TRANSITION PROBABILITIES FOR FORBIDDEN LINES

R.H. GARSTANG

(Joint Institute for Laboratory Astrophysics* and University of Colorado, U.S.A.)

ABSTRACT

A compilation is given of transition probabilities of forbidden lines which occur in the spectra of gaseous nebulae.

The spectra of gaseous nebulae contain both permitted and forbidden lines of many elements in various stages of ionization. These are of great importance because of the information they can provide on the physical conditions and chemical composition of the nebulae. The forbidden lines belong to both non-metals and metals, and indeed for some elements the only observable spectral lines are forbidden lines. Transition probabilities are now known for essentially every forbidden line which has been observed with reasonable certainty in gaseous nebulae, including the Orion Nebula and the very rich-spectrum planetary nebula NGC 7027.

Transition	Сі	NII	Ош	Fıv	Nev
${}^{1}D_{2} - {}^{1}S_{0}$	0·50 8727·4	1•08 5754•6	1.60 4363.2	2·10 3532·2	2.60 2972
${}^{3}P_{2}-{}^{1}S_{0}$	$1.9 imes 10^{-5} \\ 4627.3$	1.6 × 10−4 3070.8	7·1 × 10 ^{−4} 2331·6	$2 \cdot 3 imes 10^{-3}$ 1889 \cdot 3	6∙8 × 10 ⁻³ 1592∙7
${}^{3}P_{1} - {}^{1}S_{0}$	2•6 × 10⁻³ 4621•5	0·034 3063·0	0·23 2321·1	1·1 1875·5	4·2 1575·2
${}^{3}P_{2}\!-\!{}^{1}D_{2}$	$\begin{array}{c}\textbf{2.3}\times\textbf{10^{-4}}\\\textbf{9849.5}\end{array}$	$3.0 imes 10^{-3} \\ 6583.4$	0·021 5006·8	0·098 4060·2	0·38 3425·9
${}^{3}P_{1}-{}^{1}D_{2}$	$7.8 imes10^{-5} m .$ 9823-4	$1.03 imes 10^{-3} 6548.1$	0•0071 4958•9	0·034 3997·4	0•138 3345•8
${}^{3}P_{0}-{}^{1}D_{2}$	5·5 × 10 ⁻⁸ 9808·9	$egin{array}{c} 4m\cdot 2 imes 10^{-7}\ 6527m\cdot 4 \end{array}$	1∙9 × 10 ^{−6} 4931∙0	6•4 × 10 ⁻⁶ 3960•7	1∙9 × 10⁻⁵ 3300∙0
${}^{3}P_{1} - {}^{3}P_{2}$	$2.7 imes10^{-7}$	$7.5 imes10^{-6}$	$9.8 imes10^{-5}$	$7.9 imes10^{-4}$	$4.6 imes10^{-3}$
${}^{3}P_{0} - {}^{3}P_{2}$	$2.0 imes 10^{-14}$	$1{\cdot}3 imes10^{-12}$	$3.5 imes10^{-11}$	$5.0 imes10^{-10}$	$5.2 imes10^{-9}$
${}^{3}P_{0}-{}^{3}P_{1}$	$7.9 imes10^{-8}$	$2 \cdot 1 imes 10^{-6}$	$2 \cdot 6 imes 10^{-5}$	$2{\cdot}1 imes10^{-4}$	$1.3 imes 10^{-3}$

Table 1

Transition probabilities** for the 2p² configuration

** Compiled from Wiese *et al.* (1966), which is based on work by Garstang; Naqvi; and Yamanouchi and Horie.

* Of the National Bureau of Standards and the University of Colorado.

Osterbrock and O'Dell (eds.), Planetary Nebulae, 143-152. © I.A.U.

Transition	Nı	Оп	Fш	Neiv	Mgvi
² P ₄ - ² P ₁₄	(very small)	$6{\cdot}0 imes10^{-11}$	(very small)	$2\cdot3 imes10^{-9}$	1.6 × 10−5
${}^{2}D_{2} - {}^{2}P_{1}$	0·054 10395·4	0·115 7319·4	0·18 5721·2	0-40 4714-3	2•4 3485•5
${}^{2}D_{1\frac{1}{2}}-{}^{2}P_{1\frac{1}{2}}$	0·025 10404·1	0·061 7330·7	0·114 5733·0	0-44 4724-2	3-8 3488-1
${}^{2}D_{2}{}_{i}-{}^{2}P_{i}$	0·031 10395·4	0•061 7318•6	0-088 5721-2	0·11 4715·6	0·15 3500·4
${}^{2}D_{1}{}_{i}-{}^{2}P_{i}$	0·047 10404·1	0·100 7329·9	0·16 5733·0	0·39 4725·6	2·5 3503·0
${}^4S_{1\frac{1}{2}} - {}^2P_{1\frac{1}{2}}$	6·2 × 10 ⁻³ 3466·4	0·060 2470·4	0·26 1939·6	1·33 1608·8	13.
${}^{4}S_{14} - {}^{2}P_{4}$	2·5 × 10 ³ 3466·4	0·0238 2470·3	0·10 1939·6	0·53 1609·0	5.3
${}^{2}D_{2}$	$1\cdot3 imes10^{-8}$	$1\cdot3 imes10^{-7}$	7•6 × 10 ^{−7}	$1.4 imes10^{-6}$	1∙5 × 10-7
${}^4S_{1\sharp} - {}^2D_{2\sharp}$	$6.9 imes10^{-6}$ 5200.4	$egin{array}{c} 4\cdot 8 imes 10^{-5}\ 3728\cdot 8 \end{array}$	1⋅3 × 10 ⁻⁴ 2933⋅1	5∙9 × 10 ⁻⁴ 2441∙3	0.0054
${}^4S_{1{}_2}\!\!-\!{}^2D_{1{}_2}$	1∙6 × 10 ^{−5} 5197∙9	1•70 × 10⁻4 3726•0	1∙3 × 10 ⁻³ 2930∙0	5•6 × 10−3 2438•6	0.12

Transition probabilities* for the 2p³ configuration

* Compiled for NI, OII, FIII and NeIV from Wiese *et al.* (1966), which is based on work by Ufford and Gilmour; Naqvi; Garstang; and Seaton and Osterbrock. Mgv1 recalculated by Garstang for inclusion here.

Table 3

Transition probabilities* for the 2p⁴ configuration

Transition	От	FII	Nem	Naiv
$^{1}D_{2}-^{1}S_{0}$	1·34	2·1	2.8	3.5
	5577·4	4157·5	3342.5	2803.3
${}^{3}P_{2} - {}^{1}S_{0}$	3·7 × 10⁻₄	1.6 × 10−3	5·1 × 10 ³	0•012
	2958·4	2225.5	1793·8	1503•7
${}^{3}P_{1} - {}^{1}S_{0}$	0•067	0·49	2·2	7.6
	2972•3	2246·6	1814·8	1529.1
${}^{3}P_{2}-{}^{1}D_{2}$	5·1 × 10 ⁻³	0·038	0·17	0•66
	6300·3	4789·5	3868·8	3241•7
${}^{3}P_{1} - {}^{1}D_{2}$	1∙64 × 10 ^{−3}	0·012	0·052	0·20
	6363∙8	4869·3	3967·5	3362·2
${}^{3}P_{0}-{}^{1}D_{2}$	1 •1 × 10 ^{−6}	4·1 × 10 ^{…6}	1·2 × 10 ^{−5}	3∙0 × 10 ⁻⁵
	6391 •6	4904·8	4012·7	3416∙2
${}^{3}P_{1} - {}^{3}P_{0}$	$1.7 imes10^{-5}$	$1.8 imes 10^{-4}$	$1{\cdot}2 imes10^{-3}$	$5.5 imes10^{-3}$
${}^{3}P_{2} - {}^{3}P_{0}$	$1.0 imes10^{-10}$	$1.8 imes10^{-9}$	$2{\cdot}0 imes10^{-8}$	$1.5 imes10^{-7}$
${}^{3}P_{2} - {}^{3}P_{1}$	$9.0 imes10^{-5}$	$9.0 imes10^{-4}$	$6{\cdot}0 imes10^{-3}$	0.030

* Compiled for OI, FII and NEIII from Wiese *et al.* (1966), based on work by Garstang; Naqvi; Yamanouchi and Horie and for (OI) Omholt; Stoffregen and Derblom. NaIV from Malville and Berger (1965).

Transition probabilities* for the 3p² configuration

Transition	SIII	Cliv	Arv	Κvi	Са ин
${}^{1}D_{2} - {}^{1}S_{0}$	2•54	3·15	3•78	4·1	4·3
	6312•1	5323·3	4625•5	4097:	3688:
${}^{3}P_{2}\!\!-\!\!{}^{1}S_{0}$	0-016	0·038	0•081	0-14	0·25
	3796-7	3203·2	2784•4	2471-7	2226:
${}^{3}P_{1} - {}^{1}S_{0}$	0·85	2•6	6·8	16•	34•
	3721·7	3118•3	2691·4	2366•8	2112:
${}^{3}P_{2}-{}^{1}D_{2}$	0·064	0·20	0·51	1·1	2·5
	9532·1	8045·6	7005·7	6228·4	5614·7
${}^{3}P_{1} - {}^{1}D_{2}$	0·025	0·080	0·22	0•53	1·2
	9069·4	7530·5	6435·1	5603•2	4939:
${}^{3}P_{0}-{}^{1}D_{2}$	9•1 × 10 ^{−6} 8831•5	$egin{array}{c} 2m{\cdot}2 imes10^{-5}\ 7262m{\cdot}3 \end{array}$	4∙9 × 10 ^{−5} 6131∙0	1·1 × 10−4 5269·2	2·1 × 10 ^{−4} 4571 :
${}^{3}P_{1} - {}^{3}P_{2}$	$2\cdot4 imes10^{-3}$	$8{\cdot}2 imes10^{-3}$	0.027	0.076	0.20
${}^{3}P_{0}-{}^{3}P_{2}$	$4.7 imes10^{-8}$	$2.8 imes10^{-7}$	$1\cdot3 imes10^{-6}$	$5\cdot4 imes10^{-6}$	$1.9 imes10^{-5}$
${}^{2}P_{0}-{}^{3}P_{1}$	$4.7 imes10^{-4}$	$2 \cdot 1 imes 10^{-3}$	$8.0 imes10^{-3}$	0.026	0.076

* SIII, Cliv and Arv from Czyzak and Krueger (1963), Kvi and Cavii from Malville and Berger (1965).

Table 5

Transition probabilities* for the 3p³ configuration

Transition	SII	Clui	Arıv	Κv
${}^{2}P_{i} - {}^{2}P_{1i}$	$1.0 imes10^{-6}$	7•6 × 10−6	$5\cdot 2 imes 10^{-5}$	$2 \cdot 8 imes 10^{-4}$
${}^{2}D_{2}{}_{3}-{}^{2}P_{1}{}_{3}$	0·21	0·36	0•67	1.5
	10320·6	8481·6	7237•3	6317:
${}^{2}D_{1}{}_{!}{}^{-2}P_{1}{}_{!}{}_{!}$	0·17	0·39	0·91	2·3
	10287·1	8433·7	7170·6	6223:
${}^{2}D_{2}{}_{!}-{}^{2}P_{!}$	0•087	0·108	0·122	0•19
	10372•6	8550·5	7332·0	6447:
${}^{2}D_{1}{}_{i}-{}^{2}P_{i}$	0-20	0·35	0·68	1.5
	10338-8	8501·8	7262·8	6349:
${}^{4}S_{1\frac{1}{2}} - {}^{2}P_{1\frac{1}{2}}$	0·34	0·96	2•55	6•5
	4068·6	3342·9	2854•8	2494•5
${}^{4}S_{1} - {}^{2}P_{1}$	0•134	0·37	0·97	2•4
	4076•4	3353·3	2869·1	2514•5
$^{2}D_{2} - ^{2}D_{1}$	$3\cdot3 imes10^{-7}$	$3\cdot 2 imes 10^{-6}$	$2 \cdot 3 imes 10^{-5}$	$1\cdot4 imes10^{-4}$
${}^{4}S_{1\frac{1}{2}} - {}^{2}D_{2\frac{1}{2}}$	4·7 × 10 ^{−5}	1.01 × 10−3	2•2 × 10 ^{−3}	6∙9 × 10 ⁻³
	6716·4	5517.2	4711•3	4122∙6
${}^{4}S_{1} - {}^{2}D_{1}$	3∙0 × 10 ⁻⁴	7∙0 × 10 ⁻³	0•028	0-11
	6730∙8	5537∙7	4740•2	4163-3

* From Czyzak and Krueger (1963) for SII, Clill and ArIV. Kv calculated by Garstang for inclusion here.

R. H. GARSTANG

Table 6

Transition	Sı	Clu	Ariii	Κıv	Cav
${}^{1}D_{2} - {}^{1}S_{0}$	1•78	2·3	3·1	3.9	4.6
	7724•7	6152·9	5191·8	4510-9	3996.3
${}^{3}P_{2} - {}^{1}S_{0}$	7·3 × 10 ^{−3}	0·018	0·043	0•086	0·16
	4506·9	3583·0	3005·1	2593•5	2280·0
${}^{3}P_{1} - {}^{1}S_{0}$	0•35	1·3	4·0	10·4	24•
	4589•0	3675·0	3109·0	2711·2	2412•4
${}^{3}P_{2} - {}^{1}D_{2}$	0-028	0·10	0·32	0.83	1.9
	10819-8	8579·5	7135·8	6101.8	5309.2
${}^{3}P_{1} - {}^{1}D_{2}$	8·0 × 10 ⁻³	0·029	0·083	0·20	0•43
	11 305·8	9125·8	7751·0	6795·8	6086•9
${}^{3}P_{0}-{}^{1}D_{2}$	5•0 × 10 ⁻⁶ 11 540•1	1∙2 × 10⁻⁵ 9381∙8	$egin{array}{c} 2 {f \cdot}9 imes 10^{-5}\ 8036{f \cdot}4 \end{array}$	6•0 × 10 ^{−5} 7110•4	$egin{array}{c} 1\cdot1 imes10^{-4}\ 6428\cdot2 \end{array}$
${}^{3}P_{1} - {}^{3}P_{0}$	$3.0 imes 10^{-4}$	$1.4 imes10^{-3}$	$5\cdot1 imes10^{-3}$	0.015	0.035
${}^{3}P_{2} - {}^{3}P_{0}$	$7\cdot1 imes10^{-8}$	$4.8 imes10^{-7}$	$2 \cdot 7 imes 10^{-6}$	$1.2 imes 10^{-5}$	$4.5 imes10^{-5}$
${}^{3}P_{2} - {}^{3}P_{1}$	$1.4 imes10^{-3}$	$7.5 imes10^{-3}$	0.031	0.10	0.31

Transition probabilities* for the 3p⁴ configuration

* SI, Clii and Ariii from Czyzak and Krueger (1963), Kiv and Cav from Malville and Berger (1965).

Table 7

Transition probabilities for selected* lines of Mnvi and Fevil

T . ' <i>i</i> '	T T/	Mı	Mnvi		Fevil	
Iransition	J—J	λ	A	λ	A	
a ³ F-a ¹ D	2–2	6518-3	0.14	5721.1	0.30	
	3–2	6852:	0.23	6086.9	0.49	
	4–2	7315:	$9.0 imes 10^{-4}$	6598.8	$1.6 imes 10^{-3}$	
a ³ F-a ³ P	2–0	5622:	0.087	4989:	0.11	
	2-1	5536:	0.031	4893•4	0.043	
	3-1	5776-4	0.050	5159.0	0.063	
	2-2	5367:	$6.3 imes10^{-3}$	4699.8	0.012	
	3–2	5591:	0.030	4944 · 0	0.065	
	4–2	5894.0	0.050	5277•7	0.060	
a ³ F–a ¹ G	3–4	4036-8	0.12	3587•8	0.26	
	44	4193-1	0.17	3760-3	0.37	

* From Garstang (1964) for Mn v1 and Pasternack (1940) for Fev11, with the electric quadrupole contributions in Fev11 reduced by the appropriate factor given by Garstang (1964). Results for many additional lines can be found in these references.

Tables 1–11 give the transition probabilities of spontaneous emission in \sec^{-1} . The transitions (with one exception specially noted) take place by magnetic dipole radiation, by electric quadrupole radiation, or by both. When both are possible one type usually predominates, but there are some cases where the two types of radiation have comparable probabilities. In our tables we have given the total transition probability; anyone interested in the type of radiation involved in a particular line and in the individual magnetic dipole or electric quadrupole-transition probabilities is referred to the original papers or compilations mentioned in the notes to the tables. The wavelengths are given (in Ångstroms unless microns are indicated) for lines in the observable spectral region and for some infrared and ultraviolet transitions. Many of the

	,	M	nv	Fe	VI
Transition	J–J′	λ	A	λ	A
a ⁴ F-a ⁴ P	4 1 -2 1	6393.6	0.041	5677.0	0.048
	$3\frac{1}{2}-2\frac{1}{2}$	6166-2	0.016	5426-6	0.021
	$2\frac{1}{2}-2\frac{1}{2}$	5991:	$4{\cdot}1 imes10^{-3}$	5233.9	$5.9 imes10^{-3}$
	$1\frac{1}{4}-2\frac{1}{4}$	5868:	$5.0 imes10^{-4}$	5097.5	$7.9 imes10^{-4}$
	$3\frac{1}{1}$	6346:	0.031	5630.8	0.036
	$2\frac{1}{2}-1\frac{1}{2}$	6159:	0.026	5423.9	0.032
	$1\frac{1}{2}-1\frac{1}{2}$	6030:	$9.3 imes10^{-3}$	5277.5	0.014
	$2\frac{1}{2}-\frac{1}{2}$	6218.6	0.026	5484.8	0.031
	$1\frac{1}{2}-\frac{1}{2}$	6088:	0.044	5335-2	0.055
a ⁴ F-a ² G	4 1 -41	5891.1	0.24	5176-4	0.56
	31-41	5695:	0.096	4967.3	0.22
	2+-4+	5544:	$1.7 imes10^{-6}$	4805-4	3•1 × 10 ^{−6}
	4 1 -3 1	6069:	5•9 × 10⁻³	5370-5	0.012
	31-31	5862.3	0.096	5145.8	0.22
	$2\frac{1}{3}-3\frac{1}{3}$	5703:	0.088	4972-1	0.20
	1+-3+	5592:	$5\cdot6 imes10^{-6}$	4849•0	$1\cdot1 imes10^{-5}$

Table 8 Transition probabilities for selected * lines of Mnv and Fevu

* From Pasternack (1940) with the electric quadrupole contributions reduced by appropriate factors given by Garstang (1964). There are many other lines of these ions for which data can be found in these references.

wavelengths are quoted from Bowen (1955, 1960). Some wavelengths are uncertain by several tenths of an Ångstrom in cases where they have not been directly observed and reliance is upon predictions based on ultraviolet permitted-line spectroscopy.

A compilation of data for all atoms up to neon has been given by Wiese *et al.* (1966). Where the data we quote are the same as theirs, we reference only their book. References may be found in their book to the original papers by Garstang; Naqvi; Yamanouchi and Horie; Ufford and Gilmour; Seaton and Osterbrock; Omholt; and Stoffregen and Derblom upon which their compilation is based. For atoms heavier than

		H	FeIII]	Fev
Transition	J–J′	λ	Α	λ	A
a ⁵ D–a ⁵ D	0-1		$1\cdot4 imes10^{-4}$		$1.6 imes 10^{-4}$
	1-2		$6.7 imes10^{-4}$		$1.2 imes 10^{-3}$
	2-3		$1.8 imes10^{-3}$		$2.6 imes 10^{-3}$
	3–4		$2.8 imes10^{-3}$		$3.0 imes10^{-3}$
a ⁵ D–a ³ P	1–0	4930-5	0.67	4180-9	1.3
	2–0	4884.5	$2\cdot4 imes10^{-4}$	4229•3	$2.8 imes 10^{-4}$
	0-1	5084.8	0.091	4003-0	0.13
	1-1	5060.5	$1.5 imes10^{-4}$	4026-4	$2 \cdot 1 imes 10^{-4}$
	2-1	5011.3	0.53	4071·3	1•1
	3-1	4936-4	$3\cdot2 imes10^{-5}$	4136-2	$4\cdot 1 imes 10^{-5}$
	0–2	5439.9	$1.5 imes10^{-5}$	3777•2	$4 \cdot 1 imes 10^{-5}$
	1-2	5412.2	0.038	3798.0	0.036
	2–2	5355.9	$1 \cdot 1 imes 10^{-4}$	3838.0	$2.0 imes10^{-4}$
	3–2	5270-3	0.40	3895.5	0.71
	4–2	5151.9	$7 \cdot 1 imes 10^{-6}$	3970-0	$1.5 imes 10^{-5}$
a ³ P_a ³ P	0-1		$7.5 imes10^{-3}$		0.014
uiui	1-2		0.047		0.045
a ⁵ D–a ³ H	4–4	4881.1	$4.8 imes 10^{-3}$	4227.5	$1 \cdot 1 imes 10^{-3}$
a ³ H-a ³ H	4–5		$1.9 imes10^{-4}$		$6.5 imes10^{-4}$
	5-6		$4 \cdot 1 imes 10^{-4}$		$5.8 imes10^{-4}$
a⁵D–a³F	0–2	4799•4	$9\cdot3 imes10^{-6}$	3735.7	$2 \cdot 2 imes 10^{-5}$
	1–2	4777.9	0.049	3756-1	0.10
	2–2	4733-9	0.10	3795-2	0.20
	3–2	4667.0	0.026	3851.4	0.047
	4–2	4573-8	$2 \cdot 1 imes 10^{-6}$	3924-2	$1.5 imes10^{-6}$
	1-3	4814.1	$1 \cdot 1 imes 10^{-5}$	3744•8	$8.6 imes10^{-6}$
	2-3	4769-6	0.08 7	3783.6	0.16
	3–3	4701 ∙6	0.27	3839.5	0.40
	4–3	4607.1	0.038	3911.9	0.066
	2-4	4824.2	7.6 $ imes$ 10 $^{-6}$	3764•4	8•6 × 10 […] 7
	3–4	4754.8	0.081	3819-8	0.16
	4–4	4658-1	0•44	3891.3	0.74
a ⁵ D–a ³ G	3-3	4046.4	$8.0 imes10^{-3}$	3445-4	0.017
	4–4	4008-4	0.019	3463•4	0.032
a ⁵ D–a ³ D	0–1	3366-2	0.13	?	0-22
	1-1	3355-6	0.15	?	0.19
	1–2	3356.6	0.095	?	0.20
	2–2	3334.9	0.11	?	0.18
	3–2	3301.6	0.027	?	0.11
	2-3	3319-3	0.044	?	0.097
	3–3	3286-2	0.047	?	0.089
	43	3239.7	0.23	?	0.37

Transition probabilities for selected * lines of $Fe_{\rm III}$ and $Fe_{\rm V}$

* From Garstang (1957), where results are given for many additional lines.

	-		
Transition	J–J′	λ	A
a ⁶ D-a ⁶ S	4 1 -2 1	4287•4	1.12
	$3\frac{1}{2}-2\frac{1}{2}$	4359-3	0.82
	$2\frac{1}{2}-2\frac{1}{2}$	4413-8	0.58
	$1\frac{1}{2}-2\frac{1}{2}$	4452-1	0.37
	$\frac{1}{2} - 2\frac{1}{2}$	4474-9	0.18
a4F-a4G	4 1 -5 1	4244.0	0.90
	$3\frac{1}{2}-5\frac{1}{2}$	4346.9	0.21
	$4\frac{1}{2}-4\frac{1}{2}$	4177-2	0.14
	$3\frac{1}{2}-4\frac{1}{2}$	4276-8	0.65
	$2\frac{1}{2}-4\frac{1}{2}$	4352.8	0.31
	$4\frac{1}{2}-3\frac{1}{2}$	4146.6	$8.7 imes10^{-3}$
	$3\frac{1}{2}-3\frac{1}{2}$	4244.8	0.25
	$2\frac{1}{2}-3\frac{1}{2}$	4319.6	0.53
	$1\frac{1}{2}-3\frac{1}{2}$	4372-4	0.28
	$4\frac{1}{2}-2\frac{1}{2}$	4134-0	$2.0 imes10^{-4}$
	$3\frac{1}{2}-2\frac{1}{2}$	4231.6	0.024
	$2\frac{1}{2}-2\frac{1}{2}$	4305.9	0.31
	$1\frac{1}{2}-2\frac{1}{2}$	4358-4	0.73
a ⁴ F-b ⁴ F	4 1 -41	4814.6	0.40
	$3\frac{1}{2}-4\frac{1}{2}$	4947•4	0.050
	$2\frac{1}{2}-4\frac{1}{2}$	5049-3	$7\cdot2 imes10^{-4}$
	$4\frac{1}{2}-3\frac{1}{2}$	4774.7	0.13
	$3\frac{1}{2}-3\frac{1}{2}$	4905-3	0.22
	$2\frac{1}{2}-3\frac{1}{2}$	5005.5	0.071
	$1\frac{1}{2}-3\frac{1}{2}$	5076-6	$1.6 imes10^{-5}$
	$4\frac{1}{2}-2\frac{1}{2}$	4745•5	0.013
	$3\frac{1}{2}-2\frac{1}{2}$	4874.5	0.17
	$2\frac{1}{2}-2\frac{1}{2}$	4973-4	0.14
	$1\frac{1}{2}-2\frac{1}{2}$	5043.5	0.065
	$3\frac{1}{2}-1\frac{1}{2}$	4852.7	0.022
	$2\frac{1}{2}-1\frac{1}{2}$	49 50 •7	0.17
	$1\frac{1}{2}-1\frac{1}{2}$	5020-2	0.18
a ⁶ D-b ⁴ F	$4\frac{1}{2}-4\frac{1}{2}$	4416-3	0.46
	$3\frac{1}{2}-4\frac{1}{2}$	4492.6	0.060
	$2\frac{1}{2}-4\frac{1}{2}$	4550-5	$2\cdot 6 imes 10^{-7}$
	$4\frac{1}{2}-3\frac{1}{2}$	4382-8	0.055
	$3\frac{1}{2}-3\frac{1}{2}$	4458·0	0.29
	$2\frac{1}{2}-3\frac{1}{2}$	4514-9	0.066
	1 1 -3 1	4555-0	$4.8 imes10^{-8}$
	4 1 -2 1	4358-1	$1.6 imes10^{-5}$
	$3\frac{1}{2}-2\frac{1}{2}$	4432•5	0.054
	$2\frac{1}{2}-2\frac{1}{2}$	4488-8	0.15
	$1\frac{1}{2}-2\frac{1}{2}$	4528-4	0.046
	$\frac{1}{2}-2\frac{1}{2}$	4552-0	2•0 × 10−6
	$3\frac{1}{2}-1\frac{1}{2}$	4414.5	5•9 × 10 ⁻⁶
	$2\frac{1}{2}-1\frac{1}{2}$	4470-3	0.029
	$1\frac{1}{2}-1\frac{1}{2}$	4509.6	0.058
	<u>+-1+</u>	4533-0	0.016

Transition probabilities for selected * lines of FeII

* From Garstang (1962), where data for many other lines may be found.

R. H. GARSTANG

neon references are given to the original papers containing the data we have quoted. In each case we have quoted what we believe to be the best available results.

In a few cases we have given original data calculated for inclusion here. Mg vI and Kv were originally calculated by Pasternack (1940). We have recalculated these, using the best available technique. The principal change results from the use of improved quadrupole radial integrals, which we have estimated by extrapolation. The changes

Table 11

Ion	Transition	J–J′	λ	A	Notes
Mgı	3s ² ¹ S-3s3p ³ P	0-2	4562.5	$2.0 imes 10^{-4}$	1
Nim	³ F_3P ³ F_3P ³ F_1G	3-1 2-0 3-2 3-4	6401.5 6682.2 6533.7 4596.8	0-038 0-046 0.12 0-18	2
Сп	2p ² P	$\frac{1}{2} - 1\frac{1}{2}$	156 μ	$2{\cdot}4 imes10^{-6}$	3
NIII	2p ² P	$\frac{1}{2} - 1\frac{1}{2}$	57·3 μ	$4.8 imes10^{-5}$	3
Οιν	2p ² P	$\frac{1}{2} - 1\frac{1}{2}$	25·9 μ	$5{\cdot}2 imes10^{-4}$	3
NeII	2p ⁵ ² P	$1\frac{1}{2}-\frac{1}{2}$	12·8 μ	0.0086	3
Mgiv	2p ⁵ ² P	$1\frac{1}{2}-\frac{1}{2}$	4•49 μ	0.20	4
Sin	3p ² P	$\frac{1}{2} - 1\frac{1}{2}$	34·8 μ	$2 \cdot 1 imes 10^{-4}$	4
Siv	3p ² P	$\frac{1}{2} - 1\frac{1}{2}$	10·6 μ	0.0077	4

Transition probabilities for some miscellaneous lines

¹ This line arises partly from magnetic quadrupole radiation and partly from nuclear-spin-induced electric dipole radiation. See Garstang (1967).

² Possible identification of 6401.5 by Flather and Osterbrock (1960). Other Nim lines have not been seen in gaseous nebulae. Transition probabilities from Garstang (1958).

³ From Wiese et al. (1966).

⁴ Calculated by Garstang for inclusion here.

in the magnetic dipole results and in the relative electric quadrupole results are fairly small. We have also revised Pasternack's (1940) results for MnvI, FevII, Mnv and FevI by introducing revised quadrupole radial integrals as described by Garstang (1964). We included MgvI because of its possible, as yet unconfirmed, identification by Gauzit (1966). In Table 11 we have included some infrared transitions; other such transitions appear in many of the other tables, or can be found in the references (e.g. for FeII and other heavy ions).

Acknowledgment

The preparation of this paper was supported by the National Science Foundation under Grant GP-6595.

References

Bowen, I.S. (1955) Astrophys. J., 121, 306.

Bowen, I.S. (1960) Astrophys. J., 132, 1.

Czyzak, S.J., Krueger, T.K. (1963) Mon. Not. R. astr. Soc., **126**, 177, with an important correction in 1965, *ibid.*, **129**, 103.

Flather, E., Osterbrock, D.E. (1960) *Astrophys. J.*, 132, 18.

Garstang, R.H. (1957) Mon. Not. R. astr. Soc., 117, 393.

Garstang, R.H. (1958) Mon. Not. R. astr. Soc., 118, 234.

Garstang, R. H. (1962) Mon. Not. R. astr. Soc., 124, 321.

Garstang, R. H. (1964) J. Res. nat. Bur. Stand. Sec. A., 68, 61.

Garstang, R. H. (1967) Astrophys. J., 148, 579.

Gauzit, J. (1966) C. r. hebd. Séanc. Acad. Sci. Paris, 262, 523.

Malville, J. M., Berger, R. A. (1965) Planet. Space Sci., 13, 1131.

Pasternack, S. (1940) Astrophys. J., 92, 129.

Wiese, W. L., Smith, M. W., Glennon, B. M. (1966) Atomic Transition Probabilities, Vol. 1: Hydrogen through Neon, Nat. Stand. Ref. Data Series – Nat. Bur. Stand. 4, U.S. Government Printing Office, Washington, D.C.

DISCUSSION

Garstang: I would like to open the discussion myself by asking the question I am frequently asked - Do I believe the results? The answer is - Yes, I do. While one cannot entirely exclude the possibility that some unsuspected configuration interaction may produce significant perturbations, this seems unlikely for the transitions of interest for forbidden lines. There is now some substantial evidence for the basic correctness of the results. The comparison of [FeII] lines in η Carinae with theoretical values (Thackeray, Mon. Not. R. astr. Soc., 135, 1967, 23) shows astonishingly good agreement, confirming the broad overall accuracy of the relative line strengths. Recent experimental work on interference effects in Zeeman components of two lines of mixed magnetic-dipole and electricquadrupole radiation of [Pb1] and [Pb11] by Hults (J. opt. Soc. Am., 56, 1966, 1298) shows excellent agreement with the relative contributions of the two kinds of radiation predicted by Garstang (J. Res. nat. Bur. Stand., Sec. A, 68, 1964, 61). Finally, experiments (Husain and Wiesenfeld, Nature, 213, 1967, 1227) on flash photolysis of trifluoro-iodomethane have led to an estimate of the lifetime of the upper state of the lowest doublet in II within a factor 3 of the theoretical lifetime given by Garstang (J. Res. nat. Bur. Stand., Sec. A, 68, 1964, 61). In view of the experimental difficulties in handling a state whose lifetime is of the order of 0.1 sec this agreement must be considered satisfactory. Taking all these results together I think we must regard the transition probabilities of forbidden lines as reasonably well established.

Menzel: Some mention has been made of high-level transitions in hydrogen. I have derived an asymptotic formula for the *f*-values of such transitions between levels of quantum numbers *n* and *n'* with n - n' = c.

The *f*-value is

$$f_{nn'} = \frac{4n'}{3c^2} J_c(c) J_c'(c) = n'M(c),$$

where $J_c(c)$ and $J_c'(c)$ are respectively the Bessel functions of equal argument and order and its derivative. Examples of M(c) follow:

$$\begin{array}{ll} M(1) = 1.9077 \times 10^{-1}, & M(3) = 8.1056 \times 10^{-3} \\ M(2) = 2.6332 \times 10^{-2}, & M(4) = 3.4917 \times 10^{-3}. \end{array}$$

Note that for n' = 100, $f_{101,100} - 19$. The question might be asked, How can one reconcile such large f-values with the well-known f-sum rule f = 1? The chief point is that one must sum over

all transitions, both upward and downward, from level n'. The former are counted positive, the latter, negative. Downward f-values can be calculated from upward ones by the formula $f_{n':n'} = -n''^2 f_{n'n''}/n'^2$. With these formulas, the negative contributions nearly cancel the large positive contributions, leaving the exact remainder

$$4 \sum_{c=1}^{\infty} \frac{J_c(c) J_c'(c)}{c} = 1$$

a new theorem in the theory of Bessel functions.