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On the algebraic Riccati equation

Harald K. Wimmer

In this note the matrix equation A + WB + BTW + WCW = 0 is
considered. A monotoneity result and an inertia theorem on the

location of the eigenvalues of W and B + CW are proved.

1. A monotoneity result
We study the algebraic Riccati equation

(1) A+WB+BTW+WCW=0,

where all matrices are »n X »n and real, and A, C , and W are symmetric.

We assume

(2) C =0 (negative semidefinite)
and
(3) (B, C) controllable.

[see the next section for the definition of controllability.] Coppel [4]
has given a comprehensive algebraic theory of (1) on which we base our

note.

We recall the following results from {4]. If (1) is solvable, then
there exists a maximal solution W+ ; that is, W+ > ﬂ for each solution

W oof (1). If M,
B ¢
M= ,
A -B

has no eigenvalues on the imaginary axis, then there exists a solution of
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(1) and B + CW 1is a stable matrix (that is with all eigenvalues in the
left half plane), if and only if W = W, . Set

4 B

B C

H =

Then (1) can be written as
(Tma) =o .

THEOREM 1. Let M have no eigenvalues on the imaginary axis and let
W, be the maximal solution of (1). If W, ts a solution of

+
(1) Ay + WB + BH +HCWH =0,
and
7
7 4, B
e S 0 A ) I
B ¢ B, 0

then W+ = Wl .

Proof. Hl can be written as Hl =H-H, H>0 . Thus (L) is

equivalent to

I
T -
A+WlB+BWl+WlCWl=(IW)H[ ]=R20.

For D = W; - Wl we obtain

(B+cw,) + (B+cW,)"D = DCD - R

which is a Ljapunov matrix equation with B + CW+ stable and
DCD - R=0 . Hence D=0 . This theorem generalizes a result in [7]

where monotoneity with respect to A was proved.

2. An inertia theorem
We shall need the following lemmas and definitions. The pair (F, G) ,

F e CP" , G € crrm , is called controllable (Hautus [51), if
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(5) rank (G, FG, ..., F* 16} = n .

The pair GD , K¢ (vgats , is called observable [2], if (FT, KT) is

controllable.
LEMMA 1 (Hautus [5]). The pair (f’() is observable, if and only if

for X €eC, yGCn,
Fy=2, Ky=0=y=0.

For a complex 7 X n matrix F the inertia, in F , of F is

defined [6] as the triple
in F = {n(F), v(F), §(F)}

where w(F), WF) , and &(F) are respectively the number of eigenvalues

of F with positive, negative, and vanishing real part.
LEMMA 2 ([3], [8]1). Let F, W, and S be real n xn matrices,
(F

S is observable and

S and W symmetric. If S =0 and

WF + FIW = 5,
then
(a) in F = in(-W) and &(F) = 6§(W) = 0,
and espectally
(b} F 1is stable, if and only if W > 0 .

The following inertia result is obtained under additional assumptions

on the coefficient matrices of (1).

THEOREM 2. Assume C =<0, (B, C) controllable,

(6) A=z0

and

(1) (2) observable.
Then

(a) there exists a solution of (1), and
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(b) for each solution W ,
in(B+CW) = in(-W) and &(B+CW) = §(W) = 0
holds.

Proof. (a) We show that &(M) = 0, which implies the existence of a

solution. Suppose 0. , 0 real, is an eigenvalue of M with eigenvector

(2) ;3 that is,

. 0
(8) M[:) = ’Ld.(:) . (:) # (0)
Premultiplying both sides of (8) by (s*, r*) , we get

8*Cs - r*Ar + (s*Br—r*BTs] = fa(s*r+ris) ,
and, separating real and imaginary parts, we obtain
8*Cs - r*Ar = 0 .
(2) and (6) imply Cs = 0 and Ar = 0 . Now (8) yields Br = Zor and
BTs = -tas . Thus [B-Z:O(I)r =0 , and since (ﬁ] is assumed to be

observable, we deduce from Lemma 1 that » =0 . Similarly s =0 .
Therefore <0 can not be an eigenvalue of M . A different proof that
there exists a solution W relies on optimal control theory and can be

found in [Z2].

(b) Let W be a solution of (1). Then

W(B+cW) + (B+aW)TW = wow - A .
From (WCW-A)q = 0 we get C(Wg = 0 and Aq = 0 . Therefore (B+(W)q = Aq
and (WCW-A)q = 0 implies
(9) Bg=MA , Ag=0.

B+C'W)

Because of (7) and (9) we have ¢ = 0 and the pair (WCW-A is also

observable. The conditions of Lemma 2 are satisfied and the statement of

the inertia follows.

One of the problems which lead to (1) with coefficients satisfying
(3), (4), (6), and (7) is the output regulator problem over an infinite

time interval (see [1]). This close connection between optimal control
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theory and the algebraic Riccati equation has been used to establish the

following result (see [2]), for which an algebraic proof is now immediate.

THEOREM 3 ([2]). Let (1) be given together with (3), (L), (6), and
(7). Then W, <is the only positive definite solution of (1).

Proof. Since B + CW; is stable, W; > 0 follows from Theorem 2
(b). Conversely, if W > 0 , then by the same theorem A + CW is stable,

which is only possible for W = W, .
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