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Introduction. A semilattice of cancellative semigroups S is a p.o. semigroup with
the order relation a < b iff ab = a2. If S is a strong semilattice of cancellative semigroups
(i.e., multiplication in S is given by structure maps <f>eJ ( /<e in E)), for each supremum-
preserving completion E of the semilattice E there is a strong semilattice of cancellative
semigroups T over E which is a supremum-preserving completion of S in s . Given E, T
is constructed directly. In this paper it is shown that multiplication by an element of S
distributes over suprema in ^ if E has this property (called strong distributivity). Next it is
shown that the completion construction also applies to a semilattice of cancellative
semigroups which is not strong if S is commutative and E is strongly distributive. Finally,
it is shown that for semilattices of cancellative monoids a completion is completely
determined, up to isomorphism over S, by completions of E.

We begin by noting that if S is a semilattice of cancellative semigroups Se(e e E) then
there are three particular ways of defining an order relation on S, namely

a<1b€>ab = a2, a<2boba = a2

and
a < 3 i ) O asb = bsa = asa for all s e S

(see [5] and [10]). These all coincide in this case. For if aeSe, beSf and a <1b then
ab = a2 (giving e =£/), so that aba = a3 and ba = a2, since Se is cancellative. Hence <x and

; s2coincide. If a<3b then a2b = a3 giving a<tb, while if a < x b and seS, the equation

asbasa = asaasa

and cancellation give the remaining equivalence. Necessary and sufficient conditions for
s these relations to be order relations are found in [5] and [10]. This is the case for
L semilattices of cancellative semigroups.
f In the case of inverse semigroups whose idempotents are central, this order coincides
; with the natural order for an inverse semigroup [6, p. 40]. In particular this applies to

semilattices.
The order relation on S makes S into a p.o. semigroup [5, Proposition 3] and the

relation is called Abian's order. A subset X of S can have an upper bound in S only if it is
boundable, i.e., for x, y e X, xy2 = x2y. A semigroup S is complete if every boundable set
in S has a supremum. An embedding S <= T of semigroups is a completion if (i) T is a
semilattice of cancellative semigroups, (ii) T is complete and (iii) every element of T is the
supremum of some boundable set in S. We shall be dealing with completions such that the
inclusion S<=T preserves suprema which exist in S.

t This research was partially supported by Grant A 7539 of the National Research Council.
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Finally, if S='U Se is a strong semilattice of cancellative semigroups (i.e., for /<e
E

in E there are homomorphisms <j>ef:Se—*Sf such that for asSe, beSf, ab =
<k,e/(a)4v,e/(fr)) then a set X<= S is boundable if and only if for x,yeX,xeSe,yeSf then
<l>e,ef(x)= <i>f,ef(y)- Note that distinct elements of a boundable set are in distinct cancellative
parts of S.

1. The completion of a strong semilattice of cancellative semigroups. Throughout
this part let S be a semigroup which is a semilattice E of cancellative semigroups Se

(e e E), where multiplication in S is given by structure maps <j>eif :Se—*Sf for c, fe E, /<e.
The construction of a completion T for S is done by directly constructing T as a

lattice of cancellative semigroups. This construction owes something to the construction of
semigroups of quotients of semilattices of groups as found in [9] and [11], but here a
completion of E is at the base of it all and the cancellative components need not be
groups.

EXAMPLES. Consider the following lattices of groups.

{1}

S: { e , a } {f,b} T: {e,a} {f,b}

{0} {0}
where, in both, e2 = e, f2 = /. In T, ker <j>le = {1, u}, ker <f>Uf = {1, i>}. The boundable sets of
S are: the singletons, {e, / } , {e, b} {a, / } , {a, b} and these four with 0 added and {1, c, /, 0}.
We have that S is not complete since, for example, {a, b} has no upper bound. However T
is a completion of S with the obvious embedding. This is a model for the general
construction.

The semilattice E can be completed in various ways, E £ E, E a complete lattice. In
particular we may take E to be the Dedekind-MacNeille completion where the element
feE corresponds to the subset A={eeE\e-^f} of E (see [12, p. 44]). The embedding
E s E preserves all suprema which exist in E. The completion to be constructed will be a
lattice of cancellative semigroups T= \J Tf. (In order to obtain the theorem below, any

E

supremum-preserving completion of E will suffice, the particular one being mentioned
only for concreteness.) The construction of T and the verification of its properties will be
done in six steps. In order to establish notation for the remainder of the article, to feE
we make correspond a subset of E as follows: if f = sup{eeE\e<f\ then we let
A={eeE\e<f} (this occurs if feE\E and for some elements of E); if /^sup{ee
E\e<f} we let A={eeE\e^f} (this can only occur for some elements of E, for
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example 0, e, f in the preceding example, but not 1). Whichever case occurs A will be
called the subset of E corresponding to f.

STEP 1. For fe E, let A be the corresponding subset of E. Define 7} to be the inverse
limit of the system

(see [8, p. 291]); that is, 7} is the subsemigroup of n Se consisting of the elements (xe)A
A

such that if e' < e (e, e' e A), then <£e>c.(xe) = xe.. The result is clearly cancellative and if the
Se (e e A) are groups, so is Tf. Note that 7} could be empty although not in the case where
each Se (e e A) contains an idempotent. Also if fe E and A-{eeE\e^f} then 7} = Sf.

The elements of Tf are precisely the boundable sets X of S such that
(i) if s s x for some seS, xeX, then seX,

and
(ii) {e € E | x e Se for some x e X} = A.

STEP 2. Put r = | J T f and define multiplication via structure maps as follows. If
_ E

f,f'eE, f'-^f with corresponding subsets of E,Bc.A, then define ipfr:Tf—>Tr by
'/ ' / .f(WA) = Ue)B>tne restriction of (xe)A eTf^Y\Se to JB. Then in general if f,f'eE have

A

corresponding subsets A and B of E, respectively,

Abian's order is denned on T.

STEP 3. The embedding of S£ T is as follows. If eeE then eeE and we assign to
xeSe the element (xe)A where A is the subset of E corresponding to e and for e'eA,
xe' = <J>e,e'(x). This embedding is clearly order-preserving.

STEP 4. Every element of T is the supremum of a subset of S. Consider x = (xc)A e 7}
then (xe)A = sup{xe | eeA}. Indeed, for e'eA,

I Thus y is an upper bound of X = {xe | e e A}. Suppose that y = (y€)B e 7}. is an upper bound
' of X. Then (yc)Bxc, = x2., showing that e ' < f for all e 'eA. Hence, AQB and / < / ' . By

the cancellation property, for e e A, ye = xe so that tpfyf{y) = x and so xy = x2, giving the
result.

STEP 5. The semigroup T is complete. Let X = {(x")^ | a e A} be a boundable set in
T. We may assume that if teT, xeX and t<x then teX. We have that for (x")^ and
(x?)Ap in X,

Calculating we get
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where if Aa corresponds to /„ and Ap to fp then Ay corresponds to fjp; thus
Ay = Aa n Ap. Hence for all e e Ay, x" = x£. Put

Then

Hence U is boundable.
Put A = {e e E | x" e Se for some x" e L/}. This set has a supremum f in E and

/ = sup(sup Aa) (see [1, p. 53]); hence if eeE, e^f then e^sup Aa for some eeA anc
thus eeA, . Now put x = (xc)A where xe is any x" (aeA). This is well-defined, since il
e e Aa fl Ap then x" = xf. We claim that x = sup X.

For (X".)A^ e X we have

since A a £ A ; hence for e'eAa, x e = x " and we conclude that

Hence x is an upper bound. But x = sup U and every x" e 1/ is below an element of 1
(indeed if x ^ e j x ^ then X"==(X™0A,

 b v t h e nature of the embedding S s T ) . Henc
x = sup X.

STEP 6. The embedding SsT preserves all suprema which exist in S. Let s = supJ
(X a subset of S, s e S). Then if A = {e' | x e Sc. for some x e X} and s e Se, it follows tha
e = sup A. If g < e is another upper bound of A in E, it is readily seen that y = 4>e,gM i
an upper bound of X and that y < x. Hence y = x and e = g. But e = sup A in E as we
and the boundable set X has a supremum t in Te, and hence t =£ s. But Te is cancellativ*
so s = t.

This completes the construction, giving the following theorem; its corollary follow
from it and the remark in Step 1.

T H E O R E M 1 . L e t S be a s e m i g r o u p w i t h d e c o m p o s i t i o n S = U Se, where E is
E

semilattice and the Se are cancellative. Suppose further that multiplication in S is given b
structure maps <f>ee.:Se —> Sc. for e'=£e in E. Then S has a completion in Abian's order J
where T is a semigroup of the same type as S and the inclusion S^T preserves suprema froi
S.

COROLLARY 2. Let S be a semilattice of groups. Then S has a completion T in Abian
order, where T is a lattice of groups.

https://doi.org/10.1017/S0017089500003955 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003955


SEMILATTICES OF CANCELLATIVE SEMIGROUPS 33

The completion of a semigroup is not unique (unlike the case for rings [2, Theorem
12]) since even a lattice may be completed in several non-isomorphic ways. Uniqueness
will be discussed further in part 4 below. Theorem 1 does yield an internal characteriza-
tion of complete semigroups (of the type being studied here). The proof is clear from the
proof of Theorem 1.

PROPOSITION 3. Let S be a semigroup with decomposition S=\J Se, where E is a
E

semilattice, the Se are cancellative and the multiplication in S is given by structure maps
<f>ey:Se —*• Sc' ( e '< e in E). Then S is complete if and only if (i) E is a complete lattice, (ii)
iffeE is such that / = supA where A={eeE\e<f} then Sf = \im{Se;<j>ee} and (iii) if

e'^einE then <pee. is the homomorphism induced by the universal property of inverse limits.

I EXAMPLE. Let E be a semilattice with 0 such that ef = 0 for all e^f. Then with
I S0 = {0} and Se arbitrary (e^O), a semigroup S = L I S e can be formed. By adjoining an
r E

element 1 to E we get a completion E. Clearly T1 = n Se and Te = Se for all e e E. Here E
E

is the Dedekind-MacNeille completion of E. Using the same E we can also form the ideal
completion F of E, which in this case is supremum-preserving (it is not always [7]); F is
the set of all subsets of E which contain 0. For UeF, T a = n Se. These two completions
are clearly not isomorphic. u

2. Distributivity. In the case of semiprime rings, Abian's order and Conrad's order
satisfy an infinite distributivity: if R is a semiprime ring and if x = supX, a e R then
sup aX= ax and sup Xa = xa ([4, Corollary 3]). For semigroups this is false since there
are lattices which are not distributive. However, for the type of semigroups we have been
studying, distributivity will be seen to be a property of the underlying semilattice. Let us
say that a semilattice L is strongly distributive if for any subset X of L and e e L, if sup X
exists then sup eX= e(sup X).

PROPOSITION 4. Let S be a semigroup with a decomposition S = U Se, where E is a
E

t semilattice, the Se are cancellative and multiplication in S is given by structure maps
4>e<,.:Sc —> Sc. ( e ' ^ e in E). Suppose that E is strongly distributive. Then for any boundable
set X of S and any aeS, sup aX= a (sup X) and sup Xa = (sup X)a if sup X exists.

Proof. Let y = sup X. If A = {e e E | x £ X n Se for some x}, then clearly if y e Sf we
have / = sup A. Let a e Sg and consider

ayax = 4>g,ge(a)<f>fige(y)<j)&ge(a)4>e,ge(x)

= axax for x s X fl Se.

Hence ay is an upper bound for aX. Let ueSh be another upper bound for aX. Since h is

) 3
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an upper bound for gA,

h > sup gA = g(sup A) = g/.

It follows that <t>Kgf(u) is an upper bound of aX in S^. By cancellation, 4>Ksf{u) = ay and
ay^u.

An analogous statement for inverse semigroups is [13, Lemma 1.13].
Note that strong distributivity for semilattices and, more generally, for semigroups

with Abian's order implies the following distributive property: if S is a strong semilattice
of cancellative semigroups such that for seS and a boundable set X, sup sX= s(supX) if
either exists, then for boundable sets X and Y we get that XY = {xy \ x e X, y e Y} is
boundable and sup XY = (sup X)(sup Y) if either side exists.

3. A generalization. In this section we attempt to construct a completion of a semilattice
of cancellative semigroups where there are no structure maps available. It will be
necessary to impose supplementary conditions on the cancellative semigroups and on the
semilattice.

THEOREM 5. Let S be a commutative semigroup which is a semilattice \J Se of
E

cancellative semigroups. Assume further that E has a supremum-preserving completion E
which is strongly distributive. Then S has a supremum-preserving completion.

Proof. We first construct for each eeE the group Ge of fractions of Se. For ab~1eGe

and cd~xeGe. define ab'1. cd~x = ac(bd)'1e Gee,. Let G=LJGe with the indicated
multiplication; it is a semigroup of the type studied in PartEl. Let T={jTf be the
completion of G as constructed in Theorem 1.

For feE let A be the corresponding subset of E (see Part 1 for notation) and recall
that an element of 7} has the form (xe)A where if e '<e in A then <\>e_e{xe) = xe.. Put

Uf = {{xe)A&Tf | for some B g A , sup B= sup A-=f, xeeSe for all eeB}

These are elements of 7} which are, in a sense, "almost everywhere" in S. We put
U=\J Uf and we shall show that U is the desired completion. Note that, as remarked in

Part 2, if E is strongly distributive and A, B g E then sup AB = (sup A)(supB); indeed

sup AB = supA(sup aB) = supA(a sup B)

= sup(A sup B) = (sup A)(sup B).

Firstly, U is a subsemigroup of T. Let (xc)A e Uf and (ye)A.e Ur where A and A' are
the subsets of E corresponding to / and / ' respectively and for some B^A, sup B = f,
xeeSe for all eeB and for some B'^A', supB' = f, yeeSe for all eeB'. Then

(of course AA' = {eeE | e<ff'}). But sup BB' = (sup B)(sup B') = ff' (by hypothesis) and
xeye e Se for all e e BB'.
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LEMMA. If (xe)A e Tf, A is the subset of E corresponding to f and B^A is such that
sup B = / then sup{xc | e e A} = sup{xe | e e B}.

Proof. Let x = sup{xc [ e e A}, y = sup{xe | e 6 B}. Clearly both x and y are in Tf and
y<x. This gives the equality.

COROLLARY. If (xc)A, (yc)A € Tf and for some Be. A, with supB=/ , xe = ye for all
eeB then (xe)A = (yJA.

Proof. By the lemma, sup{xc \eeB} = (xe)A = (ye)A.

Returning to the theorem, we must show that U is complete; it will follow that U is a
; completion of S, since if (xc)A e Uf and B^A with sup B = f and xe e Se for all e e B then

the lemma shows that (xe)A = sup{xe | e e B}, the supremum of a subset of S.
. Let X = {(x")^ | a e A} be a boundable set from U, where Aa £ E corresponds to /„,
' Ba £ Aa, sup Ba = fa and x" E SC for all e e Ba. Put x = sup X, an element of T. It will be

shown that x e 17. Since X is boundable, for e e Aa C\ Ap = AaAp we have x" = x|f. Let

Y-{xe\xe = x" for some c e l j A . and some a e A}.
A

As was shown in Theorem 1, Step 5, Y is boundable with the same supremum as X. Now
consider (J Ba £ \J Aa. We have

sup [J Ba= supjsup Ba | a e A} = sup{/a | a e A}

= sup{sup Ao | a 6 A} = sup \J Aa=f.

Hence x e L .̂

It would be desirable to weaken the conditions on Theorem 6 to those of Theorem 1.

4. Uniqueness of completions. It has already been mentioned that completions are
not unique since semilattices may have non-isomorphic completions. However, in the case
of a semilattice of monoids, it will be shown that there is, up to isomorphism over S, one
supremum-preserving completion of S, which is a semilattice of cancellative semigroups,

' for each isomorphism class of supremum-preserving completions of the underlying
semilattice E.

THEOREM 6. Let S = \J Se be a semilattice of cancellative monoids and let U= \J Uf be
B F

a semilattice of cancellative semigroups which is a supremum-preserving completion of S.
Then (i) each Uf is a monoid, (ii) F is a supremum-preserving completion of E, (iii) U is
isomorphic over S to the completion constructed over F in Theorem 1.

Proof. E is contained in F as semilattices, for if eeEQS and eeUf then for seSe,
s = se. It follows that s e Uf. Further if e, e' e E with e e Uf, e' E Ur then ee' € Uw. Hence if
eeUf, e may be identified with /. Further, F is a supremum-preserving completion of E.
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Let ueUf, u- sup X for some X s S. Put

A = \e e E | x e Se for some x e X}.

Now for x e X. x e S€, ux = x2 6 Se c [/,,, so that e < /. Since 1/ is complete, the boundable
set A has a supremum g in U. Now g is an idempotent, since g2e = ge = e for all eeA,
which shows that g2 is also an upper bound of A; hence g ^ g 2 giving g3 = g2 in a
cancellative semigroup. Thus g = g2. We also have

gux = gx2 = gex2 = ex2 = x2

for x e XD Se, and so gu ^ u. From this gu2 = u2, showing that g e Uf. We may identify g
with feF.

It follows that each Uf is a monoid. By Proposition 3, F is complete, giving (i) and
(ii).

Now let feF with corresponding set A £E. Each ueUf is the supremum of some
X<=S. Let

B = {e e E \ x eXfl S, for some x}.

Clearly U s A and sup B = sup A =/. Further, if eeA there is e'€J3 with e'>e, from
which it follows that ue = ue'e. But if xeXDS,,., then u > x implies that ue' = x. Hence
ue = xe G S. Thus multiplication by eeA gives a homomorphism Te: Uf —» Se. Let 7}
= lim{Sc; <pe.e} (as in Part 1). The homomorphisms re induce a homomorphism r:Uf~* Tf

by the universal property of inverse limits. This is readily seen to be an isomorphism.
Further, for /, f'eF, f'^f, multiplication by / ' gives Uf-^*Uf; which is precisely the
induced homomorphism «/>f>/. of Theorem 1. Hence U is isomorphic to T constructed as in
Theorem 1 over F and the isomorphism leaves elements of S fixed.

It would be desirable to be able to get this uniqueness result for any strong
semilattice of cancellative semigroups.

If the semilattice £ is a Boolean algebra then there is only one completion (the
Dedekind-MacNeille) and it is strongly distributive. Hence if R is a strongly regular ring
then the completion of its multiplicative semigroup is unique; it is based on the comple-
tion of B(R), the Boolean algebra of idempotents. This completion is the multiplicative
semigroup of the completion of JR as a ring which is, in this case, the complete ring of
quotients, Q(R) (see [2, Theorem 14] and [3, Theorem 5]). More generally, if R is a
reduced p.p. ring (a ring with no non-zero idempotents in which the annihilator of each
element is generated by an idempotent; in a reduced ring all idempotents are central and
left and right annihilators coincide) then the multiplicative semigroup is a Boolean algebra
of cancellative semigroups. Indeed for e = e2eR, put

Re = {r G JR | re = r and if for some f = f2, rf=r then e ̂  /}.

Now if r, s,te Re, and rs = rt we get s - t e Ann r = gR for some g = g2. Thus r(l - g) = r
and e < 1 - g giving eg = 0 and

s - 1 = g(s - 0 = g(es - et) = 0,

https://doi.org/10.1017/S0017089500003955 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003955


SEMILATTICES OF CANCELLATIVE SEMIGROUPS 37

i showing that s = t. Further, R = \J Re. Let r e R; then Ann r = eR for some eeB(R) and
L B(R)

I r(l-e) = r. If rf=r for f&B(R) then r ( l - / ) = 0 and l - / e d R , giving l - e < / . Hence
re !?!_..

Now if R is commutative p.p. ring, it has a completion in Abian's order, call it C(R),
and B(C(R)) is the Dedekind-MacNeille completion of B(R) ([3, Theorem 11]). We have
shown the following:

PROPOSITION 7. Let R be a commutative p.p. ring. Then there is a unique supremum-
preserving completion of the multiplicative semigroup of R. It is the multiplicative semigroup
of the completion of the ring R.
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