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A FIXED POINT THEOREM IN JT-SPACE
AND RELATED RESULTS

E. TARAFDAR

The equivalence of a fixed point theorem and the Fan-Knaster-Kuratowski-
Mazurkiewicz theorem in //-space has been established. The fixed point theo-
rem is then applied to obtain a theorem on sets with //-convex sections, and also
results on minimax inequalities.

INTRODUCTION

Using the results of Horvath [6] and [7], Bardaro and Ceppitelli [2] have recently
proved a version of the Fan-Knaster-Kuratowski-Mazurkiewicz theorem [4] in ^-spaces
and also given some generalisations of Fan's well-known minimax inequalities.

In this note we have proved that their version is equivalent to a fixed point theorem
of a set valued mapping. Our result extends the result of the author [8] to the 17-space
situation. This necessitates the introduction of the JJ-convex hull of a subset in an
ff-space. Our definition of a H-KKM map is slightly different from theirs, but more in
line with the usual one in a vector space. From our fixed point theorem we have also
deduced a theorem on sets with H-convex sections which generalises a theorem of Fan
(Theorem 16, [4]), Browder [3] and the author [9]. Finally, we have shown that Bardaro
and Ceppitelli's generalisations of Fan's minimax inequalities can also be deduced from
our fixed point theorem.

Let X be a topological space and T(X) the family of finite nonempty subsets of
X. Let {FA} be a given family of nonempty contractible subsets of X, indexed by
A £ F{X) such that FA C FA>, whenever A C A'. The pair (X, {FA}) is called an
//-space. Given an .ff-space (X, {FA}), a nonempty subset D of X is called

(i) JJ-convex if FA C D for each finite subset A of D;
(ii) weakly 17-convex if FA D D is nonempty and contractible for each finite

subset A of D and
(iii) compactly open (closed) if D fl B is open (closed) in B for each compact

subset B of X. Also a subset K of X is called 27-compact if, for every
finite subset A of X, there exists a compact, weakly H-convex subset D
of X such that KUAcD.

Received 28 September 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 $A2.00+0.00.

133

https://doi.org/10.1017/S0004972700028239 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028239


134 E. Tarafdar [2]

In this paper by a finite subset we will always mean nonempty finite subset.

Let (X, {FA}) be an .H-convex space. Then given a nonempty subset K oi X,

we define the .H-convex hull of K, denoted by H-co K as

H-coK = H{D cX-.Dis H-convex and D D K}.

H — co K is .H-convex. Indeed if A is a finite subset of H — co K, then for every H-
convex subset D of X with D D K, we have H — coK C D and thus A C D. Hence
as D is .H-convex, FA C D and hence FA C H — co K. It also follows that H - co K
is the smallest 27-convex subset containing K.

In what follows, we will need the following characterisation of the convex hull.

LEMMA 1 . Let (X, {FA}) be an H-spa.ce and K be a nonempty subset of X.
Then H - co K = U{H - c o A: A is a Unite subset of K}.

PROOF: Let A be a finite subset of K. Then H — co A is the smallest .H-convex
subset containing A and H—co K is the smallest H-convex subset containing K. Thus
it follows that H — coA C H —coK. Hence U{27 — co A: A is a finite subset of K} C
H-coK.

Next, let \j{H — coA: A is a finite subset of K} = L. Then L contains if as a
subset and we prove that L is .H-convex.

Let B = {a^i, 22, . . . , xn} be a finite subset of L. Then there are finite subsets
n

Ai, A2, • • •, An of K such that Xi £ .H-co^,-, i = 1, 2, . . . , n. Obviously A' = (J Ai
«=i

is a finite subset of K, and Zj G H —coA1 for i = 1, 2, . . . , n. Therefore, as H — co A'
is .H-convex, FB C FAI C H — co A' C £. Thus L is an .ff-convex subset containing

K. Hence H-coK C U{J? -co^ . : J4 is a finite subset of i f } . D

Let {{Xa, {F^a}) : a £ / } be a family of JT-spaces where / is a finite or infinite

index set. Let Jf = J~J Xa be the product space with product topology and for each

a G / , let Pa: X —» Xa be the projection of X onto Xa. For any finite subset A of

X, we set F A = II ^ o where Aa = Pa(-4) for each a£ I.
06/

Since for each a £ / , i ^ a ^s contractible, it is easy to see that FA is contractible.
[To see this, let for each a £ I, FAa be contractible to x°a £ Xa through the homotopy
ha : Aa x [0, 1] —+ Aa, that is ha is continuous, ha(xa, 1) = xa for all xa € A a and
/ i o ( i a i 0) = x° for all x a £ Aa. Then the mapping fe : A x [0, 1] —» A defined by
h(x, t) = Y\ ^ ( ^ a i i) is clearly a homotopy map and A is contractible to Y[ x°a £ X

where Pa(x) = xa]. Moreover if A and B are two finite subsets of X with A C B,

then for each a £ / , P Q ( J 4 ) C P Q ( B ) , that is, Aa C -Ba and consequently FAa C -Fa,,.
Hence FA = \[ FAa C \[ FBa = FB. Thus {X, {FA}) is an tf-space.
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[3] A fixed point theorem in 2?-space 135

Now let Da be an H-convex subset of Xa for each a £ I ; then - 0 = 1 1 Da is

an iT-convex subset of X. To see this let A be a finite subset of D. Then for each
a € I, Aa = Pa(A) is a finite subset of Da and FAa C Da as Da is 17-convex. Hence

Then we have proved the following:

LEMMA 2 . The product of any number of H-spaces is an H-space and the prod-
uct of H-convex subsets is H-convex. U

A set valued mapping T: X —» 2X is said to be 27-KKM if for each finite subset
A of X, H-coAC U ^ ( i ) .

x£A

We should point out that in [2] T is called il-KKM if for each finite subset A of
X, FA C U T{x). Thus if T is 2T-KKM in our sense, then T is .ff-KKM in the sense

x€A
of [2].

The following theorem is proved by Bardaro and Ceppitelli [2].

THEOREM 1 . Let {X, {FA}) be an H-space and T: X -> 2X an H-KKM set

valued mapping such that

(a) for x € X, T(x) is compactly closed;

(b) there is a compact subset L of X and an H-compact subset K of X

such that for every weakly H-convex subset D with K C D C X, we

have

[){T(x)nD)cL.
x€D

Then

x&X

In what follows we prove that this theorem is equivalent to the following fixed point
theorem:

THEOREM 2 . Let (X, {FA}) be an H-space and f: X -> 2X be a set-valued

mapping such that

(i) for each x £ X, f(x) is non-empty and H-convex;

(ii) for each y € X, f~l(y) = {x € X : y € f(x)} contains a compactly open

subset 0y of X (0y could be empty for some y);
(iii) |J 0x =X;and

(iv) there exists a compact subset L of X and an H-compact subset K of

X such that for every weakly H-convex subset D with K C D C X, we
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Aave

f](OlnD)CL,
x€D

where 0% denotes the complement of Ox in X.

Then there is a point XQ £ X such that XQ £ f{xo).

PROOF: We first prove that Theorem 1 implies Theorem 2. Let the conditions
of Theorem 2 hold. For each x £ X, we set T(x) — 0%. If for each finite subset A
of X, H -coA C U T(x), then for each finite subset A of X, FA C U T{x) as

x£A x€A

H — co A is an fl'-convex subset. Thus the set-valued mapping T: X —* 2X would
satisfy all the conditions of Theorem 1 and hence f] T(x) r£ 0 which would contradict

xex
the condition (111). Hence there must exist at least one finite subset A of X such that
H—coA<£ \J T(x), that is, there exists a point y £ H—co A such that y £ |J T(x),

xeA x&A

that is, y £ [r(s)]c for each x £ A, that is, y £ Ox C f~1(x) for each x £ A. Hence
x 6 f(y) for each x £ A, that is, A C f{y)- But as /(y) is fT-convex, H — coA C /(y)
which implies that y £ f{y) •

Next we prove that Theorem 2 implies Theorem 1. Assume that the conditions of
Theorem 1 hold. If possible, suppose that |") T(x) — 0. Then we can define a set-

x€X

valued mapping g: X —* 2X by g(y) = {x £ X : y £ T(x)}. Clearly g(y) is a nonempty
subset of X for each y £ Y. Also for each x £ X, g~x(x) = (T(x))c — Ox,say
which is open subset of X. Let / : X —» 2 be the set-valued mapping defined by
f(y) = H — cog(y) for each y £ X. Thus for each y £ X, f(y) is an ZT-convex subset
of X with g(y) C /(y), and for each x £ X, / ^ ( z ) D S^C2) = Ox. Moreover,
H T{x) = 0 implies |J Ox = X. Finally, f| (0= D D) = fl (r(x) n D) C i .

i£JT r6X x€D x€D

Hence the mapping / satisfies the conditions of the Theorem 2. Thus there exists a

point XQ £ X such that Xo £ /(^o) = H —cog(x0), that is, there is by Lemma 1 a

finite subset A = {atj, 12, •••, ^n} of <7(xo) such that XQ £ H —coA C /(a;o)- But
n

Xi £ ^(a'o), * = 1, 2, . . . , n => i 0 ^ r ( xO> * = 1, 2, . . . , n , that is, z0 £ U ^ ( x i ) '
«=i

that is, H - c0A £ [j T(x) which contradicts that T is H-K.KM. This proves our
x£A

assertion. 0
Our next theorem generalises a theorem of Fan (Theorem 16, [4]), Browder [3] and

the author [9].

THEOREM 3 . Let Xu X2, ..., Xn be n^2 H-spaces and let X = f[ Xj.

Let {Aj}"=l and {Bj}"=1 be two families of subsets of X having the following
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properties:

(a) Let Xj = \\ X{ ajJd let Xj denote a generic element of Xj. For each

j = 1, 2, . . . , n and for each point Xj G Xj , the set
BJ{XJ) — {XJ G X J : [XJ, XJ] G Bj} is nonempty and the set
AJ(XJ) = {XJ G X J : [XJ, £j] G Aj} contains the H -convex hull of BJ(XJ) .

(b) For each j = 1,2, . . . , n and for each point XJ G Xj , the set
BJ[XJ) = {XJ G Xj: [XJ, Xj] G Bj} is compactly open in Xj.

(c) There exists an H-compact subset Xo of X such that f] 0% is compact

n

where Ox = f] {BJ(XJ) x Xj} and Xj is the projection of x into Xj for

each j = 1, 2, ... ,n.

Then

PROOF: We define two set-valued mappings / : X -» 2X and g: X -> 2X by
n n

f(x) = I! 3—coBj(xj) and g(x) = ]~[ B(XJ) for each x = [XJ, XJ] E X where XJ and
i=i i=i

Xj are respectively the projections of x into Xj and Xj . Clearly for x 6 X, by Lemma

2 / (x) is JJ-convex, and by (a) g(x) ^ 0 and f(x) D g(x). For each y 6 X, we consider

the set s - 1 ^ ) = {s £ X : 1/ G 5 ( z ) } . Now x G ff-Hl/) <=> V = (l/i, 2/2, •••,3/n) €

(/(s) = n J?j(x,-) «• y,- G JBjfx,-) for each j = 1, 2, . . . , n <=> £_,- G Bj{yj) for each
i=i

n
j = 1, 2, . . . , n. Thus for each y £ X, g~x(y) = f\ {Bj(yj) x Xj} = Os, which is

i=i
compactly open. To show this it would suffice that Bj(yj) x Xj is compactly open.
Let if be a compact subset of X. Let Pj(K) = K, and Pj(K) - K, where Pj

and Pj are respectively the projections of X onto Xj and Jf j . Then iif;- and Kj

are compact subsets of Xj and JTy respectively and (Bj(yj) x Xj) D (iifj x Kj) =

(Bj(yj)nKjj x Kj. This shows that (BJ(J/J) x Xj) is open in Kj x Kj by virtue

of (b). Now since Kj x Kj C K, it follows that Bj(yj) x Xj is open in K. Now
since g(x) C f{x) for each i 6 i , it follows that for each y G X, f~1(y) contains a
compactly open subset g~1(y) = Oy. Furthermore |J Oy — X. [For let x G X. Since

vex
5(35) j£ 0, p(a:) contains a point y G X. Thus z G fl-1(j/) = Oy]. Finally by (e) there
exists an 27-compact subset Xo of X such that f] 0% = L is compact. Clearly with

this pair (Xo, L) the condition (iv) of Theorem 2 is satisfied. Thus by Theorem 2 there

https://doi.org/10.1017/S0004972700028239 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028239


138 E. Tarafdar [6]

exists a point x £ X such that

by ( a ) , t ha t is, Xj G AJ(XJ) for j = 1, 2, . . . , n , tha t is [x,-, s3] G Aj for j =

1, 2, . . . , n . Thus x £ C\ Aj. D
i=i

REMARK. The theorem dual, in the sense of [11], to the above theorem can similarly

be stated and proved.

Bardaro and Ceppitelli [2] proved some generalisations of Fan's mini max inequal-

ities in Riesz space. We prove a variant of one of these (Theorem 3, [2]) by means of

our Theorem 2.

Let (E, C) be a Riesz space, where C is the positive cone, provided with a linear,

order compatible topology (for example, see [5]) and C, the interior of C is assumed

to be nonempty.

THEOREM 4 . Let {X, {FA}) be an H-space and f,g: X x X -» (E, C) two
functions such that with a given A G E the following conditions hold:

(a) g(x, y) < f(x, y) for all x,y £ X;

(b) f ( x , x ) <£ X + C for all x £ X ;
o

(c) for every y G X, the set {x G X: f(x, y) G A + C} is H-convex;
o

(d) for every x G X, the set {y G X : g(x, y) € X + C} is compactly open;

(e) there exists an H-compact subset Xg of X such that {y G X : g(x, y) £
o

X + C, for each x G Xo} is a compact subset of X.
o

Then the set S = {y: g(x, y) £ X + C for all x G X} is a nonempty compactly closed

subset of X.

PROOF: For each x G X, let F(x) = {y G X: f(x, y) £ X + C} and G(x) = {y G
O

X- 9(x> V) £ A + C } . Then by (d), for each x G X, G(x) is compactly closed. It is
dear that 5 = |~) G(x) and 5 is compactly closed. So we need to show that 5 ^ 0 .

If possible, let 5 = 0. Then for each y G X, the set h(y) = {x G X: y $ G(x)} -
o

{x G X: g(x, y) G A + C} is non-empty. Hence for each y G X, the set

Jb(y) = {x G X: f(x, y) G A + C) D h(y) = {x G X: g(x, y) G A + C}.

The last inclusion follows from the inclusion G(x)c C F(x)c which in turn follows from
o

(b). [To see this let y ^ G(x), that is, g(x, y) G X + C. Then there is a neighbourhood
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V of O in E such that g(x, y)+V C A + C Now g(x, y) ^ f(x, y) =>• A < g(x, y)+v <

f(x, y)+v for each u £ V. Thus f(x, y) + V C A + C, that is y £ F(x)]. Now for
each x £ X,

h-^x) = {yeX:xe % ) } = {y£X: g(x, y) € A + C} = 0x,

say, is compactly open by (d). Thus for the set-valued mapping k: X —+ 2 , fc(y) is
nonempty and .ff-convex (by (c)) and for each x £ X, k~1(x) contains a compactly
open subset Ox = h~1(x). [That h~1(x) C fc"1^) follows from the fact that h(x) C
Jfc(x)]. Also |J h-^x) = U Ox = X . [To see this let y G X . Since % ) ^ 0, we

can assume x € /i(y). Then y £ ft-1(z) = Ox]. Finally

(e) =•
16X0 »€X0

say, is compact. Thus the pair (L, XQ) satisfies the condition (iv) of Theorem 2 for the
mapping k. Hence this mapping k: X —» 2X fulfils all the conditions of Theorem 2

o

and, therefore, there is a point xo £ X such that XQ £ k(xo), that is, /(xo> zo) £ A + C
which contradicts (b). Thus we have proved the theorem. U

REMARKS. In the same way we can deduce the Theorem 4 and Corollary 1 of [2] from
our Theorem 2. The Theorem 4 here includes a theorem of Allen [1] and also of Tarafdar
[10].
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