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Following (2) we say that a measure / i o n a ring 3i is semifinite if 

M(£) = lub{ju(P); F G 91, F C E, »(F) < oo} for every E G 9t. 

Clearly every a-finite measure is semifinite, but the converse fails. 
In § 1 we present several reformulations of semifiniteness (Theorem 2), and 

characterize those semifinite measures n on a ring 5R that possess unique 
extensions to the a-ring © generated by 9Î (Theorem 3). Theorem 3 extends 
a classical result for cr-finite measures (3, 13.A). Then, in § 2, we apply the 
results of § 1 to the study of product measures; in the process, we compare 
the "semifinite product measure" (1; 2, pp. 127ff.) with the product measure 
described in (4, pp. 229ff.), finding necessary and sufficient conditions for 
their equality; see Theorem 6 and, in relation to it, Theorem 7. Finally, in 
§ 3, we investigate some extensions of the Fubini theory relative to semi
finiteness. 

1. The unique extension of a measure. Fix a set X, a ring 9i of sub
sets of X, and a measure JJ, on 9î. Let @ be the o--ring generated by 9t. We 
write /i* for the outer measure induced by JJL on the hereditary c-ring § gen
erated by 3i, and /z for the restriction of /** to ©. Then fx is a measure that 
extends /x (3, 10.A, 11.C, and 12.A). Following (2) we write dl^ for the class 
of sets in 9i of finite ju-measure; thus 

% = [E G SR;M(£) < - } = {£ G 9t;/z(£) < - } • 

Clearly 9i0 is a ring of sets. 
Our interest will not only involve extensions of ju to © but also measures 

on S which agree with JU on 9î0 (called semi-extensions of ju). Clearly every 
extension of /x is a semi-extension of ju. We shall show later (Theorem 1) that 
/Z is the maximal semi-extension of ju (hence also the maximal extension of 
Id). W7e now seek the minimal semi-extension of //. For each P G 9i0, the set 
function jjP defined by jlp(E) = fi{P C\ E) for all E G © is a finite measure 
on ©; the family {/JP; P G 9t0} is increasingly directed in the obvious sense, 
and, defining jK = lub{/xP; P G 9i</>}> we obtain a measure on © (2, Theorem 
1, p. 32). Since 

(1) U(E) = lub{/z(P H £ ) ; P G 9Î0Î for all £ G @, 
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it is readily seen that p = p on {P C\ E; P G 9?0, E G ©}. As a consequence, 
we have p = /z = /* on 9Î$ (so that p is a semi-extension of /x) and 

(2) jS(E) = lub{p(P n £ ) ; P G ^ l for all E G ® . 

From (2) it follows that (i) p is semifinite and (ii) the restriction of p to di 
(denoted /Z/9Î) is a semifinite measure on 9?. 

p need not be an extension of /*; e.g., it would not be if the range of /x is 
{0, oo }. (Later we shall see that p is an extension of y if, and only if, y is semi-
finite.) 

One of the keys to our results is a mildly strengthened version of (4, 12.10). 
For that result and what follows it will be convenient to let ©^ denote 
{E G @;/z(E) < oo}; thus ©0 is simply the class of all sets E G ® such 
that E C ^ Fn for some sequence Fn G $K with ]£ju(En) < œ. 

LEMMA 1. Let v be a semi-extension of y. Then v = p on @«̂ ; in particular, 
v <! jl. 

The proof of Lemma 1 is not hard to deduce from that of (4, 12.10). 

THEOREM 1. Let v be a semi-extension of y. Then 
(i) p = v = p on ©0, 

(ii) p < v < p. 

Proof. In view of Lemma 1 and the fact that p is a semi-extension of y, 
it suffices to show that p < *> whenever p is a semi-extension of //. 

Now p = v on {P H E ; P G 9Î0, E G ©} C ©0 by Lemma 1. It follows 
from (2) that 

p{E) = lub{v(PnE);P G %} 

< V(E) for all E G ® . 

We now obtain some necessary and sufficient conditions for y to be semi-
finite: 

THEOREM 2. The following are equivalent: 
(i) IJ is semifinite. 

(ii) p is an extension of y. 
(iii) Every semi-extension of n is an extension of //. 

Proof, (i) =» (iii): Let v be a semi-extension of M- Then z//9t < /i/9î = \x by 
Theorem 1 (ii). On the other hand, since n is semifinite and v = JJL on 9î</,, it 
follows that for every E G 9Î, 

/x(E) = lub{ , (P) ;PG 3t„ P C E } < , ( E ) . 

Hence v/$l = M, so *> is an extension of y. 
That (iii) implies (ii) and (ii) implies (i) is obvious. 
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Unfortunately, the semifiniteness of /x is not enough to ensure t h a t of jl 
(see the last paragraph of § 2). W h a t is true along these lines is contained 
in the following theorem, which, moreover, generalizes the unique extension 
theorem (3, 13.A). In particular, we find t ha t the semifiniteness of jl is suffi
cient to guarantee uniqueness of the extension of xx. 

T H E O R E M 3. The following are equivalent: 

(i) jl is semifinite. 
(ii) n is semifinite and there exists a unique extension of /x. 

(iii) ft = IX. 
(iv) There exists a unique semi-extension of /x. 
(v) n(E) = lub{jl(Pr\E);P e $1*} for all E Ç ©. 

Proof, (i) => (iii): Since jl = jl on ©^ (Theorem 1 (i)) and jl is semifinite, 
one has 

/1(E) = lub{p(iO; F C £ , ^ S 4 < H(E) for all E £ ©. 

Hence jl = jl since p < /Z in general (Theorem 1 (ii)). 
(iii) <=> (iv): Theorem 1 (ii). 
(iii) «=> (v) : Equat ion (1). 
(iii) => (ii): Since M = M/9Î = ju/9î, ,u i s semifinite. T h e proof is com

pleted by noting t ha t any extension of /x is also a semi-extension of /x, hence 
is unique by the criterion (iv) (which is equivalent to (iii)). 

(ii) => (i): Since xx is semifinite, fi is an extension of /x by Theorem 2. Bu t 
the extension of /x is unique so tha t jl = jl, a semifinite measure. 

COROLLARY 1. If jl is a-finite, then /x ftas a unique extension. 

Proof. Every c-finite measure is semifinite. 

COROLLARY 2. {Unique Extension Theorem). If /x is a-finite, then xx &as a 
unique extension. 

Proof. Obviously jl is o--finite. 
Actually, Corollary 1 can be deduced from Corollary 2, since it is easy to 

show t h a t (JL is cr-finite if, and only if, jl is a-finite. T h a t it does not suffice 
in Corollary 1 to simply assume tha t some extension of ju is a-finite is illus
t ra ted by (3, Exercise 5, p . 57). 

Finally, it follows from Theorem 3 tha t since the semifiniteness of xx is not 
sufficient to ensure t ha t of /Z, it is likewise not sufficient to ensure t ha t the 
extension of /x is unique. 

2. App l i ca t ion t o product m e a s u r e s . T h e application of § 1 to pro
duct measures follows. For the remainder of the paper, let (X, S, /x), ( F , T , v) 
be two fixed arbi t rary measure spaces in the sense of (3, p . 73). (Indeed, w h a t 
follows will be of interest only when a t least one of (X, S, /x) and ( F , T , v) 
is not c-finite.) We shall use S^ and T^ to denote {P G S; /x(P) < oo} and 
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{Q G T; v(Q) < °°}, respectively. Clearly S0 and T 0 are rings. The set of all 
finite, disjoint unions of measurable rectangles is a ring dl of subsets of 
XX Y (3, 33.E). As is customary, we use S X T to denote the a-ring generated 
by dl 

It is a routine exercise to show that there exists a unique measure w on sJl 
such that 7r(E X F) = ix(E)v(F) for all £ G S, F G T. (The essentials needed 
to verify this are contained in (4, pp. 229ff.) although the approach there 
is slightly different.) Applying the framework of § 1 to ir (i.e., letting T play 
the role of ju there), we find that (i) the product measure introduced in (4, 
pp. 229ff.) is a "completion" of f to all 7r*-measurable sets and that (ii) TT is 
the "semifinite product measure" (1; 2, pp. 127ff., in particular, Theorem 1, 
p. 129). That is, ir is the unique measure on S X T satisfying 

(I) T(P X Q) = n(P)v(Q) for all P G S0, Q G T 0 

and 

(ii) T(M) = IUMTTKP x Q) r\ M}; p G s0, Q G T0} 

for all M G S X T. 
(I) is a consequence of the following facts: (i) w — -n on 9i0 and (ii) 

{P X Q;P G S0, Ç G T0} C ^ 

The latter fact also yields 

lub{^[(P X Q)nM];P G S0, (3 G T0} < lub{*(i? H I f ) ; 1? G SR*} 

for all M G S X T. 

Thus according to § 1, Equation (2), in order to verify (II) it will suffice to 
show the opposite inequality. Let R = ^J(E{X Ft) be a representation of 
R G 9i0 as a finite, disjoint union of measurable rectangles, each of which is 
necessarily of finite ir-measure; then 

U ' ( E , X Ft) C ÇU'Et) X (U ' /^ ) 

where W in each case denotes the union over all i such that ît{Ei X T̂ -) is 
non-zero (equivalently, all i such that ix(Et) and ^(Fz) are non-zero and 
finite). Letting P = \J'EU Q = W ^ , we have P G S*, Q G T0 , and 

TK# n M) = ^[(W'(£, x F,)) r\M\< *[(P x <2) n M] 
for ail M G S X T. 

A measure X on S X T is multiplicative on a measurable rectangle E X F 
if X(E X P) = n(E)v(F). Again referring to the framework of § 1, we see that: 

(i) The set of all semi-extensions of n is the set of all measures on S X T 
which are multiplicative on every measurable rectangle E X F satisfying 
n(E)v(F) < °° (equivalently, multiplicative on every measurable rectangle 
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E X ^ s u c h tha t either (a) both E and F a r e of a-finite measure or (b) ju(E) = 0 
or v(F) = 0) . 

(ii) The set of all extensions of ir is the set of all measures on S X T which 
are multiplicative on every measurable rectangle. 

In view of the preceding, we shall call an extension of TT a product measure 
on S X T and a semi-extension of n a pseudo-product measure on S X T. 

We now translate into their present context the results of § 1. In accord
ance with the notat ion there, (S X T ) 0 signifies {M £ S X T ; if (M) < oo }. 

T H E O R E M 4. Let X be a pseudo-product measure on S X T . Then 
(i) if = X = 7f on (S X T V 

( i i ) 7T < X < 7T. 

T H E O R E M 5. The following are equivalent: 
(i) TT is semifinite. 

(ii) if is a product measure on S X T. 
(iii) Every pseudo-product measure on S X T is a product measure on S X T . 

T H E O R E M 6. The following are equivalent: 
(i) if is semifinite. 

(ii) TT is semifinite and there exists a unique product measure on S X T . 
(iii) if = if. 
(iv) There exists a unique pseudo-product measure on S X T . 
(v) if (M) = lub{7ff (P X (?) H M]\ P G S0> <2 e T^J /or d l ^ S X T . 

The relationship between the semifiniteness of // and v and tha t of TT is as 
follows: 

T H E O R E M 7. (i) 7/ // and v are semifinite, then IT is semifinite. 
(ii) Conversely, if n, v 9^ 0 and 7r is semifinite, then n and v are semifinite. 

Theorem 7 follows immediately from Theorem 5 and the following slight 
improvement of (2, Exercise 18, p . 133): 

LEMMA 2. (i) If ju and v are semifinite, then if is a product measure on S X T . 
(ii) Conversely, if n, v ^ 0 and if is a product measure on S X T, then n 

and v are semifinite. 

Proof, (i) An application of property (II) of if to each measurable rectangle, 
along with the semifiniteness of // and v, yields the result. 

(ii) Since JJ, v ^ 0 and if is a product measure on S X T , it follows tha t 
if 9^ 0. Hence neither JJ. nor v has range {0, oo } since otherwise property (II) 
of if would imply tha t if = 0. The result then follows quite easily from pro
per ty ( I I ) of 7T and the fact tha t if is multiplicative on every measurable 
rectangle. 

If /x = 0, then 7T = 0 whatever be v; thus the assumption t ha t /JL, V ^ 0 
cannot be delected in Theorem 7 (ii) or in Lemma 2 (ii). 
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In the example of (3, Exercise 1, p. 145), -n is semifinite since /x and v are. 
I t is easy to show, however, that ir(D) = 0 whereas if(D) > 0 (thus ïï(D) =oo 
by Theorem 4 (i)). Hence if is not semifinite (Theorem 6). 

3. Remarks on the Fubini theory. No discussion of product measures 
is complete without at least a few words on the Fubini theory. By the pre
ceding example (3, Exercise 1, p. 145), both the "integrable form" (3, 36.C; 
2, Theorem 1, p. 142) and the "non-negative form" (3, 36.B) of Fubini's 
theorem fail for if and the latter is not valid for #, even if ju and v are semi-
finite. I t follows from the discussion in (4, pp. 231-233) that the "integrable 
form" is valid for if in general. Using this, we can show that the "partial 
converse" (2, Theorem 2, p. 143) of the "integrable form" is valid if f is 
semifinite. The proof proceeds as follows with notation as in (2 and 3): Say 
fjh dp du exists and is finite. Let 

An = {(x,y))h(x,y) > 1/n}, n = 1, 2, 

Fix n. Since if is semifinite, there are sets Mmn G (S X T) 0 such that Mjm C An 

for all m and if(Mmn) | if(An) a s w j o o , Then (l/n)xMmn < h for all m so 
that (l/n)v((Mmn)x) <Jhxdv for all x G X and all m. It follows then from 
the "integrable form," since XMmn

 1S 7r-integrable for all m, that 

(l/n)if(Mmn) ^JjhdvdfjL = K < œ for all m. 

Hence it(An) < nK < œ. Thus {(x, y); h(x, y) ^ 0} is of c-finite f-measure 
and the rest of the proof follows that of (2, Theorem 2, p. 143). 

One more question arises quite naturally: If ir is semifinite, is the "non-
negative form" of Fubini's theorem valid for if ( = TT) ? The problem is one of 
measurability: If the functions/(x) = v(Mx) and g(y) = (JL(MV) are measur
able for all M G S X T, then it follows easily from the "integrable form" and 
its "partial converse" that the answer is "yes." (Note that by (4, pp. 231-232) 
it is true in general that / and g are almost everywhere equal to measurable 
functions for all M G S X T of cr-finite 7f-measure and are, in fact, measurable 
for all such M if JJL and v are complete measures.) However, examples exist 
in which if is semifinite and JJL and v are complete measures; yet there is a set 
M G S X T such tha t / (x ) = v(Mx) is not measurable. For example, we may 
take X = Y = fO, 1], S = T = Borel subsets of [0, 1], and define y. = v as 
follows: Let F be a non-Borel subset of [0, 1] and let n be the unique measure 
on S determined by defining n([x}) = 2 if x G F and M({#}) = 1 if x & F. 
Then clearly if is semifinite and ^ and v are complete measures; but 

v(Dx) = XF(X) + 1 

is not measurable, where D = {(x, y) G X X F; x = y} is the diagonal of 
X X Y. 
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