UNIQUE EXTENSION AND PRODUCT MEASURES

NORMAN Y. LUTHER

Following (2) we say that a measure μ on a ring \Re is *semifinite* if

$$\mu(E) = \operatorname{lub}\{\mu(F); F \in \mathfrak{N}, F \subset E, \mu(F) < \infty\} \quad \text{for every } E \in \mathfrak{N}.$$

Clearly every σ -finite measure is semifinite, but the converse fails.

In § 1 we present several reformulations of semifiniteness (Theorem 2), and characterize those semifinite measures μ on a ring \Re that possess unique extensions to the σ -ring \mathfrak{S} generated by \Re (Theorem 3). Theorem 3 extends a classical result for σ -finite measures (3, 13.A). Then, in § 2, we apply the results of § 1 to the study of product measures; in the process, we compare the "semifinite product measure" (1; 2, pp. 127ff.) with the product measure described in (4, pp. 229ff.), finding necessary and sufficient conditions for their equality; see Theorem 6 and, in relation to it, Theorem 7. Finally, in § 3, we investigate some extensions of the Fubini theory relative to semifiniteness.

1. The unique extension of a measure. Fix a set X, a ring \Re of subsets of X, and a measure μ on \Re . Let \mathfrak{S} be the σ -ring generated by \Re . We write μ^* for the outer measure induced by μ on the hereditary σ -ring \mathfrak{H} generated by \Re , and $\overline{\mu}$ for the restriction of μ^* to \mathfrak{S} . Then $\overline{\mu}$ is a measure that extends μ (3, 10.A, 11.C, and 12.A). Following (2) we write \mathfrak{N}_{ϕ} for the class of sets in \Re of finite μ -measure; thus

$$\mathfrak{N}_{\phi} = \{ E \in \mathfrak{N}; \mu(E) < \infty \} = \{ E \in \mathfrak{N}; \overline{\mu}(E) < \infty \}.$$

Clearly \mathfrak{N}_{ϕ} is a ring of sets.

Our interest will not only involve extensions of μ to \mathfrak{S} but also measures on \mathfrak{S} which agree with μ on \mathfrak{R}_{ϕ} (called *semi-extensions* of μ). Clearly every extension of μ is a semi-extension of μ . We shall show later (Theorem 1) that $\overline{\mu}$ is the maximal semi-extension of μ (hence also the maximal extension of μ). We now seek the minimal semi-extension of μ . For each $P \in \mathfrak{N}_{\phi}$, the set function $\overline{\mu}_P$ defined by $\overline{\mu}_P(E) = \overline{\mu}(P \cap E)$ for all $E \in \mathfrak{S}$ is a finite measure on \mathfrak{S} ; the family { $\overline{\mu}_P$; $P \in \mathfrak{N}_{\phi}$ } is increasingly directed in the obvious sense, and, defining $\overline{\mu} = \operatorname{lub}{\{\overline{\mu}_P; P \in \mathfrak{N}_{\phi}\}}$, we obtain a measure on \mathfrak{S} (2, Theorem 1, p. 32). Since

(1)
$$\tilde{\mu}(E) = \operatorname{lub}\{\tilde{\mu}(P \cap E); P \in \mathfrak{N}_{\phi}\}$$
 for all $E \in \mathfrak{S}$,

Received March 21, 1966.

NORMAN Y. LUTHER

it is readily seen that $\tilde{\mu} = \bar{\mu}$ on $\{P \cap E; P \in \Re_{\phi}, E \in \mathfrak{S}\}$. As a consequence, we have $\tilde{\mu} = \bar{\mu} = \mu$ on \Re_{ϕ} (so that $\tilde{\mu}$ is a semi-extension of μ) and

(2)
$$\tilde{\mu}(E) = \operatorname{lub}\{\tilde{\mu}(P \cap E); P \in \mathfrak{R}_{\phi}\}$$
 for all $E \in \mathfrak{S}$.

From (2) it follows that (i) $\tilde{\mu}$ is semifinite and (ii) the restriction of $\tilde{\mu}$ to \mathfrak{N} (denoted $\tilde{\mu}/\mathfrak{N}$) is a semifinite measure on \mathfrak{N} .

 $\tilde{\mu}$ need not be an extension of μ ; e.g., it would not be if the range of μ is $\{0, \infty\}$. (Later we shall see that $\tilde{\mu}$ is an extension of μ if, and only if, μ is semi-finite.)

One of the keys to our results is a mildly strengthened version of (4, 12.10). For that result and what follows it will be convenient to let \mathfrak{S}_{ϕ} denote $\{E \in \mathfrak{S}; \mu(E) < \infty\}$; thus \mathfrak{S}_{ϕ} is simply the class of all sets $E \in \mathfrak{S}$ such that $E \subset \bigcup F_n$ for some sequence $F_n \in \mathfrak{R}$ with $\sum \mu(F_n) < \infty$.

LEMMA 1. Let ν be a semi-extension of μ . Then $\nu = \overline{\mu}$ on \mathfrak{S}_{ϕ} ; in particular, $\nu \leq \overline{\mu}$.

The proof of Lemma 1 is not hard to deduce from that of (4, 12.10).

THEOREM 1. Let ν be a semi-extension of μ . Then (i) $\tilde{\mu} = \nu = \bar{\mu}$ on \mathfrak{S}_{ϕ} , (ii) $\tilde{\mu} \leq \nu \leq \bar{\mu}$.

Proof. In view of Lemma 1 and the fact that $\tilde{\mu}$ is a semi-extension of μ , it suffices to show that $\tilde{\mu} \leq \nu$ whenever ν is a semi-extension of μ .

Now $\tilde{\mu} = \nu$ on $\{P \cap E; P \in \mathfrak{N}_{\phi}, E \in \mathfrak{S}\} \subset \mathfrak{S}_{\phi}$ by Lemma 1. It follows from (2) that

$$\widetilde{\mu}(E) = \operatorname{lub}\{\nu(P \cap E); P \in \mathfrak{N}_{\phi}\}$$
$$\leqslant \nu(E) \quad \text{for all } E \in \mathfrak{S}.$$

We now obtain some necessary and sufficient conditions for μ to be semi-finite:

THEOREM 2. The following are equivalent:

- (i) μ is semifinite.
- (ii) $\tilde{\mu}$ is an extension of μ .
- (iii) Every semi-extension of μ is an extension of μ .

Proof. (i) \Rightarrow (iii): Let ν be a semi-extension of μ . Then $\nu/\Re \leq \overline{\mu}/\Re = \mu$ by Theorem 1 (ii). On the other hand, since μ is semifinite and $\nu = \mu$ on \Re_{ϕ} , it follows that for every $E \in \Re$,

$$\mu(E) = \operatorname{lub}\{\nu(F); F \in \mathfrak{R}_{\phi}, F \subset E\} \leqslant \nu(E).$$

Hence $\nu/\Re = \mu$, so ν is an extension of μ .

That (iii) implies (ii) and (ii) implies (i) is obvious.

Unfortunately, the semifiniteness of μ is not enough to ensure that of $\bar{\mu}$ (see the last paragraph of § 2). What is true along these lines is contained in the following theorem, which, moreover, generalizes the unique extension theorem (3, 13.A). In particular, we find that the semifiniteness of $\bar{\mu}$ is sufficient to guarantee uniqueness of the extension of μ .

THEOREM 3. The following are equivalent:

(i) $\bar{\mu}$ is semifinite.

(ii) μ is semifinite and there exists a unique extension of μ .

(iii) $\tilde{\mu} = \bar{\mu}$.

(iv) There exists a unique semi-extension of μ .

(v) $\bar{\mu}(E) = \text{lub}\{\bar{\mu}(P \cap E); P \in \mathfrak{R}_{\phi}\}$ for all $E \in \mathfrak{S}$.

Proof. (i) \Rightarrow (iii): Since $\bar{\mu} = \tilde{\mu}$ on \mathfrak{S}_{ϕ} (Theorem 1 (i)) and $\bar{\mu}$ is semifinite, one has

 $\bar{\mu}(E) = \operatorname{lub}\{\tilde{\mu}(F); F \subset E, F \in \mathfrak{S}_{\phi}\} \leqslant \tilde{\mu}(E) \quad \text{for all } E \in \mathfrak{S}.$

Hence $\tilde{\mu} = \bar{\mu}$ since $\tilde{\mu} \leq \bar{\mu}$ in general (Theorem 1 (ii)).

(iii) \Leftrightarrow (iv): Theorem 1 (ii).

(iii) \Leftrightarrow (v): Equation (1).

(iii) \Rightarrow (ii): Since $\mu = \overline{\mu}/\Re = \overline{\mu}/\Re$, μ is semifinite. The proof is completed by noting that any extension of μ is also a semi-extension of μ , hence is unique by the criterion (iv) (which is equivalent to (iii)).

(ii) \Rightarrow (i): Since μ is semifinite, $\tilde{\mu}$ is an extension of μ by Theorem 2. But the extension of μ is unique so that $\bar{\mu} = \tilde{\mu}$, a semifinite measure.

COROLLARY 1. If $\bar{\mu}$ is σ -finite, then μ has a unique extension.

Proof. Every σ -finite measure is semifinite.

COROLLARY 2. (Unique Extension Theorem). If μ is σ -finite, then μ has a unique extension.

Proof. Obviously $\bar{\mu}$ is σ -finite.

Actually, Corollary 1 can be deduced from Corollary 2, since it is easy to show that μ is σ -finite if, and only if, $\overline{\mu}$ is σ -finite. That it does not suffice in Corollary 1 to simply assume that some extension of μ is σ -finite is illustrated by (3, Exercise 5, p. 57).

Finally, it follows from Theorem 3 that since the semifiniteness of μ is not sufficient to ensure that of $\bar{\mu}$, it is likewise not sufficient to ensure that the extension of μ is unique.

2. Application to product measures. The application of § 1 to product measures follows. For the remainder of the paper, let (X, \mathbf{S}, μ) , (Y, \mathbf{T}, ν) be two fixed arbitrary measure spaces in the sense of (3, p. 73). (Indeed, what follows will be of interest only when at least one of (X, \mathbf{S}, μ) and (Y, \mathbf{T}, ν) is not σ -finite.) We shall use \mathbf{S}_{ϕ} and \mathbf{T}_{ϕ} to denote $\{P \in \mathbf{S}; \mu(P) < \infty\}$ and $\{Q \in \mathbf{T}; \nu(Q) < \infty\}$, respectively. Clearly \mathbf{S}_{ϕ} and \mathbf{T}_{ϕ} are rings. The set of all finite, disjoint unions of measurable rectangles is a ring \mathfrak{N} of subsets of $X \times Y$ (3, 33.E). As is customary, we use $\mathbf{S} \times \mathbf{T}$ to denote the σ -ring generated by \mathfrak{N} .

It is a routine exercise to show that there exists a unique measure π on \Re such that $\pi(E \times F) = \mu(E)\nu(F)$ for all $E \in \mathbf{S}$, $F \in \mathbf{T}$. (The essentials needed to verify this are contained in (4, pp. 229ff.) although the approach there is slightly different.) Applying the framework of § 1 to π (i.e., letting π play the role of μ there), we find that (i) the product measure introduced in (4, pp. 229ff.) is a "completion" of π to all π^* -measurable sets and that (ii) π is the "semifinite product measure" (1; 2, pp. 127ff., in particular, Theorem 1, p. 129). That is, π is the unique measure on $\mathbf{S} \times \mathbf{T}$ satisfying

(I)
$$\tilde{\pi}(P \times Q) = \mu(P)\nu(Q)$$
 for all $P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}$

and

(II)
$$\tilde{\pi}(M) = \operatorname{lub}\{\tilde{\pi}[(P \times Q) \cap M]; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\}$$

for all $M \in \mathbf{S} \times \mathbf{T}$.

(I) is a consequence of the following facts: (i) $\tilde{\pi} = \pi$ on \Re_{ϕ} and (ii)

 $\{P \times Q; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\} \subset \mathfrak{R}_{\phi}.$

The latter fact also yields

$$\begin{split} \mathrm{lub}\{\tilde{\pi}[(P \times Q) \cap M]; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\} \leqslant \mathrm{lub}\{\tilde{\pi}(R \cap M); R \in \mathfrak{N}_{\phi}\} \\ & \text{for all } M \in \mathbf{S} \times \mathbf{T}. \end{split}$$

Thus according to § 1, Equation (2), in order to verify (II) it will suffice to show the opposite inequality. Let $R = \bigcup (E_i \times F_i)$ be a representation of $R \in \Re_{\phi}$ as a finite, disjoint union of measurable rectangles, each of which is necessarily of finite $\tilde{\pi}$ -measure; then

$$\bigcup'(E_i \times F_i) \subset (\bigcup' E_i) \times (\bigcup' F_i)$$

where \cup' in each case denotes the union over all *i* such that $\tilde{\pi}(E_i \times F_i)$ is non-zero (equivalently, all *i* such that $\mu(E_i)$ and $\nu(F_i)$ are non-zero and finite). Letting $P = \bigcup' E_i$, $Q = \bigcup' F_i$, we have $P \in \mathbf{S}_{\phi}$, $Q \in \mathbf{T}_{\phi}$, and

$$\tilde{\pi}(R \cap M) = \tilde{\pi}[(\bigcup'(E_i \times F_i)) \cap M] \leqslant \tilde{\pi}[(P \times Q) \cap M]$$

for all $M \in \mathbf{S} \times \mathbf{T}$.

A measure λ on **S** × **T** is *multiplicative* on a measurable rectangle $E \times F$ if $\lambda(E \times F) = \mu(E)\nu(F)$. Again referring to the framework of § 1, we see that:

(i) The set of all semi-extensions of π is the set of all measures on $\mathbf{S} \times \mathbf{T}$ which are multiplicative on every measurable rectangle $E \times F$ satisfying $\mu(E)\nu(F) < \infty$ (equivalently, multiplicative on every measurable rectangle

 $E \times F$ such that either (a) both E and F are of σ -finite measure or (b) $\mu(E) = 0$ or $\nu(F) = 0$).

(ii) The set of all extensions of π is the set of all measures on $\mathbf{S} \times \mathbf{T}$ which are multiplicative on every measurable rectangle.

In view of the preceding, we shall call an extension of π a *product measure* on $\mathbf{S} \times \mathbf{T}$ and a semi-extension of π a *pseudo-product measure* on $\mathbf{S} \times \mathbf{T}$.

We now translate into their present context the results of § 1. In accordance with the notation there, $(\mathbf{S} \times \mathbf{T})_{\phi}$ signifies $\{M \in \mathbf{S} \times \mathbf{T}; \, \tilde{\pi}(M) < \infty\}$.

THEOREM 4. Let λ be a pseudo-product measure on $\mathbf{S} \times \mathbf{T}$. Then (i) $\tilde{\pi} = \lambda = \tilde{\pi}$ on $(\mathbf{S} \times \mathbf{T})_{\phi}$.

(ii) $\tilde{\pi} \leq \lambda \leq \bar{\pi}$.

THEOREM 5. The following are equivalent:

- (i) π is semifinite.
- (ii) $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$.
- (iii) Every pseudo-product measure on $\mathbf{S} \times \mathbf{T}$ is a product measure on $\mathbf{S} \times \mathbf{T}$.

THEOREM 6. The following are equivalent:

- (i) $\bar{\pi}$ is semifinite.
- (ii) π is semifinite and there exists a unique product measure on $S \times T$.
- (iii) $\tilde{\pi} = \bar{\pi}$.
- (iv) There exists a unique pseudo-product measure on $\mathbf{S} \times \mathbf{T}$.
- (v) $\bar{\pi}(M) = \text{lub}\{\bar{\pi}[(P \times Q) \cap M]; P \in \mathbf{S}_{\phi}, Q \in \mathbf{T}_{\phi}\} \text{ for all } M \in \mathbf{S} \times \mathbf{T}.$

The relationship between the semifiniteness of μ and ν and that of π is as follows:

THEOREM 7. (i) If μ and ν are semifinite, then π is semifinite.

(ii) Conversely, if $\mu, \nu \neq 0$ and π is semifinite, then μ and ν are semifinite.

Theorem 7 follows immediately from Theorem 5 and the following slight improvement of (2, Exercise 18, p. 133):

LEMMA 2. (i) If μ and ν are semifinite, then $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$. (ii) Conversely, if $\mu, \nu \neq 0$ and $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$, then μ and ν are semifinite.

Proof. (i) An application of property (II) of $\tilde{\pi}$ to each measurable rectangle, along with the semifiniteness of μ and ν , yields the result.

(ii) Since $\mu, \nu \neq 0$ and $\tilde{\pi}$ is a product measure on $\mathbf{S} \times \mathbf{T}$, it follows that $\tilde{\pi} \neq 0$. Hence neither μ nor ν has range $\{0, \infty\}$ since otherwise property (II) of $\tilde{\pi}$ would imply that $\tilde{\pi} = 0$. The result then follows quite easily from property (II) of $\tilde{\pi}$ and the fact that $\tilde{\pi}$ is multiplicative on every measurable rectangle.

If $\mu = 0$, then $\pi = 0$ whatever be ν ; thus the assumption that $\mu, \nu \neq 0$ cannot be delected in Theorem 7 (ii) or in Lemma 2 (ii).

NORMAN Y. LUTHER

In the example of (3, Exercise 1, p. 145), π is semifinite since μ and ν are. It is easy to show, however, that $\tilde{\pi}(D) = 0$ whereas $\tilde{\pi}(D) > 0$ (thus $\tilde{\pi}(D) = \infty$ by Theorem 4 (i)). Hence $\tilde{\pi}$ is not semifinite (Theorem 6).

3. Remarks on the Fubini theory. No discussion of product measures is complete without at least a few words on the Fubini theory. By the preceding example (3, Exercise 1, p. 145), both the "integrable form" (3, 36.C; 2, Theorem 1, p. 142) and the "non-negative form" (3, 36.B) of Fubini's theorem fail for $\tilde{\pi}$ and the latter is not valid for $\tilde{\pi}$, even if μ and ν are semifinite. It follows from the discussion in (4, pp. 231-233) that the "integrable form" is valid for $\tilde{\pi}$ in general. Using this, we can show that the "partial converse" (2, Theorem 2, p. 143) of the "integrable form" is valid if $\tilde{\pi}$ is semifinite. The proof proceeds as follows with notation as in (2 and 3): Say $\int \int h d\nu d\mu$ exists and is finite. Let

$$A_n = \{(x, y); h(x, y) \ge 1/n\}, \quad n = 1, 2, \dots$$

Fix *n*. Since $\bar{\pi}$ is semifinite, there are sets $M_{mn} \in (\mathbf{S} \times \mathbf{T})_{\phi}$ such that $M_{rn} \subset A_n$ for all *m* and $\bar{\pi}(M_{mn}) \uparrow \bar{\pi}(A_n)$ as $m \uparrow \infty$. Then $(1/n)\chi_{M_{mn}} \leq h$ for all *m* so that $(1/n)_{\nu}((M_{mn})_x) \leq \int h_x d\nu$ for all $x \in X$ and all *m*. It follows then from the "integrable form," since $\chi_{M_{mn}}$ is $\bar{\pi}$ -integrable for all *m*, that

$$(1/n)\bar{\pi}(M_{mn}) \leq \iint h \, d\nu \, d\mu = K < \infty$$
 for all m .

Hence $\bar{\pi}(A_n) \leq nK < \infty$. Thus $\{(x, y); h(x, y) \neq 0\}$ is of σ -finite $\bar{\pi}$ -measure and the rest of the proof follows that of (2, Theorem 2, p. 143).

One more question arises quite naturally: If $\bar{\pi}$ is semifinite, is the "nonnegative form" of Fubini's theorem valid for $\bar{\pi} (= \tilde{\pi})$? The problem is one of measurability: If the functions $f(x) = \nu(M_x)$ and $g(y) = \mu(M^y)$ are measurable for all $M \in \mathbf{S} \times \mathbf{T}$, then it follows easily from the "integrable form" and its "partial converse" that the answer is "yes." (Note that by (4, pp. 231-232)) it is true in general that f and g are almost everywhere equal to measurable functions for all $M \in \mathbf{S} \times \mathbf{T}$ of σ -finite $\bar{\pi}$ -measure and are, in fact, measurable for all such M if μ and ν are complete measures.) However, examples exist in which $\bar{\pi}$ is semifinite and μ and ν are complete measures; yet there is a set $M \in \mathbf{S} \times \mathbf{T}$ such that $f(x) = \nu(M_x)$ is not measurable. For example, we may take X = Y = [0, 1], $\mathbf{S} = \mathbf{T} =$ Borel subsets of [0, 1], and define $\mu = \nu$ as follows: Let F be a non-Borel subset of [0, 1] and let μ be the unique measure on \mathbf{S} determined by defining $\mu(\{x\}) = 2$ if $x \in F$ and $\mu(\{x\}) = 1$ if $x \notin F$. Then clearly $\bar{\pi}$ is semifinite and μ and ν are complete measures; but

$$\nu(D_x) = \chi_F(x) + 1$$

is not measurable, where $D = \{(x, y) \in X \times Y; x = y\}$ is the diagonal of $X \times Y$.

762

PRODUCT MEASURES

Acknowledgment. I would like to thank my colleague Dr. Roy Johnson for what was essentially co-authorship of § 3.

References

1. S. K. Berberian, The product of two measures, Amer. Math. Monthly, 69 (1962), 961-968.

2. — Measure and integration (New York, 1965).

3. P. R. Halmos, Measure theory (New York, 1950).

4. H. L. Royden, Real analysis (New York, 1963).

Washington State University