ (hence also the maximal extension of μ). We now seek the minimal semi-extension of μ. For each $P \in \Re_{\phi}$, the set function $\bar{\mu}_{P}$ defined by $\bar{\mu}_{P}(E)=\bar{\mu}(P \cap E)$ for all $E \in \mathbb{S}$ is a finite measure on \mathbb{S}; the family $\left\{\bar{\mu}_{P} ; P \in \Re_{\phi}\right\}$ is increasingly directed in the obvious sense, and, defining $\tilde{\mu}=\operatorname{lub}\left\{\bar{\mu}_{P} ; P \in \Re_{\phi}\right\}$, we obtain a measure on \mathbb{S} (2, Theorem 1, p. 32). Since

$$
\begin{equation*}
\tilde{\mu}(E)=\operatorname{lub}\left\{\bar{\mu}(P \cap E) ; P \in \Re_{\phi}\right\} \quad \text { for all } E \in \mathbb{S}, \tag{1}
\end{equation*}
$$

Received March 21, 1966.
it is readily seen that $\tilde{\mu}=\bar{\mu}$ on $\left\{P \cap E ; P \in \Re_{\phi}, E \in \mathbb{S}\right\}$. As a consequence, we have $\tilde{\mu}=\bar{\mu}=\mu$ on \Re_{ϕ} (so that $\tilde{\mu}$ is a semi-extension of μ) and

$$
\begin{equation*}
\tilde{\mu}(E)=\operatorname{lub}\left\{\tilde{\mu}(P \cap E) ; P \in \Re_{\phi}\right\} \quad \text { for all } E \in \mathbb{C} \tag{2}
\end{equation*}
$$

From (2) it follows that (i) $\tilde{\mu}$ is semifinite and (ii) the restriction of $\tilde{\mu}$ to \Re (denoted $\tilde{\mu} / \Re$) is a semifinite measure on \Re.
$\tilde{\mu}$ need not be an extension of μ; e.g., it would not be if the range of μ is $\{0, \infty\}$. (Later we shall see that $\tilde{\mu}$ is an extension of μ if, and only if, μ is semifinite.)

One of the keys to our results is a mildly strengthened version of $(4,12.10)$. For that result and what follows it will be convenient to let $\mathbb{\Xi}_{\phi}$ denote $\{E \in \mathbb{S} ; \bar{\mu}(E)<\infty\} ;$ thus \mathbb{S}_{ϕ} is simply the class of all sets $E \in \mathbb{S}$ such that $E \subset \cup F_{n}$ for some sequence $F_{n} \in \Re$ with $\sum \mu\left(F_{n}\right)<\infty$.

Lemma 1. Let ν be a semi-extension of μ. Then $\nu=\bar{\mu}$ on \mathfrak{S}_{ϕ}; in particular, $\nu \leqslant \bar{\mu}$.

The proof of Lemma 1 is not hard to deduce from that of $(4,12.10)$.
Theorem 1. Let ν be a semi-extension of μ. Then
(i) $\tilde{\mu}=\nu=\bar{\mu}$ on \mathfrak{S}_{ϕ},
(ii) $\tilde{\mu} \leqslant \nu \leqslant \bar{\mu}$.

Proof. In view of Lemma 1 and the fact that $\tilde{\mu}$ is a semi-extension of μ, it suffices to show that $\tilde{\mu} \leqslant \nu$ whenever ν is a semi-extension of μ.

Now $\tilde{\mu}=\nu$ on $\left\{P \cap E ; P \in \Re_{\phi}, E \in \subseteq\right\} \subset \Im_{\phi}$ by Lemma 1. It follows from (2) that

$$
\begin{aligned}
\tilde{\mu}(E) & =\operatorname{lub}\left\{\nu(P \cap E) ; P \in \Re_{\phi}\right\} \\
& \leqslant \nu(E) \quad \text { for all } E \in \mathbb{S} .
\end{aligned}
$$

We now obtain some necessary and sufficient conditions for μ to be semifinite:

Theorem 2. The following are equivalent:
(i) μ is semifinite.
(ii) $\tilde{\mu}$ is an extension of μ.
(iii) Every semi-extension of μ is an extension of μ.

Proof. (i) \Rightarrow (iii): Let ν be a semi-extension of μ. Then $\nu / \Re \leqslant \bar{\mu} / \Re=\mu$ by Theorem 1 (ii). On the other hand, since μ is semifinite and $\nu=\mu$ on \Re_{ϕ}, it follows that for every $E \in \Re$,

$$
\mu(E)=\operatorname{lub}\left\{\nu(F) ; F \in \Re_{\phi}, F \subset E\right\} \leqslant \nu(E)
$$

Hence $\nu / \Re=\mu$, so ν is an extension of μ.
That (iii) implies (ii) and (ii) implies (i) is obvious.

Unfortunately, the semifiniteness of μ is not enough to ensure that of $\bar{\mu}$ (see the last paragraph of $\S 2$). What is true along these lines is contained in the following theorem, which, moreover, generalizes the unique extension theorem (3, 13.A). In particular, we find that the semifiniteness of $\bar{\mu}$ is sufficient to guarantee uniqueness of the extension of μ.

Theorem 3. The following are equivalent:
(i) $\bar{\mu}$ is semifinite.
(ii) μ is semifinite and there exists a unique extension of μ.
(iii) $\tilde{\mu}=\bar{\mu}$.
(iv) There exists a unique semi-extension of μ.
(v) $\bar{\mu}(E)=\operatorname{lub}\left\{\bar{\mu}(P \cap E) ; P \in \Re_{\phi}\right\}$ for all $E \in \mathbb{S}$.

Proof. (i) \Rightarrow (iii): Since $\bar{\mu}=\tilde{\mu}$ on \mathfrak{S}_{ϕ} (Theorem 1 (i)) and $\bar{\mu}$ is semifinite, one has

$$
\bar{\mu}(E)=\operatorname{lub}\left\{\tilde{\mu}(F) ; F \subset E, F \in \mathbb{S}_{\phi}\right\} \leqslant \widetilde{\mu}(E) \quad \text { for all } E \in \mathbb{S}
$$

Hence $\tilde{\mu}=\bar{\mu}$ since $\tilde{\mu} \leqslant \bar{\mu}$ in general (Theorem 1 (ii)).
(iii) \Leftrightarrow (iv): Theorem 1 (ii).
(iii) $\Leftrightarrow(\mathrm{v})$: Equation (1).
(iii) \Rightarrow (ii): Since $\mu=\bar{\mu} / \Re=\tilde{\mu} / \Re, \mu$ is semifinite. The proof is completed by noting that any extension of μ is also a semi-extension of μ, hence is unique by the criterion (iv) (which is equivalent to (iii)).
(ii) \Rightarrow (i): Since μ is semifinite, $\tilde{\mu}$ is an extension of μ by Theorem 2. But the extension of μ is unique so that $\bar{\mu}=\tilde{\mu}$, a semifinite measure.

Corollary 1. If $\bar{\mu}$ is σ-finite, then μ has a unique extension.
Proof. Every σ-finite measure is semifinite.
Corollary 2. (Unique Extension Theorem). If μ is σ-finite, then μ has a unique extension.

Proof. Obviously $\bar{\mu}$ is σ-finite.
Actually, Corollary 1 can be deduced from Corollary 2, since it is easy to show that μ is σ-finite if, and only if, $\bar{\mu}$ is σ-finite. That it does not suffice in Corollary 1 to simply assume that some extension of μ is σ-finite is illustrated by (3, Exercise 5, p. 57).

Finally, it follows from Theorem 3 that since the semifiniteness of μ is not sufficient to ensure that of $\bar{\mu}$, it is likewise not sufficient to ensure that the extension of μ is unique.
2. Application to product measures. The application of $\S 1$ to product measures follows. For the remainder of the paper, let $(X, \mathbf{S}, \mu),(Y, \mathbf{T}, \nu)$ be two fixed arbitrary measure spaces in the sense of (3, p. 73). (Indeed, what follows will be of interest only when at least one of (X, \mathbf{S}, μ) and (Y, \mathbf{T}, ν) is not σ-finite.) We shall use \mathbf{S}_{ϕ} and \mathbf{T}_{ϕ} to denote $\{P \in \mathbf{S} ; \mu(P)<\infty\}$ and
$\{Q \in \mathbf{T} ; \nu(Q)<\infty\}$, respectively. Clearly \mathbf{S}_{ϕ} and \mathbf{T}_{ϕ} are rings. The set of all finite, disjoint unions of measurable rectangles is a ring \Re of subsets of $X \times Y(3,33 . E)$. As is customary, we use $\mathbf{S} \times \mathbf{T}$ to denote the σ-ring generated by \Re.
It is a routine exercise to show that there exists a unique measure π on \Re such that $\pi(E \times F)=\mu(E)_{\nu}(F)$ for all $E \in \mathbf{S}, F \in \mathbf{T}$. (The essentials needed to verify this are contained in (4, pp. 229ff.) although the approach there is slightly different.) Applying the framework of $\S 1$ to π (i.e., letting π play the role of μ there), we find that (i) the product measure introduced in (4, pp. 229ff.) is a "completion" of $\bar{\pi}$ to all π^{*}-measurable sets and that (ii) $\tilde{\pi}$ is the "semifinite product measure" (1; 2, pp. 127ff., in particular, Theorem 1, p. 129). That is, $\tilde{\pi}$ is the unique measure on $\mathbf{S} \times \mathbf{T}$ satisfying

$$
\begin{equation*}
\tilde{\boldsymbol{\pi}}(P \times Q)=\mu(P) \nu(Q) \quad \text { for all } P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi} \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\pi}(M)=\operatorname{lub}\left\{\tilde{\pi}[(P \times Q) \cap M] ; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\right\} \tag{II}
\end{equation*}
$$

for all $M \in \mathbf{S} \times \mathbf{T}$.
(I) is a consequence of the following facts: (i) $\tilde{\pi}=\pi$ on \Re_{ϕ} and (ii)

$$
\left\{P \times Q ; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\right\} \subset \Re_{\phi} .
$$

The latter fact also yields

$$
\begin{array}{r}
\operatorname{lub}\left\{\tilde{\pi}\{(P \times Q) \cap M] ; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\right\} \leqslant \operatorname{lub}\left\{\tilde{\boldsymbol{\pi}}(R \cap M) ; R \in \Re_{\phi}\right\} \\
\text { for all } M \in \mathbf{S} \times \mathbf{T} .
\end{array}
$$

Thus according to $\S 1$, Equation (2), in order to verify (II) it will suffice to show the opposite inequality. Let $R=\bigcup\left(E_{i} \times F_{i}\right)$ be a representation of $R \in \Re_{\phi}$ as a finite, disjoint union of measurable rectangles, each of which is necessarily of finite $\tilde{\pi}$-measure; then

$$
\cup^{\prime}\left(E_{i} \times F_{i}\right) \subset\left(\cup^{\prime} E_{i}\right) \times\left(\cup^{\prime} F_{i}\right)
$$

where U^{\prime} in each case denotes the union over all i such that $\tilde{\pi}\left(E_{i} \times F_{i}\right)$ is non-zero (equivalently, all i such that $\mu\left(E_{i}\right)$ and $\nu\left(F_{i}\right)$ are non-zero and finite). Letting $P=\cup^{\prime} E_{i}, Q=\cup^{\prime} F_{i}$, we have $P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}$, and

$$
\begin{aligned}
& \tilde{\pi}(R \cap M)=\tilde{\pi}\left[\left(\cup^{\prime}\left(E_{i} \times F_{i}\right)\right) \cap M\right] \leqslant \tilde{\pi}[(P \times Q) \cap M] \\
& \quad \text { for all } M \in \mathbf{S} \times \mathbf{T} .
\end{aligned}
$$

A measure λ on $\mathbf{S} \times \mathbf{T}$ is multiplicative on a measurable rectangle $E \times F$ if $\lambda(E \times F)=\mu(E) \nu(F)$. Again referring to the framework of § 1, we see that:
(i) The set of all semi-extensions of π is the set of all measures on $\mathbf{S} \times \mathbf{T}$ which are multiplicative on every measurable rectangle $E \times F$ satisfying $\mu(E) \nu(F)<\infty$ (equivalently, multiplicative on every measurable rectangle
$E \times F$ such that either (a) both E and F are of σ-finite measure or (b) $\mu(E)=0$ or $\nu(F)=0$).
(ii) The set of all extensions of π is the set of all measures on $\mathbf{S} \times \mathbf{T}$ which are multiplicative on every measurable rectangle.
In view of the preceding, we shall call an extension of π a product measure on $\mathbf{S} \times \mathbf{T}$ and a semi-extension of π a pseudo-product measure on $\mathbf{S} \times \mathbf{T}$.

We now translate into their present context the results of § 1. In accordance with the notation there, $(\mathbf{S} \times \mathbf{T})_{\phi}$ signifies $\{M \in \mathbf{S} \times \mathbf{T} ; \bar{\pi}(M)<\infty\}$.

Theorem 4. Let λ be a pseudo-product measure on $\mathbf{S} \times \mathbf{T}$. Then
(i) $\tilde{\pi}=\lambda=\bar{\pi}$ on $(\mathbf{S} \times \mathbf{T})_{\phi}$.
(ii) $\tilde{\pi} \leqslant \lambda \leqslant \bar{\pi}$.

Theorem 5. The following are equivalent:
(i) π is semifinite.
(ii) $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$.
(iii) Every pseudo-product measure on $\mathbf{S} \times \mathbf{T}$ is a product measure on $\mathbf{S} \times \mathbf{T}$.

Theorem 6. The following are equivalent:
(i) $\bar{\pi}$ is semifinite.
(ii) π is semifinite and there exists a unique product measure on $\mathbf{S} \times \mathbf{T}$.
(iii) $\tilde{\pi}=\bar{\pi}$.
(iv) There exists a unique pseudo-product measure on $\mathbf{S} \times \mathbf{T}$.
(v) $\bar{\pi}(M)=\operatorname{lub}\left\{\bar{\pi}[(P \times Q) \cap M] ; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\right\}$ for all $M \in \mathbf{S} \times \mathbf{T}$.

The relationship between the semifiniteness of μ and ν and that of π is as follows:

Theorem 7. (i) If μ and ν are semifinite, then π is semifinite.
(ii) Conversely, if $\mu, \nu \neq 0$ and π is semifinite, then μ and ν are semifinite.

Theorem 7 follows immediately from Theorem 5 and the following slight improvement of (2, Exercise 18, p. 133):

Lemma 2. (i) If μ and ν are semifinite, then $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$.
(ii) Conversely, if $\mu, \nu \neq 0$ and $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$, then μ and ν are semifinite.

Proof. (i) An application of property (IIj) of $\tilde{\pi}$ to each measurable rectangle, along with the semifiniteness of μ and ν, yields the result.
(ii) Since $\mu, \nu \neq 0$ and $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$, it follows that $\tilde{\pi} \neq 0$. Hence neither μ nor ν has range $\{0, \infty\}$ since otherwise property (II) of $\tilde{\pi}$ would imply that $\tilde{\pi}=0$. The result then follows quite easily from property (II) of $\tilde{\pi}$ and the fact that $\tilde{\pi}$ is multiplicative on every measurable rectangle.

If $\mu=0$, then $\pi=0$ whatever be ν; thus the assumption that $\mu, \nu \neq 0$ cannot be delected in Theorem 7 (ii) or in Lemma 2 (ii).

In the example of (3, Exercise 1, p. 145), π is semifinite since μ and ν are. It is easy to show, however, that $\tilde{\pi}(D)=0$ whereas $\bar{\pi}(D)>0$ (thus $\bar{\pi}(D)=\infty$ by Theorem 4 (i)). Hence $\bar{\pi}$ is not semifinite (Theorem 6).
3. Remarks on the Fubini theory. No discussion of product measures is complete without at least a few words on the Fubini theory. By the preceding example (3, Exercise 1, p. 145), both the "integrable form" (3, 36.C; 2, Theorem 1, p. 142) and the "non-negative form" (3, 36.B) of Fubini's theorem fail for $\tilde{\pi}$ and the latter is not valid for $\bar{\pi}$, even if μ and ν are semifinite. It follows from the discussion in (4, pp. 231-233) that the "integrable form" is valid for $\bar{\pi}$ in general. Using this, we can show that the "partial converse" (2, Theorem 2, p. 143) of the "integrable form" is valid if $\bar{\pi}$ is semifinite. The proof proceeds as follows with notation as in (2 and 3): Say $\iint h d \nu d \mu$ exists and is finite. Let

$$
A_{n}=\{(x, y) ; h(x, y) \geqslant 1 / n\}, \quad n=1,2, \ldots
$$

Fix n. Since $\bar{\pi}$ is semifinite, there are sets $M_{m n} \in(\mathbf{S} \times \mathbf{T})_{\phi}$ such that $M_{m n} \subset A_{n}$ for all m and $\bar{\pi}\left(M_{m n}\right) \uparrow \bar{\pi}\left(A_{n}\right)$ as $m \uparrow \infty$. Then $(1 / n) \chi_{M_{m n}} \leqslant h$ for all m so that $(1 / n) \nu\left(\left(M_{m n}\right)_{x}\right) \leqslant \int h_{x} d \nu$ for all $x \in X$ and all m. It follows then from the "integrable form," since $\chi_{M_{m n}}$ is $\bar{\pi}$-integrable for all m, that

$$
(1 / n) \bar{\pi}\left(M_{m n}\right) \leqslant \iint h d \nu d \mu=K<\infty \quad \text { for all } m
$$

Hence $\bar{\pi}\left(A_{n}\right) \leqslant n K<\infty$. Thus $\{(x, y) ; h(x, y) \neq 0\}$ is of σ-finite $\bar{\pi}$-measure and the rest of the proof follows that of (2, Theorem 2, p. 143).

One more question arises quite naturally: If $\bar{\pi}$ is semifinite, is the "nonnegative form" of Fubini's theorem valid for $\bar{\pi}(=\tilde{\pi})$? The problem is one of measurability: If the functions $f(x)=\nu\left(M_{x}\right)$ and $g(y)=\mu\left(M^{y}\right)$ are measurable for all $M \in \mathbf{S} \times \mathbf{T}$, then it follows easily from the "integrable form" and its "partial converse" that the answer is "yes." (Note that by (4, pp. 231-232) it is true in general that f and g are almost everywhere equal to measurable functions for all $M \in \mathbf{S} \times \mathbf{T}$ of σ-finite $\bar{\pi}$-measure and are, in fact, measurable for all such M if μ and ν are complete measures.) However, examples exist in which $\bar{\pi}$ is semifinite and μ and ν are complete measures; yet there is a set $M \in \mathbf{S} \times \mathbf{T}$ such that $f(x)=\nu\left(M_{x}\right)$ is not measurable. For example, we may take $X=Y=[0,1], \mathbf{S}=\mathbf{T}=$ Borel subsets of $[0,1]$, and define $\mu=\nu$ as follows: Let F be a non-Borel subset of $[0,1]$ and let μ be the unique measure on \mathbf{S} determined by defining $\mu(\{x\})=2$ if $x \in F$ and $\mu(\{x\})=1$ if $x \notin F$. Then clearly $\bar{\pi}$ is semifinite and μ and ν are complete measures; but

$$
\nu\left(D_{x}\right)=\chi_{F}(x)+1
$$

is not measurable, where $D=\{(x, y) \in X \times Y ; x=y\}$ is the diagonal of $X \times Y$.

Acknowledgment. I would like to thank my colleague Dr. Roy Johnson for what was essentially co-authorship of $\S 3$.

References

1. S. K. Berberian, The product of two measures, Amer. Math. Monthly, 69 (1962), 961-968.
2. - Measure and integration (New York, 1965).
3. P. R. Halmos, Measure theory (New York, 1950).
4. H. L. Royden, Real analysis (New York, 1963).

Washington State University

