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Markov Decision Problems

In this chapter, we introduce Markov decision problems, which are stochastic
games with a single player. They serve as an appetizer. On the one hand,
the basic concepts and basic proofs for zero-sum stochastic games are better
understood in this simple model. On the other hand, some of the conclusions
that we draw for Markov decision problems are different from those drawn
for zero-sum stochastic games. This illustrates the inherent difference
between single-player decision problems and multiplayer decision problems
(=games). The interested reader is referred to, for example, Ross (1982) or
Puterman (1994) for an exposition of Markov decision problems.

We will study both the T -stage evaluation and the discounted evaluation.
We will introduce and study contracting mappings,1 and will use such
mappings to show that the decision maker has a stationary discounted optimal
strategy. We will also define the concept of uniform optimality, and show that
the decision maker has a stationary uniformly optimal strategy.

Definition 1.1 A Markov decision problem2 is a vector � = 〈S,(A(s))s∈S,

q,r〉 where

• S is a finite set of states.
• For each s ∈ S, A(s) is a finite set of actions available at state s. The set of

pairs (state, action) is denoted by

SA := {(s,a) : s ∈ S,a ∈ A(s)}.
• q : SA → �(S) is a transition rule.
• r : SA → R is a payoff function.

1 We adhere to the convention that a mapping is a function whose range is a general space or Rn,
while a function is always real-valued.

2 Andrey Andreyevich Markov (Ryazan, Russia, June 14, 1856 – St. Petersburg, Russia, July 20,
1922) was a Russian mathematician. He is best known for his work on the theory of stochastic
processes that now bear his name: Markov chains and Markov processes.
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6 Markov Decision Problems

A Markov decision problem involves a decision maker, and it evolves as
follows. The problem lasts for infinitely many stages. The initial state s1 ∈ S

is given. At each stage t ≥ 1, the following happens:

• The current state st is announced to the decision maker.
• The decision maker chooses an action at ∈ A(st ) and receives the stage

payoff r(st,at ).
• A new state st+1 is drawn according to q(· | st,at ), and the game proceeds

to stage t + 1.

Example 1.2 Consider the following situation. The technological level of a
country can be High (H), Medium (M), or Low (L). The annual investment
of the country in technological advances can also be high (2 billion dollars),
medium (1 billion dollars), or low (0.5 billion dollars). The annual gain
from technological level is increasing: the high, medium, and low technolog-
ical level yield 10, 6, and 2 billion dollars, respectively. The technological
level changes stochastically as a function of the investment in technologi-
cal advancement, according to the following table:3

High Medium Low
Technology level investment investment investment

H H
[

1
2 (H), 1

2 (M)
] [

1
4 (H), 3

4 (M)
]

M
[

3
5 (H), 2

5 (M)
]

M
[

2
5 (M), 3

5 (L)
]

L
[

3
5 (M), 2

5 (L)
] [

2
5 (M), 3

5 (L)
]

L

The situation can be presented as a Markov decision problem as follows:

• There are three states, which represent the three technological levels:
S = {H,M,L}.

• There are three actions in each state, which represent the three investment
levels: A(s) = {h,m,l} for each s ∈ S.

• The transition rule is given by

3 Here and in the sequel, a probability distribution is denoted by a list of probabilities and
outcomes in square brackets, where the outcomes are written within round brackets.
Thus,

[ 2
3 (H), 1

3 (M)
]

means a probability distribution that assigns probability 2
3 to H and

probability 1
3 to M .
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Markov Decision Problems 7

q(H | H,h) = 1, q(M | H,h) = 0, q(L | H,h) = 0,

q(H | H,m) = 1
2, q(M | H,m) = 1

2, q(L | H,m) = 0,

q(H | H,l) = 1
4, q(M | H,l) = 3

4, q(L | H,l) = 0,

q(H | M,h) = 3
5, q(M | M,h) = 2

5, q(L | M,h) = 0,

q(H | M,m) = 0, q(M | M,m) = 1, q(L | M,m) = 0,

q(H | M,l) = 0, q(M | M,l) = 2
5, q(L | M,l) = 3

5,

q(H | L,h) = 0, q(M | L,h) = 3
5, q(L | L,h) = 2

5,

q(H | L,m) = 0, q(M | L,m) = 2
5, q(L | L,m) = 3

5,

q(H | L,l) = 0, q(M | L,l) = 0, q(L | L,l) = 1.

• The payoff function (in billions of dollars) is given by

r(H,h) = 8, r(H,m) = 9, r(H,l) = 9 1
2,

r(M,h) = 4, r(M,m) = 5, r(M,l) = 5 1
2,

r(L,h) = 0, r(L,m) = 1, r(L,l) = 1 1
2 . �

Example 1.3 The Markov decision problem that is illustrated in Figure 1.1
is formally defined as follows:

• There are three states: S = {s(1),s(2),s(3)}.
• In state s(1), there are two actions: A(s(1)) = {U,D}; in states s(2) and

s(3), there is one action: A(s(2)) = A(s(3)) = {D}.
• Payoffs appear at the center of each entry and are given by:

r(s(1),U) = 10; r(s(1),D) = 5; r(s(2),D) = 10; r(s(3),D) = −100.

• Transitions appear in parentheses next to the payoff and are given by:

– If in state s(1) the decision maker chooses U , the process moves to state
s(2), that is, q(s(2) | s(1),U) = 1.

– If in state s(1) the decision maker chooses D, the process remains in
state s(1), that is, q(s(1) | s(1),D) = 1.

5(1,0,0)

10(0,1,0)

D

U

s(1)

10( 1
10 ,0, 9

10

) −100(0,0,1)D D

s(2) s(3)

Figure 1.1 The Markov decision problem in Example 1.3.
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8 Markov Decision Problems

– From state s(2), the process moves to state s(1) with probability 1
10 and

to state s(3) with probability 9
10 , that is, q(s(1) | s(2),D) = 1

10 and
q(s(3) | s(2),D) = 9

10 .
– Once the process reaches state s(3), it stays there, that is,

q(s(3) | s(3),D) = 1. �

1.1 On Histories

For t ∈ N, the set of histories of length t is defined by

Ht := (SA)t−1 × S,

where by convention (SA)0 = ∅. This is the set of all histories that may occur
until stage t . A typical element in Ht is denoted by ht . The last state of history
ht is denoted by st . The set H1 is identified with the state space S, and the
history (s1) is simply denoted by s1.

We denote the set of all histories by

H :=
⋃
t∈N

Ht,

and the set of all infinite histories or plays by

H∞ := (SA)N.

The set of plays H∞ is a measurable space, with the sigma-algebra
generated by the cylinder sets, which are defined as follows. For a history
h̃t = (̃s1,ã1, . . . ,̃st ) ∈ Ht , the cylinder set C(̃ht ) ⊂ H∞ is the collection of
all plays that start with h̃t , that is,

C(̃ht ) := {h = (s1,a1,s2,a2, . . .) ∈ H∞ : s1 = s̃1,a1 = ã1, . . . ,st = s̃t }.
For every t ∈ N, the collection of all cylinder sets (C(̃ht ))h̃t∈Ht

defines a
finite partition, or an algebra, on H∞. We denote by Ht this algebra and by H
the sigma-algebra on H∞ generated by the algebras (Ht )t∈N.

1.2 On Strategies

A mixed action at state s is a probability distribution over the set of actions
A(s) available at state s. The set of mixed actions at state s is therefore
�(A(s)). A strategy of the decision maker specifies how the decision maker
should play after each possible history.

Definition 1.4 A strategy is a mapping σ that assigns to each history
h = (s1,a1, . . . ,at−1,st ) a mixed action in �(A(st )).

The set of all strategies is denoted by �.
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1.2 On Strategies 9

A decision maker who follows a strategy σ behaves as follows: at each
stage t , given the past history (s1,a1, . . . ,st ), the decision maker chooses an
action at according to the mixed action σ(· | s1,a1, . . . ,st ).

Comment 1.5 A strategy as defined in Definition 1.4 is termed in the
literature behavior strategy.

Comment 1.6 The fact that the choice of the decision maker depends on
past play implicitly assumes that the decision maker knows the past play; that
is, the decision maker observes (and remembers) all past states that the process
visited, and she remembers all her past choices. In Chapter 2, we will study the
model of Markov decision problems when the decision maker does not observe
the state.

Comment 1.7 A strategy contains a lot of irrelevant information. Indeed,
when the initial state is s1 = s, it is not important what the decision maker
would play if the initial state were s′ �= s. Similarly, if in the first stage the
decision maker played the action a1 = a, it is irrelevant what she would
play in the second stage if she played the action a′ �= a in the first stage. We
nevertheless regard a strategy as a mapping defined on the set of all histories,
because of the simplicity of the definition; otherwise we would have to define
for every strategy σ and every positive integer t the set of all histories of length
t that can occur with positive probability when the decision maker follows
strategy σ (which depend on the definition of σ up to stage t − 1), and define
σ at stage t only for those histories.

Every strategy σ , together with the initial state s1, defines a probability
distribution Ps1,σ on the space of measurable space (H∞,H). To define this
probability distribution formally, we define it on the collection of cylinder sets
that generate (H∞,H) by the rule

Ps1,σ (C(̃s1,ã1, . . . ,̃st−1,ãt−1,̃st )) (1.1)

:= 1{s1=̃s1} ·
t−1∏
k=1

σ (̃ak | s̃1,ã1, . . . ,̃s1) ·
t−1∏
k=1

q(̃sk+1 | s̃k,ãk).

Let Ps1,σ be the unique probability distribution on H∞ that agrees with this
definition on cylinder sets. The fact that, in this way, we indeed obtain a
unique probability distribution is guaranteed by the Carathéodory4 Extension
Theorem (see, e.g., theorem 3.1 in Billingsley (1995)).

4 Constantin Carathéodory (Berlin, Germany, September 13, 1873 – Munich, Germany,
February 2, 1950) was a Greek mathematician who spent most of his career in Germany.
He made significant contributions to the theory of functions of a real variable, the calculus
of variations, and measure theory. His work also includes important results in conformal
representations and in the theory of boundary correspondence.
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10 Markov Decision Problems

Two simple classes of strategies are pure strategies that involve no random-
ization, and stationary strategies that depend only on the current state and not
on the whole past history.

Definition 1.8 A strategy σ is pure if |supp(σ (ht ))| = 1 for every history
ht ∈ H .

The set of pure strategies is denoted by �P.

Definition 1.9 A strategy σ is stationary if, for every two histories
ht = (s1,a1,s2, . . . ,at−1,st ) and ĥk = (̂s1,â1,̂s2, . . . ,âk−1,̂sk) that satisfy
st = ŝk , we have σ(ht ) = σ (̂hk).

The set of stationary strategies is denoted by �S.
A pure stationary strategy assigns to each state s ∈ S an action in A(s).

Since the number of actions in A(s) is |A(s)|, we can express the number of
pure stationary strategies in terms of the data of the Markov decision problem.

Theorem 1.10 The number of pure stationary strategies is
∏

s∈S |A(s)|.
One can identify a stationary strategy σ with a vector x ∈ ∏s∈S �(A(s)).

With this identification, x(s) is the mixed action chosen when the current state
is s. Thus, the set of stationary strategies �S can be identified with the space
X :=∏s∈S �(A(s)), which is convex and compact. For every element x ∈ X,
the stationary strategy that corresponds to x is still denoted by x.

In Definition 1.4 we defined a strategy to be a mapping from histories to
mixed actions. We now present another concept of a strategy that involves
randomization – a mixed strategy.

Definition 1.11 A mixed strategy is a probability distribution over the set
�P of pure strategies.

Every strategy is equivalent to a mixed strategy. Indeed, a strategy σ

is defined by ℵ0 lotteries: to each history ht ∈ H , it assigns a lottery
σ(ht ) ∈ �(A(st )). If the decision maker performs all the ℵ0 lotteries before
the play starts, then the realizations of the lotteries define a pure strategy. In
particular, the strategy defines a probability distribution over the set of pure
strategies.

Conversely, every mixed strategy is equivalent to a strategy. Indeed, given
a mixed strategy τ , one can calculate for each history ht the conditional
probability σ(at | ht ) that the action chosen after ht is at ∈ A(st ). If the history
ht occurs with probability 0 under Ps1,σ , we set σ(at | ht ) arbitrarily. One can
show that the strategy σ is equivalent to the mixed strategy τ .

https://doi.org/10.1017/9781009029704.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029704.002


1.3 The T -Stage Payoff 11

The equivalence just described is a special case of a more general result
called Kuhn’s Theorem;5 see, for example, Maschler, Solan, and Zamir (2020,
chapter 7).

1.3 The T -Stage Payoff

The decision maker receives the stage payoff r(st,at ) at every stage t . How
does she compare sequences of stage payoffs? We will study two methods
of evaluations. The first, which we consider in this section, is the T -stage
evaluation. This evaluation is relevant when the process lasts T stages, and
the goal of the decision maker is to maximize her expected average payoff
during these stages. The second, which we will study in the next section, is the
discounted evaluation, which is relevant when the play continues indefinitely,
and the goal of the decision maker is to maximize the expected discounted sum
of her stage payoffs.

The expectation operator for the probability distribution Ps1,σ is denoted by
Es1,σ [ · ]. In particular, Es1,σ [r(st,at )] is the expected payoff at stage t .

Definition 1.12 For every positive integer T ∈ N, every initial state s1 ∈ S,
and every strategy σ ∈ �, define the T -stage payoff by:

γT (s1;σ) := Es1,σ

[
1

T

T∑
t=1

r(st,at )

]
. (1.2)

Example 1.13 The Markov decision problem in this example is given in
Figure 1.2.

The initial state is s(1). We will calculate the T -stage payoff of every pure
strategy.

5(1,0)

10(0,1)

D

U

s(1)

2(0,1)D

s(2)

Figure 1.2 The Markov decision problem in Example 1.13.

5 Harold William Kuhn (Santa Monica, California, July 29, 1925 – New York City, New York,
July 2, 2014) was an American mathematician. He is known for the Karush–Kuhn–Tucker
conditions, for Kuhn’s theorem, and for developing Kuhn poker as well as the description of the
Hungarian method for the assignment problem.
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12 Markov Decision Problems

The strategy σD that always plays D yields a payoff 5 at every stage, and
therefore its T -stage payoff is 5 as well:

γT (s(1);σD) = 5, ∀T ∈ N.

The strategy σU that plays U in the first stage yields 10 in the first stage and 2
in all subsequent stages. Therefore,

γT (s(1);σU) = 10 · 1

T
+ 2 · T − 1

T
= 2 + 8

T
, ∀T ∈ N.

For every 0 ≤ t < T , the strategy σDtU that plays D in the first t stages and
U in stage t + 1 yields 5 in the first t stages, 10 in stage t + 1, and 2 in all
subsequent stages. Therefore,

γT (s(1);σDtU ) = 5 · t

T
+ 10 · 1

T
+ 2 · T − t − 1

T

= 2T + 3t + 8

T
, ∀T ∈ N, ∀0 ≤ t < T . �

Definition 1.14 Let s ∈ S and let T ∈ N. The real number vT (s) is the
T -stage value at the initial state s if

vT (s) := sup
σ∈�

γT (s;σ). (1.3)

Any strategy in argmaxσ∈�γT (s;σ) is T -stage optimal at s.

In other words, the T -stage value at s is the maximal amount that the decision
maker can get when the initial state is s, and a strategy that guarantees this
quantity is T -stage optimal.

Is the supremum in Eq. (1.3) attained? That is, is there a T -stage optimal
strategy? As Theorem 1.15 states, the answer is positive.

Theorem 1.15 For every s ∈ S and every T ≥ 1, there is a T -stage optimal
strategy at the initial state s.

Proof In the T -stage game, the only relevant part of the strategy is its play
up to stage T . In particular, for the purpose of studying the T -stage problem,
we can define a strategy as a mapping σ :

⋃T
t=1 Ht → ⋃

s∈S �(A(s)),
such that σ(ht ) ∈ �(A(st )), for every history ht ∈ ⋃T

t=1 Ht . This set is a
compact subset of a Euclidean space. The payoff function is continuous on this
set. Since a continuous function defined on a compact set attains its maximum,
the result follows.
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1.3 The T -Stage Payoff 13

Comment 1.16 We can strengthen Theorem 1.15 and prove that, for every
s ∈ S and every T ≥ 1, there is a T -stage pure optimal strategy at the initial
state s (see Theorem 1.18). To see this, consider the function that maps each
mixed strategy σ into the T -stage payoff γT (s;σ). This function is linear.
Indeed, let σ1 and σ2 be two strategies, and let σ3 be the following strategy:
toss a fair coin; if the result is Head, follow σ1, whereas if it is Tail, follow σ2.
Then

γT (s;σ3) = 1

2
γT (s;σ1) + 1

2
γT (s;σ1).

By the Krein–Milman6 Theorem, a linear function that is defined on a compact
space attains its maximum at an extreme point. Since the pure strategies are
the extreme points of the set of mixed strategies, it follows that the function
σ �→ γT (s;σ) attains its maximum at a pure strategy.

Example 1.3, continued The quantity γT (s(1);σDtU ) = 2T +3t+8
T

is
maximized when t = T − 1: the decision maker plays T − 1 times D, and
then she plays U once. The resulting average payoff is 5 + 5

T
. The T -stage

value at the initial state s(1) is therefore vT (s(1)) = 5 + 5
T

. �

In general, the T -stage value, as well as the T -stage optimal strategies, can
be found by backward induction, a method that is also known as the dynamic
programming principle. We now formalize this method.

Theorem 1.17 For every initial state s1 ∈ S and every T ≥ 2, we have

vT (s1) = max
a1∈A(s1)

⎧⎨⎩ 1

T
r(s1,a1) + T − 1

T

∑
s2∈S

q(s2 | s1,a1)vT −1(s2)

⎫⎬⎭ . (1.4)

Eq. (1.4) states that, to calculate the T -stage value, we can break the
problem into two parts: the first stage, and the last T − 1 stages. Since
transitions and payoffs depend only on the current state and on the current
action, the problem that starts at stage 2 is not affected by s1 and a1, the
state and action at stage 1. This problem is a (T − 1)-stage Markov decision
problem, whose value vT −1(s2) depends on its initial state (and not on the
initial state s1). To calculate the T -stage value, we collapse the last T − 1
stages into a single number, the value of the (T − 1)-stage problem that starts

6 Mark Grigorievich Krein (Kiev, Russia, April 3, 1907 – Odessa, Ukraine, October 17, 1989)
was a Soviet mathematician who is best known for his work in operator theory.
David Pinhusovich Milman (Kiev, Russia, January 15, 1912 – Tel Aviv, Israel, July 12, 1982)
was a Soviet and later Israeli mathematician specializing in functional analysis.
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14 Markov Decision Problems

at stage 2, and we ask what is the optimal action in the first stage, assuming
that if state s2 is reached at stage 2, the continuation value is vT −1(s2).

In Eq. (1.4) the weight of the payoff in the first stage, r(s1,a1), is 1
T

, and
the weight of the value of the (T − 1)-stage problem that encapsulates the
last T − 1 stages is T −1

T
. Why do we take these weights? The reason is that

the quantity r(s1,a1) represents the payoff in the first stage, while the quantity
vT −1(s2) captures the average payoff in T − 1 stages: stages 2,3, . . . ,T . The
weights of each of the two quantities reflect this point.

To prove Theorem 1.17, we will consider conditional expectation. Recall
that Es1,σ [r(st,at )] is the expected payoff at stage t . For every t ′ ≤ t

and every history h̃t ′ = (̃s1,ã1, . . . ,̃st ′) ∈ Ht ′ with s̃1 = s1, the quantity
Es1,σ [r(st,at ) | h̃t ′] is the expected payoff at stage t , conditional that the
history h̃t ′ has occurred, that is, conditional that the action in the initial
state is ã1, the state at stage 2 is s̃2, and so on. Formally, for every history
h̃t ′ = (̃s1,ã1, . . . ,̃st ′) ∈ Ht ′ , the probability distribution Ps1,σ (· | h̃t ′) is
defined as follows:

• For histories that are not longer than h̃t ′ : For every t ≤ t ′ we have

Ps1,σ (C(s1,a1, . . . ,st ) | h̃t ′) := 1{s1=̃s1,a1=ã1,...,st =̃st }.

• For histories that are longer than h̃t ′ : For every t > t ′, we have

Ps1,σ (C(s1,a1, . . . ,st−1,at−1,st ) | ht ′)

:= 1{s1=̃s1,a1=ã1,...,st ′ =̃st ′ } ·
t−1∏
k=t ′

σ(ak | s1,a1, . . . ,sk)

×
t−1∏
k=t ′

q(sk+1 | sk,ak).

Denote by Es1,σ [· | h̃t ′] the expectation with respect to Ps1,σ (· | h̃t ′).

Proof of Theorem 1.17 For T = 1, the T -stage problem concerns the first
stage only, and

v1(s1) = max
a1∈A(s1)

r(s1,a1).

In particular, Eq. (1.4) holds. For T ≥ 2, by definition and by the law of iterated
expectations,
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1.3 The T -Stage Payoff 15

vT (s1)

= max
σ∈�

Es1,σ

[
1

T

T∑
t=1

r(st,at )

]

= max
σ∈�

Es1,σ

[
1

T
r(s1,a1) + T − 1

T
· 1

T − 1

T∑
t=2

r(st,at )

]

= max
σ∈�

(
Es1,σ

[
1

T
r(s1,a1)

]
+ Es1,σ

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st,at ) | h2

])
.

(1.5)

The term within the maximization in these equalities depends only on the
part of the strategy σ that follows the initial state s1. This part is com-
posed of the mixed action σ(s1) ∈ �(A(s1)) that is played in the first stage
and the continuation strategies played from the second stage and on. We
denote these continuation strategies by (σ ′

s1,a1
)a1∈A(s1). Formally, for every

action a1 ∈ A(s1), σ ′
s1,a1

is a strategy in the T − 1 stage problem that is
defined by

σ ′
s1,a1

(ht−1) := σ(s1,a1,ht−1), ∀2 ≤ t ≤ T ,∀ht−1 = (s2,a2, . . . ,st ) ∈ Ht−1.

With this notation, the right-hand side in Eq. (1.5) is equal to

max
α∈�(A(s1))

max
(σ ′

s1,a1
)a1∈A1(s1)

Es1,α,(σ ′
s1,a1

)a1∈A1(s1)

[
1

T
r(s1,a1)

+Es1,σ
′
s1,a1

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st,at ) | a1,s2

]]
, (1.6)

where α captures the mixed action played in the first stage. The continuation
strategies (σ ′

s1,a1
)a1∈A1(s1) do not affect the payoff in the first stage r(s1,a1).

The action a1 that is chosen in the first stage affects the continuation payoff
in two ways. First, it determines the probability q(s2 | s1,a1) that the state
in the first stage is s2. Second, it determines the continuation strategy σ ′

s1,a1
.

Since the probability distribution Ps1,σ conditional on a1 and s2 is equal to the
probability distribution Ps2,σ

′
s1,a1

, it follows that we can split the maximization
problem in Eq. (1.6) into two parts, and obtain that
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16 Markov Decision Problems

vT (s1) = max
α∈�(A(s1))

⎛⎝ 1

T
r(s1,α) +

∑
s2∈S

q(s2 | s1,a1)

× max
(σ ′

s1,a1
)a1∈A1(s1)

Es2,σ
′
s1,a1

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st,at )

])
.

(1.7)

Note that

vT −1(s2) = max
(σ ′

s1,a1
)a1∈A1(s1)

Es2,σ
′
s1,a1

[
1

T − 1

T∑
t=2

r(st,at )

]
;

hence, the right-hand side of Eq. (1.7) is equal to

max
α∈�(A(s1))

⎛⎝ 1

T
r(s1,α) +

∑
a1∈A1(s1)

α(a1)q(s2 | s1,a1)
T − 1

T
vT −1(s2)

⎞⎠ .

The function within the parentheses is linear in α, and �(A(s1)) is a compact
set whose extreme points are the Dirac measures concentrated at the points a1

with a1 ∈ A(s1). A linear function that is defined on a compact set attains its
maximum in an extreme point. The result follows.

The proof of Theorem 1.17 yields an algorithm that calculates the T -stage
value and a T -stage optimal strategy σ ∗. We will calculate by induction a
k-stage optimal strategy σ ∗

k for every k = 1,2, . . . ,T . We start with k = 1,
and calculate a one-stage optimal strategy for every initial state s ∈ S. Let
a∗

1(s) ∈ A(s) be an action that maximizes the quantity r(s,a) over a ∈ A(s),
and set

σ ∗
1 (s) := a∗

1(s).

The value of the one-stage problem with initial state s is v1(s) = r(s1,a
∗
1(s)).

We continue recursively. Suppose that, for every initial state s, we already
calculated vk−1(s) and already defined a (k − 1)-stage optimal strategy σ ∗

k−1.
To calculate vk(s) and define a k-stage optimal strategy σ ∗

k , we take

max
a∈A(s)

(
1

k
r(s,a) + k − 1

k
q(s′ | s,a)vk−1(s)

)
, (1.8)

and denote by a∗
k (s) ∈ A(s) an action that achieves the maximum in Eq. (1.8).

This is the quantity on the right-hand side of Eq. (1.4); hence, it is equal to
vk(s). We can now define an optimal strategy σ ∗ for the decision maker as
follows:
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1.4 The Discounted Payoff 17

• At stage 1, play the action a∗
k (s1).

• From stage 2 on, follow the strategy σ ∗
k−1; that is, at each stage t , when the

current state is s1 and T − t + 1 stages are left, play the action a∗
T −t+1(st ).

Formally,

σ ∗(ht ) := a∗
T −t+1(st ), ∀ht = (s1,a1, . . . ,st ) ∈

T⋃
t=1

Ht .

In Exercise 1.1, the reader is asked to prove that this strategy is indeed T -stage
optimal.

The proof of Theorem 1.17 relies on the linearity of the payoff function:
the goal of the decision maker is to maximize a linear function of the stage
payoffs. If the sets of actions and states are not finite, the theorem still holds,
provided that in Eq. (1.4) we replace maximum by supremum.

Theorem 1.17 admits the following corollary.

Theorem 1.18 The T -stage value always exists. Moreover, there exists an
optimal pure strategy σ ∈ �.

One can show a stronger result concerning the structure of an optimal pure
strategy: there exists an optimal pure strategy σ with the property that σ(ht )

depends on the current state st and on the stage t , and is independent of the
rest of the history (s1,a1, . . . ,st−1,at−1) (Exercise 1.3).

1.4 The Discounted Payoff

The discounted payoff depends on a parameter λ ∈ (0,1], called the discount
factor, which measures how money grows with time: one dollar today is worth

1
1−λ

dollars tomorrow, 1
(1−λ)2 dollars the day after tomorrow, and so on. In

other words, the decision maker is indifferent between getting 1 − λ dollars
today and one dollar tomorrow.

Definition 1.19 For every discount factor λ ∈ (0,1], every state s ∈ S, and
every strategy σ ∈ �, the λ-discounted payoff under strategy profile σ at the
initial state s is

γλ(s;σ) := Es,σ

[
λ

∞∑
t=1

(1 − λ)t−1r(st,at )

]
. (1.9)

The λ in Eq. (1.9) serves as a normalization factor: a player who receives
one dollar at every stage evaluates this stream of payoffs as one dollar. Since
there are finitely many states and actions, the payoff function r is bounded,
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18 Markov Decision Problems

and therefore γλ obeys the same bound (which is independent of λ, thanks
to the multiplication by λ).

The dominated convergence theorem (see, e.g., Shiryaev (1995), theorem
6.3) implies that

γλ(s;σ) := λ

∞∑
t=1

(1 − λ)t−1Es,σ [r(st,at )] .

Simple algebraic manipulations yield

γλ(s;σ) := Es,σ

[
λr(s1,a1) + (1 − λ)

(
λ

∞∑
t=2

(1 − λ)t−2r(st,at )

)]
. (1.10)

For every two states s,s′ ∈ S and every action a ∈ A(s), set

γλ(s
′;σs,a) := Es,σ

[
λ

∞∑
t=2

(1 − λ)t−2r(st,at ) | s1 = s, a1 = a, s2 = s′
]

.

This is the expected discounted payoff from stage 2 on, when conditioning on
the history at stage 2. Alternatively, this is the expected discounted payoff when
the initial state is s′, and the decision maker follows that part of her strategy
that follows the history (s,a). If σ is a stationary strategy, then the way it plays
after the first stage does not depend on the play in the first stage. Hence, in this
case, for every two states s,s′ ∈ S and every action a ∈ A(s) we have

γλ(s
′;σs,a) = γλ(s

′;σ).

From Eq. (1.10) we obtain:

γλ(s;σ) := Es,σ

[
λr(s1,a1) + (1 − λ)γλ(s2;σs1,a1)

]
. (1.11)

Thus, the expected payoff is a weighted average of the payoff r(s1,a1) at
the first stage and the expected payoff γλ(s2;σs1,a1) in all subsequent stages.
When the discount factor λ is high, the weight of the first stage is high; whereas
when the discount factor λ is low, the weight of the first stage is low.

Eq. (1.11) illustrates that the decision maker’s payoff consists of two
parts: today’s payoff and the future’s payoff. The discount factor indicates
the relative importance of each part. The lower the discount factor, the higher
the importance of the future, and therefore the decision maker should put
more weight on future opportunities. The higher the discount factor, the higher
the importance of the present, and the decision maker should concentrate on
short-term gains.
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Figure 1.3 The Markov decision problem in Example 1.3.

Comment 1.20 In the proof of Theorem 1.17 we in fact showed that the
T -stage payoff satisfies the following formula:

γT (s;σ) := Es,σ

[
1

T
r(s1,a1) + T − 1

T
γT −1(s2;σs1,a1)

]
. (1.12)

Thus, similar to the discounted payoff, the T -stage payoff is a weighted
average of the payoff r(s1,a1) at the first stage and the expected payoff
γT −1(s2;σs1,a1) in all subsequent stages, with weights 1

T
and T −1

T
.

Example 1.3, continued The Markov decision problem in Example 1.3 is
reproduced in Figure 1.3.

The initial state is s(1). The strategy σD that always plays D at state s(1)

yields a payoff 5 at every stage, and therefore its λ-discounted payoff is 5 as
well. Let us calculate the λ-discounted payoff of the strategy σU that always
plays U at state s(1). Since this strategy is stationary,

γλ(s(1);σU)

= 10λ + (1 − λ)

(
10λ + (1 − λ)

(
9

10
(−100) + 1

10
γλ(s(1);σU)

))
.

(1.13)

The term γλ(s(1);σU) on the right-hand side is the discounted payoff from the
third stage and on, if at the second stage the play moves from s(2) to s(1).
Eq. (1.13) solves to

γλ(s(1);σU) = 10λ + 10λ(1 − λ) − 100 9
10 (1 − λ)2

1 − 1
10 (1 − λ)2

.

For λ = 1 (only the first day matters), we get

γ1(s(1);σU) = 10,

while for λ close to 0 (the far future matters), we get

lim
λ→0

γλ(s(1);σU) = −100.
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20 Markov Decision Problems

Since the function λ �→ γλ(s(1);σU) is continuous, and since γλ(s(1);σD)= 5
for every λ ∈ [0,1), for a high discount factor the strategy σU is superior to
the strategy σD , while for a low discount factor the strategy σD is superior
to the strategy σU . �

Definition 1.21 Let s ∈ S and let λ ∈ (0,1] be a discount factor. The real
number vλ(s) is the λ-discounted value at the initial state s if

vλ(s) := sup
σ∈�

γλ(s;σ). (1.14)

The strategies in argmaxσ∈� γλ(s;σ) are said to be λ-discounted optimal at
the initial state s.

Thus, the λ-discounted value at s is the maximal λ-discounted payoff that the
decision maker can get when the initial state is s, and a strategy that guarantees
this quantity is λ-discounted optimal.

In Theorem 1.17 we stated the dynamic programming principle for the
T -stage decision problem. We now provide the analogous principle for the dis-
counted problem. The proof of the result is left to the reader (Exercise 1.5).

Theorem 1.22 For every state s ∈ S and every discount factor λ ∈ (0,1],
we have

vλ(s) = max
a∈A(s)

{
λr(s,a) + (1 − λ)

∑
s′∈S

q(s′ | s,a)vλ(s
′)

}
. (1.15)

In Eq. (1.15), the weight of the payoff at the first stage is λ, while the weight
of the value at the second stage is 1 − λ. The reason for these weights comes
from the definition of the λ-discounted payoff in Eq. (1.9). In that equation,
the weight of the payoff at stage t is λ(1 − λ)t−1. In particular, the weight of
the payoff at the first stage is λ, which is similar to the weight of the payoff
at the first stage in Eq. (1.15). Since the sum of the weights of the payoffs in
Eq. (1.9) is 1, it follows that the total weight of the payoffs at stages 2,3, . . .
is 1 − λ, which is the weight of the second term on the right-hand side of
Eq. (1.15).

In Section 1.7, we will prove that, for every discount factor λ, there is a pure
stationary strategy that is λ-discounted optimal at all initial states. The proof
uses contracting mappings, which will be defined in Section 1.5. Moreover,
we will show that there is a pure stationary strategy that is optimal for every
discount factor sufficiently close to 0.
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1.5 Contracting Mappings 21

Comment 1.23 Like we did for the T -stage problem, one can provide a
direct argument for the existence of a discounted optimal strategy. Since the
set of histories is countable, the set of strategies, which is

∏
ht∈H �(A(st )), is

compact in the product topology. Moreover, the discounted payoff function is
continuous in this topology. Hence, the supremum in Eq. (1.14) is attained.

1.5 Contracting Mappings

A metric space is a pair (X,d), where X is a set and d : X × X → [0,∞) is a
metric, that is, d satisfies the following conditions:

• d(x,y) = 0 if and only if x = y.
• Symmetry: d(x,y) = d(y,x) for all x,y ∈ X.
• Triangle inequality: d(x,z) ≤ d(x,y) + d(y,z) for all x,y,z ∈ X.

A sequence (xn)n∈N in a metric space is Cauchy7 if, for every ε > 0, there
is an n0 ∈ N such that n1,n2 ≥ n0 implies d(xn1xn2) ≤ ε. A metric space is
complete if every Cauchy sequence has a limit. For every m ∈ N, the Euclidean
space R

m equipped with the distance induced by the Euclidean norm, the
L1-norm, or the L∞-norm is complete. Readers who are not familiar with
metric spaces can think of a metric space as Rm equipped with the Euclidean
distance.

Definition 1.24 Let (X,d) be a metric space. A mapping f : X → X is
contracting if there exists ρ ∈ [0,1) such that d(f (x),f (y)) ≤ ρd(x,y) for all
x,y ∈ X.

Example 1.25 Let ρ ∈ [0,1) and a ∈ R
n. The mapping f : Rn → R

n that
is defined by

f (x) := a + ρx, ∀x ∈ R
n,

is contracting.

Theorem 1.26 Let (X,d) be a complete metric space. Every contracting
mapping f : X → X has a unique fixed point; that is, there exists a unique
point x ∈ X such that x = f (x).

Proof Let f : X → X be a contracting mapping.

7 Augustin-Louis Cauchy (Paris, France, August 21, 1789 – Sceaux, France, May 23, 1857) was
a French mathematician. He started the project of formulating and proving the theorems of
calculus in a rigorous manner and was thus an early pioneer of analysis. He also developed
several important theorems in complex analysis and initiated the study of permutation groups.
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Step 1: f has at most one fixed point.
If x,y ∈ X are fixed points of f , then

d(x,y) = d(f (x),f (y)) ≤ ρd(x,y).

Since ρ ∈ [0,1), this implies that d(x,y) = 0, and therefore x = y.

Step 2: f has at least one fixed point.
Let x0 ∈ X be arbitrary, and define inductively xn+1 = f (xn) for every

n ≥ 0. Then for any k,m > 0,

d(xk,xk+m) ≤
m−1∑
l=0

d(xk+l,xk+l+1)

≤ d(x0,f (x0))ρ
k

m−1∑
l=0

ρl < d(x0,f (x0))
ρm

1 − ρ
,

where the first inequality follows from the triangle inequality, and the second
inequality holds since by induction: d(xl,xl+1)≤ ρld(x0,x1)= ρld(x0,f (x0)).
Thus, (xk)k∈N is a Cauchy sequence, and therefore it converges to a limit x.
By the triangle inequality,

d(x,f (x)) ≤ d(x,xk) + d(xk,xk+1) + d(xk+1,f (x)), (1.16)

for all k ∈ N. Let us show that all three terms on the right-hand side of
Eq. (1.16) converge to 0 as k goes to infinity; this will imply that
d(x,f (x)) = 0, hence x = f (x), that is, x is a fixed point of f . Indeed,
limk→∞ d(x,xk) = 0 because x is the limit of (xk)k∈N; limk→∞ d(xk,xk+1)

because (xk)k∈N is a Cauchy sequence; and finally, since f is contracting,

lim
k→∞

d(xk+1,f (x)) = lim
k→∞

d(f (xk),f (x)) ≤ lim
k→∞

ρd(xk,x) = 0.

1.6 Existence of an Optimal Stationary Strategy

In this section, we prove the following result, due to Blackwell (1965).8

Theorem 1.27 For every λ ∈ (0,1], there exists a λ-discounted pure
stationary optimal strategy.

8 David Harold Blackwell (Centralia, Illinois, April 24, 1919 – Berkeley, California, July 8,
2010) was an American statistician and mathematician who made significant contributions to
game theory, probability theory, information theory, and Bayesian statistics.
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1.6 Existence of an Optimal Stationary Strategy 23

The existence of a λ-discounted optimal strategy was discussed in Comment
1.23, while the existence of a λ-discounted pure optimal strategy is established
by the same arguments as in Comment 1.16. We now explain the intuition
behind the existence of a λ-discounted pure stationary optimal strategy. Let
ht and ĥ̂t be two histories that end at the same state s. Since the payoffs
and transitions depend only on the current state, and not on past play, if the
decision maker plays in the same way after ht and after ĥ̂t , the evolution of
the Markov decision problem after ht is the same as after ĥ̂t . Suppose now
that the optimal strategy σ prescribes to play differently after ht and after ĥ̂t ,
that is, σ(ht ) �= σ (̂ĥt ). Assume without loss of generality that the expected
payoff after ht is at least as high as the expected payoff after ĥ̂t . Define a
new strategy σ1 as follows: σ1 is similar to σ , except that after the history ĥ̂t , it
plays as σ plays after ht . It is easy to see that γλ(s1;σ1) ≥ γλ(s1;σ). Repeating
this process over all histories shows that one can modify σ to be a stationary
strategy, without lowering the λ-discounted payoff, thus establishing Theorem
1.27. The proof of Theorem 1.27 that we will provide will use a different idea –
contracting mappings. This approach will be useful when we will later study
stochastic games.

Before we can prove Theorem 1.27, we need a bit of preparation. Fix a
function w : S → R. This function will capture the “discounted payoff from
the next stage on,” given the state at the next stage. Given the initial state s and
the strategy σ , let ht ∈ H be a history with positive probability of realization,
such that Ps,σ (C(ht )) > 0. Consider the situation in which, when the decision
maker follows the strategy σ , once some history ht is realized, the decision
maker is told that after she chooses the action at and the new state st+1 is
announced, the process will terminate, and she will get a terminal payoff
w(st+1). As in Eq. (1.15), the weights of the payoff at stage t is λ, and the
weight of the terminal payoff9 is 1 − λ. The expected payoff from stage t and
on is then given by

Es,σ

[
λri(st,at ) + (1 − λ)

∑
s′∈S

q(s′ | st,at )w(s′) | ht

]
(1.17)

= Es,σ

[
λri(st,at ) + (1 − λ)w(st+1) | ht

]
.

The first term in the expectation measures the expected stage payoff, while the
second term measures the expected terminal payoff. Note that in Eq. (1.17)

9 Setting the weight of the terminal payoff to 1 − λ is equivalent to considering a standard
discounted payoff, assuming the payoff in all stages after stage t is w(st+1).
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the expectation is a conditional expectation, given the history at stage t . The
following result relates the expectation in Eq. (1.17) to the discounted payoff.

Lemma 1.28 Let σ be a strategy, let s ∈ S, and let w : S → R be a function.
If for every t ∈ N and every ht ∈ Ht ,

Es,σ

[
λr(st,at ) + (1 − λ)w(st+1) | ht

] ≥ w(st ) (1.18)

then

γλ(s;σ) ≥ w(s). (1.19)

If the inequality in Eq. (1.18) is reversed for every t ∈ N and every ht ∈ Ht , so
is the inequality in Eq. (1.19). If the inequality in Eq. (1.18) is an equality for
every t ∈ N and every ht ∈ Ht , then Eq. (1.19) becomes an equality as well.

Proof Recall the law of iterated expectation: for every function f : S → R,
every t ∈ N, and every history ht ∈ Ht ,

Es,σ [Es,σ [f (st+1) | ht ]] = Es,σ [f (st+1)].

Taking expectations in Eq. (1.18), we deduce that

Es,σ [λr(st,at )] ≥ Es,σ [w(st )] − (1 − λ)Es,σ [w(st+1)], ∀t ∈ N. (1.20)

Multiplying both sides of Eq. (1.20) by (1 − λ)t−1 and summing over t ∈ N,
we obtain Eq. (1.19):

γλ(s;σ) =
∞∑
t=1

(1 − λ)t−1Es,σ [λr(st,at )]

≥
∞∑
t=1

(1 − λ)t−1(Es,σ [w(st )] − (1 − λ)Es,σ [w(st+1)]
)

(1.21)

= w(s),

where the last equality holds because the sum involved is telescopic.
If the inequality in Eq. (1.18) is reversed for every t ∈ N and every ht ∈ Ht ,

then the inequality in Eq. (1.20) is reversed as well, and therefore so is
the equality in Eq. (1.21). The last conclusion follows from the first two
statements.

We need the following technical result.

Lemma 1.29 Let x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ R
n. Then∣∣∣∣ max

1≤i≤n
xi − max

1≤i≤n
yi

∣∣∣∣ ≤ max
1≤i≤n

|xi − yi |.
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Proof Without loss of generality, we can assume that max1≤i≤n xi ≥
max1≤i≤n yi . Suppose also that xi0 = max1≤i≤n xi and yi1 = max1≤i≤n yi .
Then ∣∣∣∣ max

1≤i≤n
xi − max

1≤i≤n
yi

∣∣∣∣ = max
1≤i≤n

xi − max
1≤i≤n

yi

= xi0 − yi1

≤ xi0 − yi0

≤ max
1≤i≤n

|xi − yi |.

Proof of Theorem 1.27 We define a mapping T : RS → R
S , prove that it is

contracting, and conclude that it has a unique fixed point w. We then show that
the decision maker has a pure stationary strategy x∗ such that γλ(s;x∗) = w(s)

for every initial state s ∈ S, and that γλ(s;σ) ≤ w(s) for every initial state
s ∈ S and every strategy σ .

For every vector w = (w(s))s∈S ∈ R
S , define

(T (w))(s) := max
a∈A(s)

(
λr(s,a) + (1 − λ)

∑
s′∈S

q(s′ | s,a)w(s)

)
.

Step 1: The mapping T is contracting.
Let w,u ∈ R

S . By Lemma 1.29,

|(T (w))(s) − (T (u))(s)| =
∣∣∣∣∣ max
a∈A(s)

(
λr(s,a) + (1 − λ)

∑
s′∈S

q(s′ | s,a)w(s′)

)

− max
a∈A(s)

(
λr(s,a) + (1 − λ)

∑
s′∈S

q(s′ | s,a)u(s′)

)∣∣∣∣∣
≤ max

a∈A(s)

∣∣∣∣∣
(

λr(s,a) + (1 − λ)
∑
s′∈S

q(s′ | s,a)w(s′)

)

−
(

λr(s,a) + (1 − λ)
∑
s′∈S

q(s′ | s,a)u(s′)

)∣∣∣∣∣
= max

a∈A(s)
(1 − λ)

∑
s′∈S

q(s′ | s,a)|w(s′) − u(s′)|

≤ (1 − λ)‖w − u‖∞.

It follows that ‖T (w)−T (u)‖∞ ≤ (1−λ)‖w−u‖∞, hence T is contracting.
By Theorem 1.26, T has a unique fixed point w. For each s ∈ S, let as ∈ A(s)

be an action that maximizes the expression
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λr(s,a) + (1 − λ)
∑
s′∈S

q(s′ | s,a)w(s).

There might be more than one such action. Then,

(T (w))(s) = λr(s,as) + (1 − λ)
∑
s′∈S

q(s′ | s,as)w(s). (1.22)

Let x∗ be the pure stationary strategy that plays the action as at state s, for
every s ∈ S. We prove that w(s) = vλ(s) for every s ∈ S, and that x∗ is
λ-discounted optimal.

Step 2: γλ(s;x∗) = w(s) for every initial state s ∈ S.
This follows from Eq. (1.22) and Lemma 1.28.

Step 3: γλ(s;σ) ≤ w(s) for every strategy σ and every initial state s ∈ S.
By the definition of T (w),

(T (w))(st ) = max
a∈A(st )

(λr(st,a) + (1 − λ)w(st+1)))

≥ Est,σ

[
λr(st,a) + (1 − λ)w(st+1)

]
,

for all t ∈ N. The claim follows from Lemma 1.28.

We in fact proved the following characterization of the set of optimal
strategies in Markov decision problems, whose proof is left for the reader
(Exercise 1.16). In this characterization and later in the book, we will use the
following notations:

r(s,x(s)) :=
∑

a∈A(s)

(∏
i∈I

xi(s,ai)

)
r(s,a), ∀s ∈ S,x(s) ∈

∏
i∈I

�(Ai(s)),

q(s′ | s,x(s)) :=
∑

a∈A(s)

(∏
i∈I

xi(s,ai)

)
q(s′ | s,a),

∀s,s′ ∈ S,x(s) ∈
∏
i∈I

�(Ai(s)).

The quantity
∏

i∈I xi(s,ai) is the probability that under the mixed action
profile x(s), the action profile a is chosen. Therefore, r(s,x(s)) is the expected
stage payoff at stage s when the players play the stationary strategy profile x,
and q(s ′ | s,x(s)) is the probability that the play moves from s to s′ when the
players play the stationary strategy profile x.

Theorem 1.30 Let � = 〈S,(A(s))s∈S,q,r〉 be a Markov decision problem,
and let λ ∈ (0,1] be a discount factor. A stationary strategy x is λ-discounted

https://doi.org/10.1017/9781009029704.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029704.002
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optimal at all initial states if and only if for every state s ∈ S the mixed action
x(s) satisfies

vλ(s) = λr(s,x(s)) + (1 − λ)
∑
s′∈S

q(s′ | s,x(s))vλ(s
′).

1.7 Uniform Optimality

For each s ∈ S consider the function λ �→ vλ(s), which assigns to each dis-
count factor its discounted value. How does this function depend on λ? Can it
be equal to sin(λ) or eλ? In this section we will answer this question, among
others.

Recall that a function f : R → R is rational if it is the ratio of two
polynomials.

Theorem 1.31 Two rational functions f,g : R → R either coincide, or
they (i.e., their graphs) have finitely many intersection points: the set {x ∈ R :
f (x) = g(x)} is either R or finite.

Proof Let f = P1
Q1

and g = P2
Q2

, where P1, Q1, P2, and Q2 are polynomials.
Then

{
x ∈ R : f (x) = g(x)

} =
{
x ∈ R :

P1(x)

Q1(x)
= P2(x)

Q2(x)

}
= {x ∈ R : P1(x)Q2(x) − P2(x)Q1(x) = 0

}
.

That is, {x ∈ R : f (x) = g(x)} is the set of all zeroes of a polynomial. Since a
nonzero polynomial has finitely many zeros, the result follows.

An n × n matrix Q = (Qij )i,j∈{1,...,n} is stochastic if the sum of entries in
every row is 1, that is,

∑n
j=1 Qij = 1 for all i ∈ {1,2, . . . ,n}. Let Id denote

the identity matrix.

Theorem 1.32 For every stochastic matrix Q and every λ ∈ (0,1], the
matrix Id−(1−λ)Q is invertible, that is, the inverse matrix (Id−(1−λ)Q)−1

exists.

Proof Setting P := Id − (1 − λ)Q and R := ∑∞
k=0(1 − λ)kQk , we note

that P · R = Id, and therefore P is invertible.
Alternatively, Pii > 0 for every i ∈ {1,2, . . . ,n} and Pij ≤ 0 for every

i,j ∈ {1,2, . . . ,n} such that i �= j , which implies that P is invertible.

https://doi.org/10.1017/9781009029704.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029704.002


28 Markov Decision Problems

Theorem 1.33 For any fixed pure stationary strategy x and any fixed initial
state s ∈ S, the function λ �→ γλ(s;x) is rational.

Our proof for Theorem 1.33 is valid for any stationary (and not necessarily
pure) strategy (see Exercise 1.12).

Proof Recall that a pure stationary strategy is a vector of actions, one for
each state. Fix a pure stationary strategy x = (as)s∈S . Denote by Q the
transition matrix induced by x. This is a matrix with |S| rows and |S| columns,
with entries (s,s′) given by

Qs,s′ = q(s′ | s,as).

Using the matrix Q, we can easily calculate the distribution of the state st

at stage t . Suppose that one chooses an initial state according to a probability
distribution p ∈ �(S) (which is expressed as a row vector), and then one
plays the action as . What is the probability that the next state will be s′? This
probability is

∑
s∈S psq(s′ | s,as), which is the s′ coordinate of the vector

pQ. Similarly, since (pQ)s is the probability that the state at stage 2 is s, the
probability that the state at stage 3 is s′ is given by

∑
s∈S(pQ)sq(s′ | s,as),

which is the s′ coordinate of the vector pQ2. By induction, it follows that the
probability that the state at stage t is s′ is the s′ coordinate of the vector pQt−1.

For a state s ∈ S denote by 1(s) = (0, . . . ,0,1,0, . . . ,0) the row vector
with the s coordinate equal to 1 and all the other coordinates equal to 0.
Then 1(s)Qt−1 represents the probability distribution of the state st at stage
t , given that the initial state is s. Therefore, the λ-discounted payoff can be
expressed as

γλ(s;x) =
∞∑
t=1

λ(1 − λ)t−11(s)Qt−1R,

where R is the row vector (r(s,as))s∈S . Therefore,

γλ(s;x) = λ1(s)

( ∞∑
t=1

(1 − λ)t−1Qt−1

)
R

= λ1(s)(I − (1 − λ)Q)−1R.

By Theorem 1.32 the matrix I − (1 − λ)Q is invertible, and by Cramer’s
rule,10 the inverse matrix (I − (1 − λ)Q)−1 can be represented as the ratio of

10 Gabriel Cramer (Geneva, Italy, July 31, 1704 – Bagolns-sur-Cèze, France, January 4, 1752)
was a mathematician from the Republic of Geneva. In addition to presenting Cramer’s rule for
the calculation of the inverse of a matrix, Cramer worked on algebraic curves.
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two polynomials in the entries of the matrix I − (1 − λ)Q. We conclude
that for every fixed pure stationary strategy x, the function λ �→ γλ(s;x) is
rational.

We can now prove a general structure theorem regarding the value function.

Corollary 1.34 For any fixed state s ∈ S, the function λ �→ vλ(s) is
continuous. Moreover, there exist K ∈ N and 0 = λ0 < λ1 < · · · < λ

K
= 1

such that for every k = 0,1, . . . ,K − 1, the following holds:

• The restriction of the function λ �→ vλ(s) to the interval (λk,λk+1) is
rational.

• There is a pure stationary strategy xk ∈∏s∈S A(s) that is λ-discounted
optimal for all λ ∈ (λk,λk+1).

Proof Let �SP denote the finite set of all pure stationary strategies. For any
fixed pure stationary strategy x ∈ �SP and any fixed state s ∈ S, consider
the function λ �→ γλ(s;x), which we denote by γ•(s;x). By Theorem 1.33,
γ•(s;x) is a rational function; in particular, γ•(s;x) is continuous. Since there
exists a pure stationary optimal strategy, the λ-discounted value at the initial
state s is given by

vλ(s) = max
x∈�SP

γλ(s;x).

Since the function λ �→ vλ(s) is the maximum of a finite family of rational
functions, it is continuous.

By Theorem 1.31, two distinct rational functions intersect in finitely many
points. Let �s be the set of all intersection points of the rational functions
(γ•(s;x))x∈�SP

, and set � :=⋃s∈S �s . Since the set �SP is finite, the set �s

is finite for every state s ∈ S, and so the set � is finite as well. Add the points
0 and 1 to the set �, and denote � = {λ0,λ1, . . . ,λK} where 0 = λ0 < λ1

< · · · < λK = 1.
Fix k ∈ {0,1, . . . ,K−1}. By the choice of λk and λk+1, for every state s ∈ S

the functions (γ•(s;x))x∈�SP
have no common intersection point in the inter-

val (λk,λk+1). Let xk ∈ �SP be a pure stationary strategy that is λ-discounted
optimal for some λ ∈ (λk,λk+1). We claim that xk is λ′-discounted optimal
at all initial states, for every λ′ ∈ (λk,λk+1), as needed. Indeed, since xk

is λ-discounted optimal at all initial states, for every fixed pure stationary
strategy x ∈ �SP and every fixed state s ∈ S, either γγ (s;xk) > γλ(s;x), or
γλ(s;xk) = γλ(s;x). In the former case, since the set of intersection points of
the functions γ•(s;xk) and γ•(s;x) is disjoint from (λk,λk+1), it follows that
γλ′(s;xk) > γλ′(s;x) for every λ′ ∈ (λk,λk+1). In the latter case, for the same
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reason γλ′(s;xk) = γλ′(s;x) for every λ′ ∈ (λk,λk+1). Hence, xk is indeed
λ′-discounted optimal for all λ′ ∈ (λk,λk+1).

The significance of Corollary 1.34 is that the decision maker does not
need to know precisely the discount factor for her to play optimally. If all the
decision maker knows is that the discount factor is within an interval in which
a specific pure stationary strategy x is optimal, by following x she ensures that
she plays optimally, regardless of the exact value of the discount factor.

In particular, we get the following.

Corollary 1.35 There is a pure stationary strategy that is optimal for every
discount factor sufficiently close to 0.

In many situations the decision maker is patient, that is, her discount factor
is close to 0. For example, countries negotiating a peace treaty are often patient.
Another example concerns an investor who may execute many transactions
along the day, sometimes even selling a stock that she bought earlier in the
day. For such an investor, one period of the game may last one hour or one
minute, and subsequently her discount factor is quite close to 0. When the
discount factor is close to 0, by Corollary 1.35, to play optimally the decision
maker does not need to know the exact value of the discount factor.

Definition 1.36 A strategy σ is uniformly optimal at the initial state s if
there is a λ0 > 0 such that σ is λ-discounted optimal at the initial state s for
every λ ∈ (0,λ0).

In the literature, uniformly optimal strategies are also called Blackwell optimal.
By Corollary 1.35, we deduce the following result.

Theorem 1.37 In every Markov decision problem, there is a pure stationary
strategy that is uniformly optimal at all initial states.

If f : (0,1] → R is a bounded rational function, then the limit limλ→0 f (λ)

exists. We therefore deduce that the discounted value is continuous at 0.

Corollary 1.38 limλ→0 vλ(s) exists for every initial state s ∈ S.

1.8 Comments and Extensions

Markov decision problems were first studied by Blackwell (1962). The model,
as introduced by Definition 1.1, include finitely many states, and the set
of actions available at each state is finite. Markov decision problems with
general state and action sets were considered in the literature, and the existence
of T -stage optimal strategies as well as of stationary λ-discounted optimal
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strategies was established under various topological conditions on the set SA

of pairs (state, action) and continuity conditions on the payoff function and on
the transition rule. For more details, the reader is referred to Puterman (1994).

By Theorem 1.34, for every state s ∈ S the function λ �→ vλ(s) is piecewise
rational. A natural goal is to characterize the set of all functions that can arise as
the value function of some Markov decision problem. Such a characterization
was provided by Lehrer et al. (2016).

Here we considered two types of evaluations for the decision maker: the
T -stage evaluation and the discounted evaluations. Other evaluations have
also been considered, see Puterman (1994, Section 5.4), where algorithms for
approximating optimal strategies for various evaluations are described.

We proved that the limit limλ→0 vλ(s) of the discounted value exists for
every initial state s. We did not touch upon the convergence of the T -stage
value as T goes to infinity, namely, limT →∞ vT (s). For Markov decision
problems with finitely many states and actions, the fact that limT →∞ vT (s)

exists and is equal to limλ→0 vλ(s) follows from a result of Hardy and
Littlewood, see Korevaar (2004, chapter I.7). We will not prove this result
directly, as it will follow from a much more general result that we will obtain
later in this book (see Theorem 9.13 on Page 139). A rich literature extends
this result to Markov decision problems with general state and action sets, see,
for example, Lehrer and Sorin (1992), Monderer and Sorin (1993), and Lehrer
and Monderer (1994).

When the decision maker follows a uniformly optimal strategy, she guaran-
tees that the discounted payoff is close to the value. This does not rule out the
possibility that the payoff fluctuates along the play: during some long blocks
of stages, the payoff is high; in other long blocks of stages, the payoff is low;
and the blocks are arranged in such a way that the average payoff is close to the
value. Sorin et al. (2010) proved that this is not the case: if the decision maker
follows a uniformly optimal strategy, then for every sufficiently large positive
integer m there is a T ∈ N such that for every t ≥ T , the expected average
payoff in stages t,t + 1, . . . ,t + T − 1 is close to limλ→0 vλ(s1).

1.9 Exercises

Exercise 1.3 is used in the solution Exercise 5.1.

1. Prove that the strategy σ ∗ that is described after the proof of Theorem
1.17 is T -stage optimal.

2. In this exercise, we bound the variation of the sequence of the T -stage
values (vT (s))T ∈N. Prove that for every T ,k ∈ N and every state s ∈ S,
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|(T + k)vT +k(s) − T vT (s)| ≤ k‖r‖∞.

3. Let � be a Markov decision problem. Prove that there is a pure T -stage
optimal strategy with the following property: the action played in each
stage depends only on the current stage and on the number of stages left.
That is, for every t ∈ {1,2, . . . ,T } and every two histories
ht = (s1,a1, . . . ,st−1,at−1,st ) and h′

t = (s′
1,a

′
1, . . . ,s

′
t−1,a

′
t−1,s

′
t ), if

st = s′
t , then σ(ht ) = σ(h′

t ).
4. For λ ∈ (0,1], calculate the λ-discounted value and the λ-discounted

optimal strategy at the initial state s(1) in Example 1.3.
5. Prove Theorem 1.22 about the dynamic programming principle for

discounted decision problems: For every initial state s ∈ S and every
discount factor λ ∈ (0,1],

vλ(s) = max
a∈A(s)

{
λr(s,a) + (1 − λ)

∑
s′∈S

q(s′ | s,a)vλ(s
′)

}
.

6. Find the discounted payoff of each pure stationary strategy in the
following Markov decision problem and determine the discounted value
for every discount factor.

0(0,1)

1( 2
3 , 1

3

)
D

U

s(1)

3(1,0)

2( 1
2 , 1

2

)
D

U

s(2)

7. Let σ1 and σ2 be two pure stationary strategies. Let σ3 be a stationary
strategy that at every state s chooses an action a that maximizes

λr(s,a) + (1 − λ)
∑
s′∈S

q(s′ | s,a) max{γλ(s
′;σ1),γλ(s

′;σ2)}.

Prove that

γλ(s;σ3) ≥ max{γλ(s;σ1),γλ(s;σ2)}, ∀s ∈ S.

8. Let � be a Markov decision problem and let s be a state. In view of
Comment 1.20, is it true that for λ = 1

T
we have vλ(s) = vT (s)? If so,

prove it. If not, explain why an inequality does not necessarily hold.
9. Show that every contracting mapping is continuous.

10. Show that for every polynomial P there exist a Markov decision problem
and an initial state s such that vλ(s) = P(λ) for all λ ∈ (0,1].
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11. Let σ be a strategy in a Markov decision problem �, and let λ ∈ (0,1).
Prove that σ is λ-discounted optimal at the initial state s if and only if the
following condition holds: For every history ht ∈ H that satisfies
Ps,σ (ht ) > 0 and every action a′ ∈ A(st ) that satisfies σ(a′ | ht ) > 0,

a′ ∈ argmaxa∈A(st )

{
λr(st,a) + (1 − λ)

∑
s′∈S

q(s′ | st,a)vλ(s
′)

}
.

12. Prove that for each fixed stationary (not necessarily pure) strategy x, the
function λ �→ γλ(s;x) is rational.

13. Find a Markov decision problem that satisfies the following two
properties:

• There is a strategy σ that is λ-discounted optimal for λ = 1 and for
every λ sufficiently close to 0, but is not optimal for λ = 1

2 .
• There is a strategy σ ′ that is not λ-discounted optimal for λ = 1 and for

every λ sufficiently close to 0, but is optimal for λ = 1
2 .

14. Let X ⊆ R
n and Y ⊆ R

m be two closed sets. A correspondence
F : X ⇒ Y is a mapping that assigns to each point x ∈ X a subset
F(x) ⊆ Y . We say that the correspondence F has non-empty values
if F(x) �= ∅ for every x ∈ X. The graph of a correspondence F is
Graph(F ) = {(x,y) ∈ R

n+m : y ∈ F(x)}.
Let X ⊆ R

n be a compact set. Let F : X × X ⇒ R and G : X ⇒ X be
two correspondences with non-empty values and compact graphs and let
λ ∈ (0,1). Prove that there exists a unique function f : X ⇒ R such that

f (x) = max
y∈G(x)

(F (x,y) + λf (y)).

15. Let � = 〈S,(A(s))s∈S,q,r〉 be a Markov decision problem, and consider
the following linear program in the variables (v(s))s∈S :

Minimize
∑
s∈S

v(s)

Subject to v(s) ≥ λr(s,a) + (1 − λ)
∑
s′∈S

q(s′ | s,a)v(s′), ∀s ∈ S,a ∈ A.

Show that the solution (v(s))s∈S of this linear program has the property
that v(s) is the λ-discounted value at the initial state s.

16. Prove Theorem 1.30: Let � = 〈S,(A(s))s∈S,q,r〉 be a Markov decision
problem, let λ ∈ (0,1] be a discount factor, and let vλ(s) be the
λ-discounted value at the initial state s, for every s ∈ S. A stationary
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strategy x is λ-discounted optimal at all initial states if and only if, for
every state s ∈ S, the mixed action x(s) satisfies

vλ(s) = λr(s,x(s)) + (1 − λ)
∑
s′∈S

q(s′ | s,x(s))vλ(s
′).

17. Let � = 〈S,(A(s))s∈S,q,r〉 be a Markov decision problem where S is
countable, A(s) is finite for every s ∈ S, and r is bounded. Prove that for
every λ ∈ (0,1] the λ-discounted value exists at all initial states, and
moreover the decision maker has a pure stationary λ-discounted optimal
strategy.

18. Does limλ→0 vλ(s) exist in every Markov decision problem
� = 〈S,(A(s))s∈S,q,r〉 for every s ∈ S, where S is countable, A(s) is
finite for every s ∈ S, and r is bounded? Prove or provide a
counterexample.
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