ON ERGODIC EXTENSIONS OF STATIONARY MEASURES WITH MINIMAL SUPPORT

BY
WILLIAM B. KREBS AND JAMES B. ROBERTSON

Abstract

Let T be an ergodic measure preserving transformation with the following property: there exists a positive integer n and a finite partition α such that the number of atom of $\bigvee_{\substack{n=0 \\ i=1}} T^{i} \alpha$ is one more than that of $\bigvee_{i=0}^{n} T^{i} \alpha$, and the probability of at least one of the atoms is irrational. Then there exists a unique (up to conjugacy) transformation S such that there is a partition β with S restricted to $\bigvee_{i=0}^{n+1} S^{i} \beta$ isomorphic to T restricted to $\bigvee_{i=0}^{n+1} T^{i} \alpha$, and the number of atoms in $V_{i=0}^{m+1} S^{i} \beta$ is one more than the number of atoms in $\bigvee_{i=0}^{m} S^{i} \beta$ for all $m \geq n$. Moreover this transformation has discrete spectrum with at most two generators. If there are two generators, one of them must be a root of unity.

1. Introduction. Hobby and Ylvisaker (1965) studied the problem of extending a stationary measure p_{n} on \mathscr{A}^{n} to \mathscr{A}^{n+1} where \mathscr{A} is a finite alphabet (precise definition will be given in $\S 2$). One of their results states that for all p_{1} on $\mathscr{A}=\{0,1\}$ such that $p_{1}(0)$ is irrational, there exists a sequence p_{1}, p_{2}, \ldots of stationary extensions such that N_{n}, the number of points in the support of p_{n}, is equal to $n+1$ for all n. We generalize this result by proving that for all ergodic p_{n} on \mathscr{A}^{n} such that $N_{n}=N_{n-1}+1$ and such that some $p_{n}(x)$ is irrational, there exists a unique sequence of ergodic extentions, p_{n+1}, p_{n+2}, \ldots such that $N_{m}=$ $N_{n}+m-n$ for all $m \geqq n$. We further show that the class of measure preserving transformations that are obtainable in this way is identical with the class of transformations obtained by taking the cartesian product of a rotation of a finite number of points and an irrational rotation of the circle.

Hobby and Ylvisaker also show that for any stationary p_{n} on \mathscr{A}^{n} there exists some m and a stationary extension p_{m} on \mathscr{A}^{m} such that $N_{m}=N_{m-1}$. This result loses much of its interest because it generally produces nonergodic extensions. In fact we show that, in some sense, most p_{n} on \mathscr{A}^{n} do not have ergodic extensions p_{m} to any \mathscr{A}^{m} such that $N_{m} \leqq N_{m-1}+1$.
2. Preliminaries. In this section we shall state definitions and some known or easily derived results that will be used in the following sections.

Let (X, \mathscr{B}, P) be a probability space and T a measure preserving transformation on X, i.e. for all $A \in \mathscr{B} T^{-1}(A) \in \mathscr{B}$ and $P\left(T^{-1}(A)\right)=P(A)$. Let $\alpha=$ $\{A(k): k \in \mathscr{A}\}$ be a measurable partition of X, where \mathscr{A} is finite set. For

[^0]$n=1,2, \ldots$ and $x=\left(a_{1}, \ldots, a_{n}\right) \in \mathscr{A}^{n}$ we set
\[

$$
\begin{equation*}
A_{n}(x)=\prod_{k=1}^{n} T^{1-k}\left(A\left(a_{k}\right)\right), \quad p_{n}(x)=P\left(A_{n}(x)\right) \tag{2.1}
\end{equation*}
$$

\]

The functions p_{n} satisfy the following four conditions for all $n=1,2, \ldots$ and for all $x \in \mathscr{A}^{n}$:

$$
\begin{align*}
p_{n}(x) \geqq 0 \quad & \sum_{a \in \mathscr{A}} p_{1}(a)=1 \quad \sum_{a \in \mathscr{A}} p_{n+1}(x, a)=p_{n}(x) \tag{2.2}\\
& \sum_{a \in \mathscr{A}} p_{n+1}(a, x)=p_{n}(x) .
\end{align*}
$$

Conversely, the well-known Kolmogorov extension theorem implies that if \mathscr{A} is any finite set and p_{1}, p_{2}, \ldots any sequence of functions defined respectively on $\mathscr{A}, \mathscr{A}^{2}, \ldots$ and satisfying (2.2), then there exists a probability space (X, \mathscr{B}, P), a measure preserving transformation T, and a partition α such that (2.1) holds.

For this reason we will refer to p_{n} as a stationary (probability) measure on \mathscr{A}^{n} and call $p_{m}, m>n$, a stationary extension of p_{n}. The collection $\left\{A_{n}(x): x \in\right.$ $\left.\mathscr{A}^{n}\right\}$ is a partition denoted by $\bigvee_{k=1}^{n} T^{1-k} \alpha$. The sets $S_{n}=\left\{x \in \mathscr{A}^{n}: p_{n}(x)>0\right\}$ and $\left\{A_{n}(x): x \in S_{n}\right\}$ will be called the support of p_{n}, and N_{n} will denote the number of points in S_{n}.

A measure preserving transformation T is said to be ergodic if $T^{-1}(A)=A \in$ \mathscr{B} implies that $P(A)=0$ or 1 . We shall say p_{n} is ergodic if for all x and $y \in S_{n}$, there exist a number m and a chain $x=x_{0}, x_{1}, \ldots, x_{m}=y$ of vectors $x_{i} \in S_{n}$ such that for each $i=1, \ldots, m$ there exist $a, b \in \mathscr{A}$ and $z \in \mathscr{A}^{n-1}$ with $x_{i-1}=$ (a, z) and $x_{i}=(z, b)$. We then have
2.3. Lemma. A stationary measure p_{n} on \mathscr{A}^{n} is ergodic if and only if there exists an ergodic transformation T such that (2.1) holds.

Sketch of proof. If p_{n} is not ergodic, then some union of sets $A_{n}(x)$ will produce a proper invariant set for every induced transformation T. Conversely if p_{n} is ergodic there is an n-dependent ergodic Markov extension. This is the extension obtained by taking for each $m>n$ the stationary extension p_{m} of p_{m-1} with maximal entropy, $-\sum_{x \in \mathscr{A}} p_{m}(x) \ln p_{m}(x)$.
3. Unique minimal extensions. In this section we prove the following.
3.1. Theorem. Let p_{n} be an ergodic stationary measure on \mathscr{A}^{n} such that $N_{n} \leqq N_{n-1}+1$. Then there exists a unique ergodic stationary extension of p_{n} to \mathscr{A}^{n+1} such that $N_{n+1} \leqq N_{n}+1$.

Of course, $N_{n} \geqq N_{n-1}$, and if $N_{n}=N_{n-1}$, then any ergodic measure preserving transformation T determining p_{n} must be a rotation of N_{n} points: $X=$ $\left\{1, \ldots, N_{n}\right\}, T(k)=k+1 \bmod \left(N_{n}\right)$. For the case $N_{n}=N_{n-1}+1$, we shall use the following.
3.2. Lemma. Let p_{n} be an ergodic stationary extension of p_{n-1} such that $N_{n}=N_{n-1}+1$, and let T be an ergodic measure preserving transformation such that (2.1) holds. Then there exist non-negative integers r, s, and t with $s>0$ and a partition $\alpha=\left(A_{1}, \ldots, A_{r+s}, B_{1}, \ldots, B_{s}, C_{1}, \ldots, C_{t}\right)$ such that

$$
\begin{aligned}
& T^{-1}\left(A_{i}\right)=A_{i+1}, \quad 1 \leqq i<r+s \\
& T^{-1}\left(B_{i}\right)=B_{i+1}, \quad 1 \leqq i<s \\
& T^{-1}\left(A_{r+s} \cup B_{s}\right)=C_{1} \\
& T^{-1}\left(C_{i}\right)=C_{i+1}, \quad 1 \leqq i<t \\
& T^{-1}\left(C_{t}\right)=A_{1} \cup B_{1} .
\end{aligned}
$$

Proof of lemma. By (2.2) for every $x \in S_{n-1}$ there exist a_{x} and $b_{x} \in \mathscr{A}$ such that $\left(a_{x}, x\right)$ and $\left(x, b_{x}\right) \in S_{n}$. Conversely if $\left(a_{x}, x\right)$ or $\left(x, b_{x}\right) \in S_{n}$, then $x \in S_{n-1}$. Since $N_{n}=N_{n-1}+1$, there exist unique x_{0} and $y_{0} \in S_{n-1}$ and distinct $b_{x_{0}}, b_{x_{0}}^{\prime} \in \mathscr{A}$ (resp. distinct $\left.a_{y_{0}}, a_{y_{0}}^{\prime} \in \mathscr{A}\right)$ such that ($x_{0}, b_{x_{0}}$) and ($x_{0}, b_{x_{0}}^{\prime}$) (resp. ($a_{y_{0}}, y_{0}$) and $\left(a_{y}^{\prime}, y_{0}\right)$) are in S_{n}. If $x \notin\left\{x_{0}, y_{0}\right\}$, then a_{x} and b_{x} are uniquely determined. Suppose now that $x=\left(a_{1}, \ldots, a_{n-1}\right) \in S_{n-1}$ and $x^{\prime}=(x, b) \in S_{n}$. Then

$$
\begin{gathered}
T^{-1}\left(A_{n}\left(x^{\prime}\right)\right)=\bigcap_{k=1}^{n-1} T^{-k}\left(A\left(a_{k}\right)\right) \cap T^{-n}(A(b)) \\
\subseteq \bigcap_{k=2}^{n} T^{1-k}\left(A\left(a_{k-1}\right)\right)=\bigcup_{a \in \mathscr{A}} A(a, x)
\end{gathered}
$$

The fact that both $\left\{A(x): x \in S_{n}\right\}$ and $\left\{T^{-1}(A(x)): x \in S_{n}\right\}$ are partitions yields the following relations for $x \in S_{n-1}$.

$$
\begin{align*}
& T^{-1}\left(A\left(x, b_{x}\right)\right)=A\left(a_{x}, x\right) \quad \text { if } \quad x \notin\left\{x_{0}, y_{0}\right\} \\
& T^{-1}\left(A\left(x, b_{x}\right)\right)=A\left(a_{y_{0}}, x\right) \quad A\left(a_{y_{0}}^{\prime}, x\right) \quad \text { if } \quad x=y_{0} \neq x_{0} \\
& T^{-1}\left(A\left(x, b_{x_{0}}\right) \cup A\left(x, b_{x_{0}}^{\prime}\right)\right)=A(a, x) \quad \text { if } \quad x=x_{0} \neq y_{0} \tag{3.3}\\
& T^{-1}\left(A\left(x, b_{x_{0}}\right) \cup A\left(x, b_{x_{0}}^{\prime}\right)\right)=A\left(a_{y_{0}}, x\right) \cup A\left(a_{y_{0}}^{\prime}, x\right) \quad \text { if } \quad x=x_{0}=y_{0} .
\end{align*}
$$

If there is a chain D_{1}, \ldots, D_{k} of sets $A(x)$ such that $T^{-1}\left(D_{i}\right)=D_{i+1}$ for $1 \leqq i<k$ and $T^{-1}\left(D_{k}\right)=D_{1}$, then by ergodicity $k=N_{n}$ and the theorem is proved with $A_{1}=D_{1}, r=k$, and $s=t=0$. Otherwise there exists a finite number of chains of maximal length of the form D_{1}, \ldots, D_{k} where $T^{-1}\left(D_{i}\right)=$ D_{i+1} for $1 \leqq i<k$. By (3.3) D_{k} must be one of the at most three sets $A\left(x_{0}, b_{x_{0}}\right)$, $A\left(x_{0}, b_{x_{0}}^{\prime}\right)$, and $A\left(y_{0}, b_{y_{0}}\right)$. Thus there are at most three such chains. If $x_{0} \neq y_{0}$, then set $C_{1}=D_{1}$ where $D_{k}=A\left(y_{0}, b_{y_{0}}\right), A_{1}$ and B_{1} are defined to be the first elements of the other two chains. If $x_{0}=y_{0}$, then there are only two possible chains, and the lemma is completed by setting $t=0$. (In this case $\left.T^{-1}\left(A_{r+s} \cup B_{s}\right)+A_{1} \cup B_{1}.\right)$

Proof of Theorem 3.1. Suppose $N_{n}=N_{n-1}+1$. Then the partition $\bigvee_{i=1}^{n} T^{1-i} \alpha$ is of the form $\left(A_{1}, \ldots, A_{r+s}, B_{1}, \ldots, B_{s}, C_{1}, \ldots, C_{t}\right)$ given by Lemma 3.2. The partition $\bigvee_{\substack{n=1 \\ n+1}} T^{1-k} \alpha$ then consists of the following sets:
$A_{1}, \ldots, A_{r+s}, T^{-1}\left(A_{r+s}\right), B_{1}, \ldots, B_{s}, T^{-1}\left(B_{s}\right), C_{2}, \ldots, C_{t}$ if $t \neq 0$. In this case $N_{n+1}=N_{n}+1$. If $t=0$, then $\bigvee_{k=1}^{n+1} T^{1-k} \alpha$ consist of the following sets:

$$
\begin{gathered}
A_{2}, \ldots, A_{r+s}, B_{2}, \ldots, B_{s}, \quad \text { and } \\
A_{1} \cap T^{-1}\left(A_{r+s}\right), A_{1} \cap T^{-1}\left(B_{s}\right), B_{1} \cap T^{-1}\left(A_{r+s}\right), B_{1} \cap T^{-1}\left(B_{s}\right) .
\end{gathered}
$$

If $N_{n+1} \leqq N_{n}+1$, then at least one of these last four sets must have probability 0 . Let $p=P\left(A_{1}\right)$. Then $P\left(B_{1}\right)=[1-(r+s) p] / s$. Set $P\left(A_{1} \cap T^{-1}\left(A_{r+s}\right)\right)=\alpha$. Then

$$
\begin{aligned}
& P\left(A_{1} \cap T^{-1}\left(A_{r+s}\right)\right)=\alpha \\
& P\left(A_{1} \cap T^{-1}\left(B_{s}\right)\right)=p-\alpha \\
& P\left(B_{1} \cap T^{-1}\left(A_{r+s}\right)\right)=p-\alpha \\
& P\left(B_{1} \cap T^{-1}\left(B_{s}\right)\right)=\alpha+(1-(r+2 s) p) / s
\end{aligned}
$$

Ergodicity requires that $\alpha \neq p$. Thus either $\alpha=0$ or $\alpha=((r+2 s) p-1) / s$. If $(r+2 s) p=1$, then $N_{n+1}=N_{n}$. Otherwise $\alpha=0$ or $((r+2 s) p-1) / s$ according as $((r+2 s) p-1) / s$ is <0 or >0. Thus there is a unique choice of α and the theorem is proved.
3.4. Corollary. Let p_{n} be as in Theorem 3.1 and suppose in addition that some $p_{n}(x)$ is irrational. Then there exists a unique sequence of ergodic stationary extensions p_{n+1}, p_{n+2}, \ldots such that $N_{m}=N_{n}+m-n$.

Proof. If in some extension p_{m}, given inductively by Theorem 3.1, $N_{m}=$ N_{m-1}, then all probabilities must be rational which is a contradiction. Thus $N_{m}=N_{m-1}+1$ for all $m>n$.
4. Stacking Methods. In this section we describe the transformations of Section 3 in terms of stacking methods. For an excellent introduction to these methods the reader is refered to Friedman (1970).

We shall define a measure preserving transformation T on $[0,1]$ by inductively extending the domain of T. At step n we suppose that $\alpha=\left(A_{1}, \ldots, A_{r}\right.$, $\left.B_{1}, \ldots, B_{s}\right)$ is a measurable partition of [0,1] such that $\lambda\left(A_{i}\right)=\lambda\left(A_{j}\right)$ and $\lambda\left(B_{i}\right)=\lambda\left(B_{j}\right)$ for all i and j where λ is Lebesgue measure. T is defined on $\bigcup_{k=1}^{r-1} A_{k} \cup \bigcup_{k=1}^{s-1} B_{k}$ by mapping A_{k} (resp. B_{k}) onto A_{k+1} (resp. B_{k+1}) in a measure preserving manner. Figure 4.1 describes this situation.

Suppose A_{1}, \ldots, A_{r} is the stack with $\lambda\left(A_{1}\right) \leqq \lambda\left(B_{1}\right)$. Then T is extended to A_{r} by mapping it into B_{1} in a measure preserving manner. Thus the B-stack is divided into two stacks of "widths" $\lambda\left(A_{1}\right)$ and $\lambda\left(B_{1}\right)-\lambda\left(A_{1}\right)$, and the stack of width $\lambda\left(A_{1}\right)$ is placed on top of the A-stack (cf. Fig. 4.1).

Figure 4.1
If $\lambda\left(A_{1}\right)$ is rational, this procedure will eventually terminate in a single stack after $\lambda\left(A_{1}\right)=\lambda\left(B_{1}\right)$. If $\lambda\left(A_{1}\right)$ is irrational, then the procedure will continue indefinitely, defining T on all $[0,1]$ by induction.

If we start initially with two stacks, $\alpha=\left(A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{s}\right)$, then it is easily seen that the number of sets in $\bigvee_{k=1}^{n} T^{1-k} \alpha$ is $r+s+n$. Thus these transformations are the same as those determined by Theorem 3.1. Moreover, Lemma 3.2 proves that any transformation determined by Theorem 3.1 is the same as one obtained by the above stacking method.

This stacking method can sometimes be reversed. Let $\alpha=$ $\left(A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{s}\right)$ as above, and suppose that $r>s$. Then set $\beta=$ $\left(A_{1}, \ldots, A_{r-s}, A_{r-s+1} \cup B_{1}, \ldots, A_{r} \cup B_{s}\right)$. Then if we apply the above stacking method once to β, we obtain α, and moreover we have the relation $\alpha=$ $\bigvee_{k=0}^{s} T^{-k} \beta$. This reverse procedure can continue until the two stacks have the same height $(r=s)$. Thus we have the following
4.2. Theorem. Let T be a measure preserving transformation determined by Theorem 3.1. Let α be a partition and m an integer such that $N_{k+1}(\alpha)=$ $N_{k}(\alpha)+1$ for all $k \geqq m$. Then there exist integers r and n and a partition $\beta=\left(A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{r}\right)$ such that: $T^{-1}\left(A_{i}\right)=A_{i+1}$ and $T^{-1}\left(B_{i}\right)=B_{i+1}$ for $1 \leqq i<r, N_{k}(\beta)=2 r+k-1$ for all $k \geqq 1$, and $\bigvee_{i=0}^{n} T^{-i} \beta=\alpha$.
5. Rotations. In this section we shall identify the transformation determined by Theorem 3.1.

Let r be a positive integer and denote the ergodic rotation on r points by T_{r}, i.e., $X_{r}=\{1, \ldots, r\}, \mathscr{B}_{r}=$ all subsets of $X_{r}, P_{r}(A)=r^{-1}$ times the number of points in A, and $T_{r}(x)=x+1 \bmod (r)$.

Next let b be an irrational number in $[0,1)$ and denote the rotation through an angle b by T_{b}, i.e., $X_{b}=[0,1), \mathscr{B}_{b}=$ the Borel sets of $X_{b}, P_{b}=$ Lebesgue measure, and $T_{b}(x)=x+b \bmod (1)$.

Finally set $T=T_{r} \times T_{b}$, i.e., $T(x, y)=\left(T_{r}(x), T_{b}(y)\right)$ for $x \square X_{r}$ and $y \in X_{b}$. Consider the partition $\beta=\left\{A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{r}\right\}$ where $A_{i}=\{i\} \times T_{b}[0, b)$ and $B_{i}=\{i\} \times T_{b}[b, 1)$. The transformation T is then an ergodic transformation with discrete spectrum (cf. Halmos (1956)).

By definition $T\left(A_{i}\right)=A_{i+1}$ and $T\left(B_{i}\right)=B_{i+1}$ for $1 \leqq i<r$. It is also easily seen that the partition $\bigvee_{k=1}^{n} T^{n-k} \beta$ consist of intervals separated by the points
$\left\{T^{i}(1,0): 0 \leqq i \leqq 2 r+n-1\right\}$. Thus β is as in Theorem 4.2, and we have
5.1. Theorem. Let T be a measure preserving transformation, and α a finite partition such that $\bigvee_{k=0}^{\infty} T^{-k} \alpha$ generates the σ algebra \mathscr{B}. Let N be an integer such that for all $n>N, N_{n} \leqq N_{n-1}+1$ and p_{n} is ergodic. Then T is an ergodic transformation with discrete spectrum. The group of eigenvalues has at most two generators, $e^{2 \pi 0 \lambda}$ and $e^{2 \pi i \mu}$, where λ is rational and μ is irrational. Conversely for any ergodic measure preserving transformation with such a discrete spectrum, there exists a partition α with the above properties.

Remarks. Another problem considered by Hobby and Ylvisaker was, starting from an arbitrary stationary measure p_{n} on \mathscr{A}^{n} one could extend it in such a way as to eventually have a small or no increase in N_{n}. Without insisting on the ergodicity of the extention, they show that one can always do this. However, because of the nonergodicity, this solution is not too interesting.

Consider, for example, $\mathscr{A}=\{0,1\}$ with $p(1)=p$. An arbitrary stationary extension of p to \mathscr{A}^{2} has the form: $p_{2}(1,1)=p-r, p_{2}(1,0)=p_{2}(0,1)=r$, and $p_{2}(0,0)=1-p-r$ where r is any number between 0 and $\min \{p, 1-p\}$. If p_{2} has an ergodic stationary extension to some \mathscr{A}^{m} such that $N_{m} \leqq N_{m-1}+1$, then Lemma 3.2 would imply that every nonzero probability $p_{m}(z)$ is a rational affine function of any other, i.e. $p_{m}(z)=a+b p_{m}\left(z^{\prime}\right)$ where a and b are rational numbers. It follows that for a given number p there exists at most a countable number of r such that p_{2}, given above, has such an extension. Thus "most" stationary measures on \mathscr{A}^{2} do not have such extensions.

References

1. Friedman, N. A. (1970), Introduction to Ergodic Theory. Van Nostrand and Reinhold, New York.
2. Halmos, P. (1956), Ergodic Theory, Chelsea, New York.
3. Hobby, C. and Hlvisaker, N. (1965), Some structure theorems for stationary probability measures on finite state sequences. Anns. of Math. Statis. 35, 550-556.

Department of Mathematics
University of California
Santa Barbara, CA 93106
U.S.A.

[^0]: Received by the editors February 20, 1981.
 1980 AMS Subject Classification Numbers: 28D05; secondary 60G10.
 (C) Canadian Mathematical Society, 1983.

