BULL. AUSTRAL. MATH. SOC. Vol. 42 (1990) [133-140]

A FIXED POINT THEOREM IN *H*-SPACE AND RELATED RESULTS

E. TARAFDAR

The equivalence of a fixed point theorem and the Fan-Knaster-Kuratowski-Mazurkiewicz theorem in H-space has been established. The fixed point theorem is then applied to obtain a theorem on sets with H-convex sections, and also results on minimax inequalities.

INTRODUCTION

Using the results of Horvath [6] and [7], Bardaro and Ceppitelli [2] have recently proved a version of the Fan-Knaster-Kuratowski-Mazurkiewicz theorem [4] in H-spaces and also given some generalisations of Fan's well-known minimax inequalities.

In this note we have proved that their version is equivalent to a fixed point theorem of a set valued mapping. Our result extends the result of the author [8] to the H-space situation. This necessitates the introduction of the H-convex hull of a subset in an H-space. Our definition of a H-KKM map is slightly different from theirs, but more in line with the usual one in a vector space. From our fixed point theorem we have also deduced a theorem on sets with H-convex sections which generalises a theorem of Fan (Theorem 16, [4]), Browder [3] and the author [9]. Finally, we have shown that Bardaro and Ceppitelli's generalisations of Fan's minimax inequalities can also be deduced from our fixed point theorem.

Let X be a topological space and $\mathcal{F}(X)$ the family of finite nonempty subsets of X. Let $\{F_A\}$ be a given family of nonempty contractible subsets of X, indexed by $A \in \mathcal{F}(X)$ such that $F_A \subset F_{A'}$, whenever $A \subset A'$. The pair $(X, \{F_A\})$ is called an H-space. Given an H-space $(X, \{F_A\})$, a nonempty subset D of X is called

- (i) *H*-convex if $F_A \subset D$ for each finite subset A of D;
- (ii) weakly *H*-convex if $F_A \cap D$ is nonempty and contractible for each finite subset *A* of *D* and
- (iii) compactly open (closed) if $D \cap B$ is open (closed) in B for each compact subset B of X. Also a subset K of X is called H-compact if, for every finite subset A of X, there exists a compact, weakly H-convex subset D of X such that $K \cup A \subset D$.

Received 28 September 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

E. Tarafdar

In this paper by a finite subset we will always mean nonempty finite subset.

Let $(X, \{F_A\})$ be an *H*-convex space. Then given a nonempty subset *K* of *X*, we define the *H*-convex hull of *K*, denoted by $H - \operatorname{co} K$ as

$$H - \operatorname{co} K = \cap \{ D \subset X : D \text{ is } H \text{-convex and } D \supset K \}.$$

 $H-\operatorname{co} K$ is *H*-convex. Indeed if *A* is a finite subset of $H-\operatorname{co} K$, then for every *H*-convex subset *D* of *X* with $D \supset K$, we have $H-\operatorname{co} K \subset D$ and thus $A \subset D$. Hence as *D* is *H*-convex, $F_A \subset D$ and hence $F_A \subset H - \operatorname{co} K$. It also follows that $H - \operatorname{co} K$ is the smallest *H*-convex subset containing *K*.

In what follows, we will need the following characterisation of the convex hull.

LEMMA 1. Let $(X, \{F_A\})$ be an *H*-space and *K* be a nonempty subset of *X*. Then $H - \operatorname{co} K = \bigcup \{H - \operatorname{co} A : A \text{ is a finite subset of } K\}$.

PROOF: Let A be a finite subset of K. Then $H - \operatorname{co} A$ is the smallest H-convex subset containing A and $H - \operatorname{co} K$ is the smallest H-convex subset containing K. Thus it follows that $H - \operatorname{co} A \subset H - \operatorname{co} K$. Hence $\cup \{H - \operatorname{co} A : A \text{ is a finite subset of } K\} \subset H - \operatorname{co} K$.

Next, let $\cup \{H - \operatorname{co} A : A \text{ is a finite subset of } K\} = L$. Then L contains K as a subset and we prove that L is H-convex.

Let $B = \{x_1, x_2, ..., x_n\}$ be a finite subset of L. Then there are finite subsets $A_1, A_2, ..., A_n$ of K such that $x_i \in H - \operatorname{co} A_i, i = 1, 2, ..., n$. Obviously $A' = \bigcup_{i=1}^n A_i$ is a finite subset of K, and $x_i \in H - \operatorname{co} A'$ for i = 1, 2, ..., n. Therefore, as $H - \operatorname{co} A'$ is H-convex, $F_B \subset F_{A'} \subset H - \operatorname{co} A' \subset L$. Thus L is an H-convex subset containing K. Hence $H - \operatorname{co} K \subset \cup \{H - \operatorname{co} A: A \text{ is a finite subset of } K\}$.

Let $\{(X_{\alpha}, \{F_{A_{\alpha}}^{\alpha}\}): \alpha \in I\}$ be a family of *H*-spaces where *I* is a finite or infinite index set. Let $X = \prod_{\alpha \in F} X_{\alpha}$ be the product space with product topology and for each $\alpha \in I$, let $P_{\alpha}: X \to X_{\alpha}$ be the projection of *X* onto X_{α} . For any finite subset *A* of *X*, we set $F_{A} = \prod_{\alpha \in I} F_{A_{\alpha}}$ where $A_{\alpha} = P_{\alpha}(A)$ for each $\alpha \in I$.

Since for each $\alpha \in I$, $F_{A_{\alpha}}$ is contractible, it is easy to see that F_A is contractible. [To see this, let for each $\alpha \in I$, $F_{A_{\alpha}}$ be contractible to $x^0_{\alpha} \in X_{\alpha}$ through the homotopy $h_{\alpha} : A_{\alpha} \times [0, 1] \to A_{\alpha}$, that is h_{α} is continuous, $h_{\alpha}(x_{\alpha}, 1) = x_{\alpha}$ for all $x_{\alpha} \in A_{\alpha}$ and $h_{\alpha}(x_{\alpha}, 0) = x^0_{\alpha}$ for all $x_{\alpha} \in A_{\alpha}$. Then the mapping $h : A \times [0, 1] \to A$ defined by $h(x, t) = \prod_{\alpha \in I} h_{\alpha}(x_{\alpha}, t)$ is clearly a homotopy map and A is contractible to $\prod_{\alpha} x^0_{\alpha} \in X$ where $P_{\alpha}(x) = x_{\alpha}$]. Moreover if A and B are two finite subsets of X with $A \subset B$, then for each $\alpha \in I$, $P_{\alpha}(A) \subset P_{\alpha}(B)$, that is, $A_{\alpha} \subset B_{\alpha}$ and consequently $F_{A_{\alpha}} \subset F_{B_{\alpha}}$. Hence $F_A = \prod_{\alpha \in I} F_{A_{\alpha}} \subset \prod_{\alpha \in I} F_{B_{\alpha}} = F_B$. Thus $(X, \{F_A\})$ is an H-space. Now let D_{α} be an *H*-convex subset of X_{α} for each $\alpha \in I$; then $D = \prod_{\alpha \in I} D_{\alpha}$ is an *H*-convex subset of *X*. To see this let *A* be a finite subset of *D*. Then for each $\alpha \in I$, $A_{\alpha} = P_{\alpha}(A)$ is a finite subset of D_{α} and $F_{A_{\alpha}} \subset D_{\alpha}$ as D_{α} is *H*-convex. Hence $F_{A} = \prod_{\alpha \in I} F_{A_{\alpha}} \subset \prod_{\alpha \in I} D_{\alpha} = D$.

Then we have proved the following:

LEMMA 2. The product of any number of H-spaces is an H-space and the product of H-convex subsets is H-convex.

A set valued mapping $T: X \to 2^X$ is said to be *H*-KKM if for each finite subset A of X, $H - \operatorname{co} A \subset \bigcup_{x \in A} T(x)$.

We should point out that in [2] T is called H-KKM if for each finite subset A of $X, F_A \subset \bigcup_{x \in A} T(x)$. Thus if T is H-KKM in our sense, then T is H-KKM in the sense of [2].

The following theorem is proved by Bardaro and Ceppitelli [2].

THEOREM 1. Let $(X, \{F_A\})$ be an *H*-space and $T: X \to 2^X$ an *H*-KKM set valued mapping such that

- (a) for $x \in X$, T(x) is compactly closed;
- (b) there is a compact subset L of X and an H-compact subset K of X such that for every weakly H-convex subset D with $K \subset D \subset X$, we have

$$\bigcap_{x\in D} (T(x)\cap D)\subset L.$$

Then

$$\bigcap_{x\in X}T(x)\neq\emptyset.$$

In what follows we prove that this theorem is equivalent to the following fixed point theorem:

THEOREM 2. Let $(X, \{F_A\})$ be an *H*-space and $f: X \to 2^X$ be a set-valued mapping such that

- (i) for each $x \in X$, f(x) is non-empty and H-convex;
- (ii) for each $y \in X$, $f^{-1}(y) = \{x \in X : y \in f(x)\}$ contains a compactly open subset O_y of X (O_y could be empty for some y);
- (iii) $\bigcup_{x \in X} O_x = X$; and
- (iv) there exists a compact subset L of X and an H-compact subset K of X such that for every weakly H-convex subset D with $K \subset D \subset X$, we

have

$$\bigcap_{x \in D} \left(O_x^c \cap D \right) \subset L,$$

where O_x^c denotes the complement of O_x in X.

Then there is a point $x_0 \in X$ such that $x_0 \in f(x_0)$.

PROOF: We first prove that Theorem 1 implies Theorem 2. Let the conditions of Theorem 2 hold. For each $x \in X$, we set $T(x) = O_x^c$. If for each finite subset Aof X, $H - \operatorname{co} A \subset \bigcup_{x \in A} T(x)$, then for each finite subset A of X, $F_A \subset \bigcup_{x \in A} T(x)$ as $H - \operatorname{co} A$ is an H-convex subset. Thus the set-valued mapping $T: X \to 2^X$ would satisfy all the conditions of Theorem 1 and hence $\bigcap_{x \in X} T(x) \neq \emptyset$ which would contradict the condition (iii). Hence there must exist at least one finite subset A of X such that $H - \operatorname{co} A \notin \bigcup_{x \in A} T(x)$, that is, there exists a point $y \in H - \operatorname{co} A$ such that $y \notin \bigcup_{x \in A} T(x)$, that is, $y \in [T(x)]^c$ for each $x \in A$, that is, $y \in O_x \subset f^{-1}(x)$ for each $x \in A$. Hence $x \in f(y)$ for each $x \in A$, that is, $A \subset f(y)$. But as f(y) is H-convex, $H - \operatorname{co} A \subset f(y)$ which implies that $y \notin f(y)$.

Next we prove that Theorem 2 implies Theorem 1. Assume that the conditions of Theorem 1 hold. If possible, suppose that $\bigcap_{x \in X} T(x) = \emptyset$. Then we can define a set-valued mapping $g: X \to 2^X$ by $g(y) = \{x \in X : y \notin T(x)\}$. Clearly g(y) is a nonempty subset of X for each $y \in Y$. Also for each $x \in X$, $g^{-1}(x) = (T(x))^c = O_x$, say which is open subset of X. Let $f: X \to 2^X$ be the set-valued mapping defined by $f(y) = H - \cos g(y)$ for each $y \in X$. Thus for each $y \in X$, f(y) is an H-convex subset of X with $g(y) \subset f(y)$, and for each $x \in X$, $f^{-1}(x) \supset g^{-1}(x) = O_x$. Moreover, $\bigcap_{x \in X} T(x) = \emptyset$ implies $\bigcup_{x \in X} O_x = X$. Finally, $\bigcap_{x \in D} (O_x^c \cap D) = \bigcap_{x \in D} (T(x) \cap D) \subset L$. Hence the mapping f satisfies the conditions of the Theorem 2. Thus there exists a point $x_0 \in X$ such that $x_0 \in f(x_0) = H - \cos g(x_0)$, that is, there is by Lemma 1 a finite subset $A = \{x_1, x_2, \ldots, x_n\}$ of $g(x_0)$ such that $x_0 \in H - \operatorname{co} A \subset f(x_0)$. But $x_i \in g(x_0), i = 1, 2, \ldots, n \Rightarrow x_0 \notin T(x_i), i = 1, 2, \ldots, n$, that is, $x_0 \notin \bigcup_{i=1}^n T(x_i)$, that is, $H - c_0A \notin \bigcup_{x \in A} T(x)$ which contradicts that T is H-K.K.M. This proves our assertion.

Our next theorem generalises a theorem of Fan (Theorem 16, [4]), Browder [3] and the author [9].

THEOREM 3. Let $X_1, X_2, ..., X_n$ be $n \ge 2$ H-spaces and let $X = \prod_{j=1}^n X_j$. Let $\{A_j\}_{j=1}^n$ and $\{B_j\}_{j=1}^n$ be two families of subsets of X having the following properties:

- (a) Let X̂_j = ∏_{i≠j} X_i and let x̂_j denote a generic element of X̂_j. For each j = 1, 2, ..., n and for each point x̂_j ∈ X̂_j, the set B_j(x̂_j) = {x_j ∈ X_j: [x_j, x̂_j] ∈ B_j} is nonempty and the set A_j(x̂_j) = {x_j ∈ X_j: [x_j, x̂_j] ∈ A_j} contains the H-convex hull of B_j(x̂_j).
 (b) For each j = 1, 2, ..., n and for each point x_j ∈ X_j, the set
- $B_j(x_j) = \{ \widehat{x}_j \in \widehat{X}_j : [x_j, \widehat{x}_j] \in B_j \} \text{ is compactly open in } \widehat{X}_j.$
- (c) There exists an *H*-compact subset X_0 of *X* such that $\bigcap_{x \in X_0} O_x^c$ is compact

where $O_x = \bigcap_{j=1}^n \{B_j(x_j) \times X_j\}$ and x_j is the projection of x into X_j for each j = 1, 2, ..., n.

Then $\bigcap_{j=1}^n A_j \neq \emptyset$.

PROOF: We define two set-valued mappings $f: X \to 2^X$ and $g: X \to 2^X$ by $f(x) = \prod_{i=1}^n H - \operatorname{co} B_j(\widehat{x}_j) \text{ and } g(x) = \prod_{i=1}^n B(\widehat{x}_j) \text{ for each } x = [x_j, \widehat{x}_j] \in X \text{ where } x_j \text{ and } x_j$ \widehat{x}_j are respectively the projections of x into X_j and \widehat{X}_j . Clearly for $x \in X$, by Lemma 2 f(x) is *H*-convex, and by (a) $g(x) \neq \emptyset$ and $f(x) \supset g(x)$. For each $y \in X$, we consider the set $g^{-1}(y) = \{x \in X : y \in g(x)\}$. Now $x \in g^{-1}(y) \Leftrightarrow y = (y_1, y_2, \ldots, y_n) \in$ $g(x) = \prod_{i=1}^{n} B_{j}(\widehat{x}_{j}) \Leftrightarrow y_{j} \in B_{j}(\widehat{x}_{j})$ for each $j = 1, 2, ..., n \Leftrightarrow \widehat{x}_{j} \in B_{j}(y_{j})$ for each $j = 1, 2, \ldots, n$. Thus for each $y \in X$, $g^{-1}(y) = \bigcap_{j=1}^{n} \{B_j(y_j) \times X_j\} = O_y$, which is compactly open. To show this it would suffice that $B_i(y_i) \times X_j$ is compactly open. Let K be a compact subset of X. Let $\widehat{P}_i(K) = \widehat{K}_i$ and $P_i(K) = K_i$ where \widehat{P}_i and P_j are respectively the projections of X onto \widehat{X}_j and X_j . Then \widehat{K}_j and K_j are compact subsets of \widehat{X}_j and X_j respectively and $(B_j(y_j) \times X_j) \cap \left(\widehat{K}_j \times K_j\right) =$ $(B_j(y_j) \cap \widehat{K}_j) \times K_j$. This shows that $(B_j(y_j) \times X_j)$ is open in $\widehat{K}_j \times K_j$ by virtue of (b). Now since $\widehat{K}_j \times K_j \subset K$, it follows that $B_j(y_j) \times X_j$ is open in K. Now since $g(x) \subset f(x)$ for each $x \in x$, it follows that for each $y \in X$, $f^{-1}(y)$ contains a compactly open subset $g^{-1}(y) = O_y$. Furthermore $\bigcup_{y \in X} O_y = X$. [For let $x \in X$. Since $g(x) \neq \emptyset$, g(x) contains a point $y \in X$. Thus $x \in g^{-1}(y) = O_y$. Finally by (e) there exists an *H*-compact subset X_0 of X such that $\bigcap_{x \in X_0} O_x^c = L$ is compact. Clearly with this pair (X_0, L) the condition (iv) of Theorem 2 is satisfied. Thus by Theorem 2 there exists a point $x \in X$ such that

$$x \in f(x) = \prod_{j=1}^{n} H - \operatorname{co} B(\widehat{x}_j) \subset \prod_{j=1}^{n} A_j(\widehat{x}_j)$$

by (a), that is, $x_j \in A_j(\widehat{x}_j)$ for j = 1, 2, ..., n, that is $[x_j, \widehat{x}_j] \in A_j$ for j = 1, 2, ..., n. Thus $x \in \bigcap_{j=1}^n A_j$.

REMARK. The theorem dual, in the sense of [11], to the above theorem can similarly be stated and proved.

Bardaro and Ceppitelli [2] proved some generalisations of Fan's minimax inequalities in Riesz space. We prove a variant of one of these (Theorem 3, [2]) by means of our Theorem 2.

Let (E, C) be a Riesz space, where C is the positive cone, provided with a linear, order compatible topology (for example, see [5]) and C, the interior of C is assumed to be nonempty.

THEOREM 4. Let $(X, \{F_A\})$ be an *H*-space and $f, g: X \times X \to (E, C)$ two functions such that with a given $\lambda \in E$ the following conditions hold:

(a)
$$g(x, y) \leq f(x, y)$$
 for all $x, y \in X$;

- (b) $f(x, x) \notin \lambda + \mathring{C}$ for all $x \in X$;
- (c) for every $y \in X$, the set $\{x \in X : f(x, y) \in \lambda + \mathring{C}\}$ is H-convex;
- (d) for every $x \in X$, the set $\{y \in X : g(x, y) \in \lambda + \mathring{C}\}$ is compactly open;
- (e) there exists an H-compact subset X_0 of X such that $\{y \in X : g(x, y) \notin \lambda + \mathring{C}$, for each $x \in X_0\}$ is a compact subset of X.

Then the set $S = \{y: g(x, y) \notin \lambda + \overset{\circ}{C} \text{ for all } x \in X\}$ is a nonempty compactly closed subset of X.

PROOF: For each $x \in X$, let $F(x) = \{y \in X : f(x, y) \notin \lambda + \mathring{C}\}$ and $G(x) = \{y \in X : g(x, y) \notin \lambda + \mathring{C}\}$. Then by (d), for each $x \in X$, G(x) is compactly closed. It is clear that $S = \bigcap_{x \in X} G(x)$ and S is compactly closed. So we need to show that $S \neq \emptyset$. If possible, let $S = \emptyset$. Then for each $y \in X$, the set $h(y) = \{x \in X : y \notin G(x)\} = \{x \in X : g(x, y) \in \lambda + \mathring{C}\}$ is non-empty. Hence for each $y \in X$, the set

$$k(y) = \{x \in X : f(x, y) \in \lambda + \mathring{C}\} \supset h(y) = \{x \in X : g(x, y) \in \lambda + \mathring{C}\}.$$

The last inclusion follows from the inclusion $G(x)^c \subset F(x)^c$ which in turn follows from (b). [To see this let $y \notin G(x)$, that is, $g(x, y) \in \lambda + \mathring{C}$. Then there is a neighbourhood V of O in E such that $g(x, y) + V \subset \lambda + \mathring{C}$. Now $g(x, y) \leq f(x, y) \Rightarrow \lambda < g(x, y) + v \leq f(x, y) + v$ for each $v \in V$. Thus $f(x, y) + V \subset \lambda + \mathring{C}$, that is $y \notin F(x)$]. Now for each $x \in X$,

$$h^{-1}(x) = \{y \in X : x \in h(y)\} = \{y \in X : g(x, y) \in \lambda + C\} = O_x$$

say, is compactly open by (d). Thus for the set-valued mapping $k: X \to 2^X$, k(y) is nonempty and *H*-convex (by (c)) and for each $x \in X$, $k^{-1}(x)$ contains a compactly open subset $O_x = h^{-1}(x)$. [That $h^{-1}(x) \subset k^{-1}(x)$ follows from the fact that $h(x) \subset$ k(x)]. Also $\bigcup_{x \in X} h^{-1}(x) = \bigcup_{x \in X} O_x = X$. [To see this let $y \in X$. Since $h(y) \neq \emptyset$, we can assume $x \in h(y)$. Then $y \in h^{-1}(x) = O_x$]. Finally

(e)
$$\Rightarrow \bigcap_{x \in X_0} O_x^c = \bigcap_{x \in X_0} (h^{-1}(x))^c = \bigcap_{x \in X_0} \{y \in X : g(x, y) \notin \lambda + C\} = L,$$

say, is compact. Thus the pair (L, X_0) satisfies the condition (iv) of Theorem 2 for the mapping k. Hence this mapping $k: X \to 2^X$ fulfils all the conditions of Theorem 2 and, therefore, there is a point $x_0 \in X$ such that $x_0 \in k(x_0)$, that is, $f(x_0, x_0) \in \lambda + \overset{\circ}{C}$ which contradicts (b). Thus we have proved the theorem.

REMARKS. In the same way we can deduce the Theorem 4 and Corollary 1 of [2] from our Theorem 2. The Theorem 4 here includes a theorem of Allen [1] and also of Tarafdar [10].

References

- G. Allen, 'Variational inequalities, complementary problems and duality theorems', J. Math. Anal. Appl. 58 (1977), 1-10.
- [2] C. Bardaro and R. Ceppitelli, 'Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities', J. Math. Anal. Appl. 132 (1988), 484-490.
- F.E. Browder, 'Fixed point theory of multivalued mappings in topological vector spaces', Math. Ann. 177 (1968), 283-301.
- [4] K. Fan, 'Some properties of convex sets related to fixed point theorems', Math. Ann. 266 (1984), 519-537.
- [5] D.H. Fremlin, Topological Riesz spaces and Measure Theory (Cambridge Univ. Press, London, 1974).
- [6] C. Horvath, 'Point fixes et coincidences dans les espaces topologiques compacts contractiles', C.R. Acad. Sci. Paris 299 (1984), 519-521.
- [7] C. Horvath, 'Some results on multivalued mappings and inequalities without convexity', in Nonlinear and Convex Analysis, (Eds. B.L. Lin and S. Simons), pp. 99-106 (Marcel Dekker, 1989).

E. Tarafdar

- [8] E. Tarafdar, 'A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem', J. Math. Anal. Appl. 128 (1987), 475-479.
- [9] E. Tarafdar, 'A theorem concerning sets with convex sections', Indian J. Math. 31 (1989), 225-228.
- [10] E. Tarafdar, 'Variational problems via a fixed point theorem', Indian J. Math. 28 (1986), 229-240.
- [11] E. Tarafdar and T. Husain, 'Duality in fixed point theory of multivalued mappings with applications', J. Math. Anal. Appl. 63 (1978), 371-376.

Department of Mathematics The University of Queensland Queensland 4072 Australia