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Introduction

We begin with some background material. First, we need to establish the formalism
and definitions for the imaginary signals we will be shining on our imaginary
detectors. Second, we will describe general detector characteristics so we can judge
the merits of the various types as they are discussed. This discussion introduces
some common metrics: (1) the quantum efficiency, i.e., the fraction of the incoming
photon stream absorbed; (2) noise and the ratio of signal to noise; (3) the fidelity of
images produced by a detector array or similar arrangement; and (4) the speed of
response of a detector.

1.1 Radiometry

1.1.1 Concepts and Terminology

There are some general aspects of electromagnetic radiation that need to be defined
before we discuss how it is detected. Figure 1.1 illustrates schematically a photon
of light with terms used to describe it. One should imagine that time has been
frozen, but that the photon has been moving at the speed of light in the direction of
the arrow. We often discuss the photon in terms of wavefronts, lines marking the
surfaces of constant phase and hence separated by one wavelength.

As electromagnetic radiation, a photon has both electric and magnetic compo-
nents, oscillating in phase perpendicular to each other and perpendicular to the
direction of energy propagation. The amplitude of the electric field, its wavelength
and phase, and the direction it is moving characterize the photon. The behavior of
the electric field can be expressed as

E = E0cos(ωt + φ), (1.1)

where E0 is the amplitude, ω is the angular frequency, and φ is the phase. Alterna-
tively, the behavior is conveniently expressed in complex notation as

E(t) = E0e
−jωt = E0cos(ωt)− jE0sin(ωt), (1.2)
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2 1 Introduction

Figure 1.1 Terms describing the propagation of a photon, or a light ray.

where j is the imaginary square root of −1. In this case, the quantity is envisioned
as a vector on a two-dimensional diagram with the real component along the usual
x-axis and the imaginary one along the usual y-axis. The angle of this vector from
the origin and relative to the positive real axis represents the phase.

Most of the time we will treat light as photons of energy; wave aspects will be
important only for heterodyne detectors. A photon has an energy of

Eph = hν = hc/λ, (1.3)

where h (= 6.626 × 10−34 J s) is Planck’s constant, ν and λ are, respectively, the
frequency (in hertz = 1/seconds) and wavelength (in meters) of the electromagnetic
wave, and c (= 2.998×108 m s−1) is the speed of light. In the following discussion,
we define a number of expressions for the power output of sources of photons;
conversion from power to photons per second can be achieved by dividing by the
desired form of equation 1.3.

The spectral radiance per frequency interval, Lν , is the power (in watts) leaving
a unit projected area of the surface of the source (in square meters) into a unit solid
angle (in steradians) and unit frequency interval (in hertz). The projected area of
a surface element dA onto a plane perpendicular to the direction of observation is
dA cosθ , where θ is the angle between the direction of observation and the outward
normal to dA; see Figure 1.2. Lν has units of W m−2 Hz−1 ster−1. The spectral
radiance per wavelength interval, Lλ, has units of W m−3 ster−1. The radiance, L,
is the spectral radiance integrated over all frequencies or wavelengths; it has units
of W m−2 ster−1. The radiant exitance, M , is the integral of the radiance over solid
angle, and it is a measure of the total power emitted per unit surface area in units
of W m−2.

We will deal only with Lambertian sources; the defining characteristic of such
a source is that its radiance is constant regardless of the direction from which it is
viewed. A blackbody is one example. The emission of a Lambertian source goes as
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1.1 Radiometry 3

Figure 1.2 Geometry for computing radiance.

the cosine of the angle between the direction of the radiation and the normal to the
source surface. From the definition of projected area in the preceding paragraph, it
can be seen that this emission pattern exactly compensates for the foreshortening
of the surface as it is tilted away from being perpendicular to the line of sight.
That is, for the element dA, the projected surface area and the emission decrease
by the same cosine factor. Thus, if the entire source has the same temperature and
emissivity, every unit area of its projected surface in the plane perpendicular to the
observer’s line of sight appears to be of the same brightness, independent of its
actual angle to the line of sight. Keeping in mind this cosine dependence, and the
definition of radiant exitance, the radiance and radiant exitance are related as

M =
∫
L cos θ d� = 2πL

∫ π/2

0
sin θ cos θ dθ = πL. (1.4)

The flux emitted by the source, 	, is the radiant exitance times the total surface
area of the source, that is the power emitted by the entire source. For example, for
a spherical source of radius R,

	 = 4πR2M = 4π2R2L. (1.5)

Although there are other types of Lambertian sources, we will consider only
sources that have spectra resembling those of blackbodies, for which the spectral
radiance in frequency units is

Lν = ε
[
2hν3/(c/n)2

]
ehν/kT − 1

, (1.6)
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4 1 Introduction

where ε is the emissivity of the source, n is the refractive index of the medium into
which the source radiates, and k (= 1.38×10−23 J K−1) is the Boltzmann constant.
The emissivity (ranging from 0 to 1) is the efficiency with which the source radiates
compared to that of a perfect blackbody, which by definition has ε = 1. According
to Kirchhoff’s law, the absorption efficiency, or absorptivity, and the emissivity are
equal for any source. In wavelength units, the spectral radiance is

Lλ = ε
[
2h(c/n)2

]
λ5
(
ehc/λkT−1

) . (1.7)

It can be easily shown from equations 1.6 and 1.7 that the spectral radiances are
related as follows:

Lλ =
( c
λ2

)
Lν =

(ν
λ

)
Lν . (1.8)

According to the Stefan–Boltzmann law, the radiant exitance for a blackbody
becomes

M = π

∞∫
0

Lνdν = 2πk4T 4

c2h3

∞∫
0

x3

ex − 1
dx

= 2π5k4

15c2h3
T 4 = σT 4, (1.9)

where σ (= 5.67 × 10−8 W m−2 K−4) is the Stefan–Boltzmann constant.
For Lambertian sources, the optical system feeding a detector will receive a

portion of the source power that is determined by a number of geometric factors
as illustrated in Figure 1.3. The system will accept radiation from only a limited
range of directions determined by the geometry of the optical system as a whole and
known as the field of view. The area of the source that is effective in producing a
signal is determined by the field of view and the distance from the optical system to
the source (or by the size of the source if it all lies within the field of view). This area
will emit radiation with some angular dependence. Only the radiation that is emitted
in directions where it is intercepted by the optical system can be detected. The
range of directions accepted is determined by the solid angle, �, that the entrance
aperture of the optical system subtends as viewed from the source. In addition,
some of the emitted power may be absorbed or scattered by any medium through
which it propagates to reach the optical system. For a Lambertian source, the power
this system receives is then the radiance in its direction multiplied by the source
area within the system field of view, multiplied by the solid angle subtended by the
optical system as viewed from the source, and multiplied by the transmittance of
the optical path from the source to the system.

Although a general treatment must allow for the field of view to include only
a portion of the source, in many cases of interest the entire source lies within the

https://doi.org/10.1017/9781316407189.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316407189.002


1.1 Radiometry 5

Figure 1.3 Geometry for computing power received by a detector system.

field of view, so the full projected area of the source is used in calculating the signal.
For a spherical source of radius R, this area is πR2. The solid angle subtended by
the detector system is

� = a

r2
, (1.10)

where a is the area of the entrance aperture of the system (strictly speaking, a is the
projected area; we have assumed the system is pointing directly at the source) and
r is its distance from the source. For a circular aperture,

� = 4π sin2(θ/2), (1.11)

where θ is the half-angle of the right circular cone whose base is the detector system
entrance aperture, and whose vertex lies on a point on the surface of the source; r is
the height of this cone.

It is particularly useful when the angular diameter of the source is small
compared with the field of view of the detector system to consider the irradiance,E,
which is the power in watts per square meter received at a unit surface ele-
ment at some distance from the source. For the case described in the preceding
paragraph, the irradiance is obtained by first multiplying the radiant exitance
(from equation 1.4) by the total surface area of the source, A, to get the flux, AπL.
The flux is then divided by the area of a sphere of radius r centered on the source
to give

E = AL

4r2
, (1.12)
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6 1 Introduction

where r is the distance of the source from the irradiated surface element. The spec-
tral irradiance,Eν orEλ, is the irradiance per unit frequency or wavelength interval.
It is also sometimes called the flux density, and is a very commonly used description
of the power received from a source. It can be obtained from equation 1.12 by
substituting Lν or Lλ for L.

The radiometric quantities discussed above are summarized in Table 1.1.
Equations are provided for illustration only; in some cases, these examples apply
only to specific circumstances. The terminology and symbolism vary substantially
from one discipline to another; for example, the last two columns of the table trans-
late some of the commonly used radiometric terms into astronomical nomenclature.

1.1.2 The Detection Process

Only a portion of the power received by the optical system is passed on to the
detector. The system will have inefficiencies due to both absorption and scattering
of energy in its elements, and because of optical aberrations and diffraction. These
effects can be combined into a system transmittance term. In addition, the range
of frequencies or wavelengths to which the system is sensitive (that is, the spectral
bandwidth of the system in frequency or wavelength units) is usually restricted
by a spectral filter plus a combination of characteristics of the detector and other
elements of the system as well as by any spectral dependence of the transmittance
of the optical path from the source to the entrance aperture. A rigorous account-
ing of the spectral response requires that the spectral radiance of the source be
multiplied point-by-point by the spectral transmittances of all the spectrally active
elements in the optical path to the detector, and by the detector spectral response,
and the resulting function subsequently integrated over frequency or wavelength to
determine the total power effective in generating a signal.

In cases where the spectral response is restricted to a range of wavelengths by
a bandpass optical filter in the beam, it is generally useful to define the effective
wavelength1 of the system as

λ0 =

∞
∫
0
λ T (λ) dλ

∞
∫
0
T (λ) dλ

, (1.13)

where T (λ) is the spectral transmittance of the system. Often the spectral variations
of the other transmittance terms can be ignored over the restricted spectral range of
the filter. The bandpass of the filter, �λ, can be taken to be the full width at half
maximum (FWHM) of its transmittance function (see Figure 1.4). If the filter cuts

1 We have characterized the response using the mean wavelength; there are a number of other conventions, but
for our purposes the differences are minor and unimportant.
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Table 1.1 Definitions of radiometric quantities

Symbol Name Definition Units Equation
Alternate
name

Lν Spectral radiance
(frequency units)

Power leaving unit
projected surface area
into unit solid angle and
unit frequency interval

W m−2 Hz−1 ster−1 (1.6) Specific intensity
(frequency units)

Iν

Lλ Spectral radiance
(wavelength units)

Power leaving unit
projected surface area
into unit solid angle and
unit wavelength interval

W m−3 ster−1 (1.7) Specific intensity
(wavelength units)

Iλ

L Radiance Spectral radiance
integrated over
frequency or wavelength

W m−2 ster−1 L = ∫Lνdν Intensity or specific
intensity

I

M Radiant exitance Power emitted per unit
surface area

W m−2 M = ∫L(θ)d�

	 Flux Total power emitted by
source of area A

W 	 = ∫M dA Luminosity L

E Irradiance Power received at unit
surface element;
equation applies well
removed from the source
at distance r

W m−2 E = ∫M dA

(4πr2)

Eν,Eλ Spectral irradiance Power received at unit
surface element per unit
frequency or wavelength
interval

W m−2 Hz−1, W m−3 Flux density Sν,Sλ

7

https://doi.org/10.1017/9781316407189.002 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/9781316407189.002


8 1 Introduction

Figure 1.4 Transmittance function T (λ) of a filter. The FWHM �λ and the
effective wavelength λ0 are indicated.

on and off sharply, its transmittance can be approximated as the average value over
the range �λ:

TF =
∫
�λ

T (λ) dλ

�λ
. (1.14)

If�λ/λ0 ≤ 0.2 and the filter cuts on and off sharply, the power effective in generat-
ing a signal can usually be estimated in a simplified manner. The signal transmitted
by the bandpass filter can be approximated by taking the spectral radiance at λ0

and multiplying it by�λ and the average filter transmittance over the range�λ. Of
course, to obtain the net signal that reaches the detector, this result is multiplied by
the various geometric and transmittance terms already discussed for the remainder
of the system. However, if λ0 is substantially shorter than the peak wavelength of
the blackbody curve (that is, one is operating in the Wien region of the blackbody)
or there is sharp spectral structure within the passband, then this approximation can
lead to significant errors, particularly if �λ/λ0 is relatively large.

Continuing with the approximation just discussed, we can derive a useful expres-
sion for estimating the power falling on the detector:

PD ≈ Aproj a TP (λ0) TO(λ0) TF Lλ(λ0) �λ

r2
. (1.15)

Here Aproj is the area of the source projected onto the plane perpendicular to
the line of sight from the source to the optical receiver. TP,TO , and TF are the
transmittances, respectively, of the optical path from the source to the receiver,
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1.2 Detector Types 9

of the receiver optics (excluding the bandpass filter), and of the bandpass filter.
The area of the receiver entrance aperture is a, and the distance of the receiver
from the source is r . An analogous expression holds in frequency units. The major
underlying assumptions for equation 1.15 are (a) the field of view of the receiver
includes the entire source; (b) the source is a Lambertian emitter; and (c) the
spectral response of the detector is limited by a filter with a narrow or moderate
bandpass that is sharply defined.

1.2 Detector Types

Nearly all detectors act as transducers that receive photons and produce an electrical
response that can be amplified and converted into a form intelligible to suitably
conditioned human beings. There are three basic ways that detectors carry out this
function:

(a) Photodetectors respond directly to individual photons. An absorbed photon
releases one or more bound charge carriers in the detector that may (1) modulate the
electric current in the material; (2) move directly to an output amplifier; or (3) lead
to a chemical change. The most common photodetectors are based on semiconduct-
ing materials and are used throughout the X-ray, ultraviolet, visible, and infrared
spectral regions. Examples that we will discuss are photoconductors (Chapters 2
and 3), photodiodes (Chapter 3), charge coupled devices (CCDs) (Chapter 5), pho-
tographic materials (Chapter 6), photoemissive detectors (Chapter 6), and quantum
well detectors (Chapter 6), plus some less common examples scattered about these
chapters. The sheer number of types of semiconductor photodetectors provides
an indication of their broad application. The unique properties of superconduc-
tors enable additional types of photodetector with applications in the submilli-
meter/millimeter wavelength or with the potential to provide spectral resolution
within the detection process. Chapter 7 discusses two examples, microwave kinetic
inductance detectors (MKIDs), and superconducting tunnel junctions (STJs).

(b) Thermal detectors absorb photons and thermalize their energy. In most cases,
this energy changes the electrical properties of the detector material, resulting in
a modulation of the electric current passing through it. Thermal detectors have a
very broad and nonspecific spectral response, but they are particularly important
at infrared and submillimeter wavelengths, and as X-ray detectors. Bolometers and
other thermal detectors will be discussed in Chapter 8.

(c) Coherent detectors respond to the electric field strength of the signal and can
preserve phase information about the incoming photons. They operate by inter-
ference of the electric field of the incident photon with the electric field from
a local oscillator. These detectors are primarily used in the radio and submilli-
meter regions but also have specialized applications in the visible and infrared.
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10 1 Introduction

Coherent detectors for the visible and infrared are discussed in Chapter 9, and those
for the submillimeter are discussed in Chapter 10.

1.3 Performance Characteristics

Good detectors preserve a large proportion of the information contained in the
incoming stream of photons. A variety of parameters are relevant to this goal:

(a) Spectral response – the total wavelength or frequency range over which
photons can be detected with reasonable efficiency.

(b) Spectral bandwidth – the wavelength or frequency range over which photons
are detected at any one time; some detectors can operate in one or more bands
placed within a broader range of spectral response.

(c) Linearity – the degree to which the output signal is proportional to the number
of incoming photons that were received to produce the signal.

(d) Dynamic range – the maximum variation in signal over which the detector
output represents the photon flux without losing significant amounts of information.

(e) Quantum efficiency – the fraction of the incoming photon stream that is
converted into signal.

(f) Noise – the uncertainty in the output signal. Ideally, the noise consists only of
statistical fluctuations due to the finite number of photons producing the signal.

(g) Imaging properties – e.g., the number of detectors (“pixels”) in an array.
Because signal may blend from one pixel to adjacent ones, the resolution that can
be realized may be less, however, than indicated just by the pixel count.

(h) Time response – the minimum interval of time over which the detector can
distinguish changes in the photon arrival rate.

The first two items in this listing should be clear from our discussion of radiom-
etry, and the next two are more or less self-explanatory. However, the remaining
entries include subtleties that call for more discussion.

1.3.1 Quantum Efficiency

To be detected, photons must be absorbed. The absorption coefficient in the detector
material is indicated as a(λ) and conventionally has units of cm−1. The absorption
length is defined as 1/a(λ). The absorption of a flux of photons, S, passing through
a differential thickness element dl is expressed by

dS

dl
= −a(λ)S, (1.16)

with the solution for the remaining flux at depth l being

S = S0e
−a(λ)l . (1.17)
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1.3 Performance Characteristics 11

The portion of the flux absorbed by the detector divided by the flux that enters it is

ηab = S0 − S0e
−a(λ)d1

S0
= 1 − e−a(λ)d1, (1.18)

where d1 is the thickness of the detector. The quantity ηab is known as the absorp-
tion factor. The quantum efficiency, η, is the flux absorbed in the detector divided by
the total flux incident on its surface. Photons are lost by reflection from the surface
before they enter the detector volume, leading to a reduction in quantum efficiency
below ηab. Minimal reflection occurs for photons striking a nonabsorptive material
at normal incidence:

r =
(n − 1)2 +

(
a(λ) λ

4π

)2

(n + 1)2 +
(
a(λ) λ

4π

)2 , (1.19)

where r is the fraction of the incident flux of photons that is reflected, n is the
refractive index of the material, a(λ) is the absorption coefficient at wavelength λ,
and we have assumed that the photon is incident from air or vacuum, which have
a refractive index of n = 1. Reflection from the back of the detector can result in
absorption of photons that would otherwise escape. If we ignore this potential gain,
the net quantum efficiency is

η = (1 − r)ηab. (1.20)

1.3.2 Noise and Signal to Noise

The arriving photons carry a level of information that we want the detector to
preserve so far as possible. We now discuss the implications of this requirement.

Ignoring minor corrections having to do with the quantum nature of photons, it
can be assumed that the input photon flux follows Poisson statistics,

P(m) = e−nnm

m!
, (1.21)

where P(m) is the probability of detecting m photons in a given time interval, and
n is the average number of photons detected in this time interval if a large number
of detection experiments is conducted. The root-mean-square noise in a number of
independent events, each of which has an expected noise N , is the square root of
the mean, n,

Nrms = 〈
N2

〉
1/2 = n1/2. (1.22)
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12 1 Introduction

The errors in the detected number of photons in two experiments can usually be
taken to be independent, and hence they add quadratically. That is, the noise in two
measurements yielding n1 and n2 events, respectively, is

Nrms = 〈
N2

〉
1/2 =

[(
n

1/2
1

)2
+
(
n

1/2
2

)2
]1/2

= (n1 + n2)
1/2 . (1.23)

From the above discussion, the signal-to-noise ratio for Poisson-distributed
events is n/n1/2, or

S/N = n1/2. (1.24)

This result can be taken to be a measure of the information content of the incoming
photon stream.2

The quantum efficiency is the fraction of incoming photons converted into useful
signal in the first stage of detector action. In the simplest form, if the detector
converts an individual photon into a single, mobile charge carrier that is collected as
the signal, the quantum efficiency is the ratio of the number of charge carriers freed
to the number of photons received. For our simple detector example, photons that
do not free charge carriers cannot contribute to either signal or noise; they might
as well not exist. The portion of information they were carrying is therefore lost.
Consequently, for n photons incident on the detector, equation 1.24 shows that the
signal-to-noise ratio goes as ηn/(ηn)1/2, or(

S

N

)
d

= (ηn)1/2 (1.25)

in the ideal case where both signal and noise are determined only by the photon
statistics, where η is the quantum efficiency and the d subscript is to indicate that
this value applies just to the detector itself.

Additional steps in the detection process can degrade the information present in
the photon stream absorbed by the detector, either by losing signal or by adding
noise. The detective quantum efficiency (DQE) describes this degradation suc-
cinctly in terms of the number of photons that could produce an output signal with
an equivalent ratio of signal to noise if no degradation occurred. We define the
detective quantum efficiency as

DQE = nout

nin
= (S/N)2out

(S/N)2in
, (1.26)

2 A more rigorous description of photon noise takes account of the Bose–Einstein nature of photons, which
causes the arrival times of individual particles to be correlated. See the note at the end of the chapter for further
discussion, including why this issue can usually be ignored.
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1.3 Performance Characteristics 13

where nin is the actual input photon signal, and nout is an imaginary input signal
that would produce, with a perfect detector system, the same information content
in the output signal as is received from the actual system. Converting to signal to
noise, (S/N)out is the observed signal-to-noise ratio, while (S/N)in is the potential
signal-to-noise ratio of the incoming photon stream, as given by equation 1.24.
By substituting equations 1.24 and 1.25 into equation 1.26, it is easily shown that
the DQE is just the quantum efficiency defined in equation 1.20 if there is no
subsequent degradation of the signal to noise.

1.3.3 Imaging Properties

The resolution of an array of detectors can be most simply measured by exposing it
to a pattern of alternating white and black lines (a “bar chart”) and determining the
minimum spacing of line pairs that can be distinguished, as illustrated in Figure 1.5.
The eye can identify such a pattern if the light–dark variation is 4% or greater. The
resolution of the detector array is expressed in line pairs per millimeter correspond-
ing to the highest density of lines that produces a pattern at this threshold.

Although it is relatively easy to measure resolution in this way for the detector
array alone, a resolution in line pairs per millimeter is difficult to combine with
resolution estimates for other components in an optical system used with it. For
example, how would one derive the net resolution for a camera with a lens and
photographic film whose resolutions are both given in line pairs per millimeter?
A second shortcoming is that the performance in different situations can be poorly
represented by the line pairs per millimeter specification. For example, one might
have two lenses, one of which puts 20% of the light into a sharply defined image
core and spreads the remaining 80% widely, whereas the second puts all the light

Figure 1.5 Bar chart test of resolution: (a) shows the bar chart with no degrada-
tion, while (b) and (c) show the blurring due to the optical system, obviously with
lower resolution in (c) than in (b).
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into a slightly less well defined core. These systems might achieve identical reso-
lutions in line pairs per millimeter (which requires only 4% modulation), yet they
would perform quite differently in other situations.

A more general concept is the modulation transfer function, or MTF. Imagine
that the detector array is exposed to a field with a sinusoidal spatial variation of the
intensity of the input, of period P and amplitude F(x),

F(x) = a0 + a1sin(2πf x), (1.27)

where f = 1/P is the spatial frequency, x is the distance along one axis of the array,
a0 is the mean height (above zero) of the pattern, and a1 is its amplitude. These
terms are indicated in Figure 1.6(a). The modulation of this signal is defined as

Min = Fmax − Fmin

Fmax + Fmin
= a1

a0
, (1.28)

where Fmax and Fmin are the maximum and minimum values of F(x). Assuming
that the resulting image output from the detector is also sinusoidal (which may be
only approximately true due to nonlinearities), it can be represented by

G(x) = b0 + b1sin(2πf x), (1.29)

where x and f are the same as in equation 1.27, and b0 and b1 are analogous to a0

and a1. The modulation in the image will be

Mout = b1

b0
Min. (1.30)

The modulation transfer factor is

MT = Mout

Min

. (1.31)

A separate value of the MT will apply at each spatial frequency; Figure 1.6(a)
illustrates an input signal that contains a range of spatial frequencies, and
Figure 1.6(b) shows a corresponding output in which the modulation decreases with
increasing spatial frequency. This frequency dependence of the MT is expressed in
the modulation transfer function (MTF). Figure 1.7 shows the MTF corresponding
to the response of Figure 1.6(b).

In principle, the MTF provides a reasonably complete specification of the imag-
ing properties of a detector array.3 However, one must be aware that the MTF may
vary over the face of the array and may have color dependence. In addition, the MTF
omits time-dependent imaging properties, such as latent images that may persist
after the image of a bright source has been put on the array and removed.

3 For optical systems in general, the complete description including phase information is provided by the optical
transfer function (OTF); the MTF is the magnitude of the OTF, while the phase is provided by the phase
transfer function (PTF). For simple photodetectors, the PTF can usually be ignored.
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1.3 Performance Characteristics 15

Figure 1.6 Illustration of variation of modulation with spatial frequency:
(a) sinusoidal input signal of constant amplitude but varying spatial frequency;
(b) how an imaging detector system might respond to this signal.

Computationally, the MTF can be determined by taking the absolute value of
the Fourier transform, F(u), of the image of a perfect point source. This image is
called the point spread function. Fourier transformation is the general mathematical
technique used to determine the frequency components of a function f (x) (see, for
example, Bracewell 2000; Press et al. 2007). F(u) is defined as

F(u) =
∞∫

−∞
f (x)ej2πuxdx, (1.32)

with inverse

f (x) =
∞∫

−∞
F(u)e−j2πxudu, (1.33)
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16 1 Introduction

Figure 1.7 The modulation transfer function (MTF) for the response illustrated in
Figure 1.6(b)

where j is the (imaginary) square root of −1. In the current discussion, f (x) is
a functional representation of the point spread function, and u is the spatial fre-
quency. The Fourier transform can be generalized in a straightforward way to two
dimensions, but for the sake of simplicity we will not do so here. The absolute value
of the transform is

|F(u)| = (F(u)F∗(u))1/2, (1.34)

where F∗(u) is the complex conjugate of F(u); it is obtained by reversing the sign
of all imaginary terms in F(u).

If f (x) is the point spread function, |F(u)|/|F(0)| is the MTF. This formula-
tion holds because a sharp impulse contains all frequencies equally and hence the
Fourier transform of the point spread function gives the spatial frequency response
of the detector. The MTF is normalized to unity at spatial frequency 0 by this
definition. As emphasized in Figure 1.7, the response at zero frequency cannot be
measured directly but must be extrapolated from higher frequencies.

Only a relatively small number of functions have Fourier transforms that are
easy to manipulate. Table 1.2 contains a short compilation of some of these cases.
With the use of computers, however, Fourier transformation is a powerful and very
general technique.

The MTF of an entire linear optical system can be determined by multiply-
ing together the MTFs of its constituent elements. The multiplication occurs on
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Table 1.2 Fourier transforms

f (x) F (u)

F (x) f (−u)
aF(x) aF(u)

f (ax) (1/|a|)F (u/a)
f (x)+ g(x) F (u)+G(u)

1 δ(u)c

e−πx2
e−πu2

e−|x| 2/(1 + (2πu)2)

e−x,x > 0 (1 − j 2πu)/(1 + (2πu)2)

sech(πx) sech(πu)

|x|−1/2 |u|−1/2

sgn(x)a −j/(πu)

e−|x| sgn(x) −j 4πu/(1 + (2πu)2)

�(x)b sin(πu)/πu

(a) sgn(x) = −1 for x < 0 and = 1 for x ≥ 0.
(b) �(x) = 1 for |x| < 1/2 and = 0 otherwise.
(c) δ(u) = 0 for u �= 0, ∫ δ(u)du = 1; that is, δ(u) is
a spike at u = 0.

a frequency by frequency basis, that is, if the first system has MTF1(f ) and the
second MTF2(f ), the combined system has MTF(f ) = MTF1(f )MTF2(f ). The
overall resolution capability of complex optical systems can be easily determined
in this way. In addition, the MTF gives a complete description of the imaging
behavior of detectors and even of many linear optical systems as opposed to single
parameter descriptions that may be equivalent for systems having significantly
different resolution characteristics.

1.3.4 Frequency Response

The response speed of a detector can be described very generally by specifying the
dependence of its output on the frequency of an imaginary photon signal that varies
sinusoidally in time. This concept is analogous to the modulation transfer function
described just above with regard to imaging.

A variety of factors limit the frequency response. Many of them, however, can
be described by an exponential time response, such as that of a resistor/capacitor
electrical circuit. To be specific in the following, we will assume that the response
is given by the RC time constant of such a circuit, although we will find other uses
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for the identical formalism later. If the capacitor is in parallel with the resistance,
charge deposited on the capacitance bleeds off through the resistance with an expo-
nential time constant

τRC = RC. (1.35)

Sometimes a “rise time” is specified rather than the exponential time constant. The
rise time is the interval required for the output to change from 10% to 90% of its
final value (measured relative to the initial value). For an exponential response, the
rise time is 2.20 τRC .

Let a voltage impulse be deposited on the capacitor,

vin(t) = v0δ(t), (1.36)

where v0 is a constant and δ(t) is the delta function (see footnotes to Table 1.2). We
can observe this event in two ways. First, we might observe the voltage across the
resistance and capacitance directly, for example with an oscilloscope. It will have
the form

vout (t) =
[

0, t < 0,
v0
τRC
e−t/τRC, t ≥ 0.

(1.37)

The same event can be analyzed in terms of the effect of the circuit on the input
frequencies rather than on the time dependence of the voltage. To do so, we convert
the input and output voltages to frequency spectra by taking their Fourier trans-
forms. The delta function contains all frequencies at equal strength, that is, from
Table 1.2,

Vin(f ) = v0

∞∫
−∞

δ(t)e−j2πf tdt = v0. (1.38)

Since the frequency spectrum of the input is flat (Vin(f ) = constant), any devia-
tions from a flat spectrum in the output must arise from the action of the circuit.
That is, the output spectrum gives the frequency response of the circuit directly.
Again from Table 1.2, it is

Vout (f ) =
∞∫

−∞
vout (t)e

−j2πf tdt

= v0

[
1 − j2πf τRC

1 + (2πf τRC)2

]
. (1.39)

The imaginary part of Vout (f ) represents phase shifts that can occur in the
circuit. For a simple discussion, we can ignore the phase and describe the strength
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Figure 1.8 Frequency response of an RC circuit. The cutoff frequency is
illustrated.

of the signal only in terms of the frequency dependence of its amplitude. The
amplitude can be determined by taking the absolute value of Vout (f ):

|Vout (f )| = (
VoutV

∗
out

)1/2

= v0[
1 + (2πf τRC)

2
]1/2 , (1.40)

where V ∗
out is the complex conjugate of Vout . This function is plotted in Figure 1.8.

As with the MTF, the effects of different circuit elements on the overall frequency
response can be determined by multiplying their individual response functions
together. The frequency response is often characterized by a cutoff frequency

fc = 1

2πτRC
, (1.41)

at which the amplitude drops to 1/
√

2 of its value at f = 0, or

|Vout (fc)| = 1√
2
|Vout (0)|. (1.42)

1.4 Radiometry Example

A 1000 K spherical blackbody source of radius 1 m is viewed in air by a detector
system from a distance of 1000 m. The entrance aperture of the system has a radius
of 5 cm, and the optical system has a field of view half-angle of 0.1o. The detector
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operates at a wavelength of 1 μm with a spectral bandpass of 1%, and its optical
system is 50% efficient. Compute the spectral radiances in both frequency and
wavelength units. Calculate the corresponding spectral irradiances at the detector
entrance aperture, and the power received by the detector. Compare the usefulness
of radiances and irradiances for this situation. Compute the number of photons
hitting the detector per second. Describe how these answers would change if the
blackbody source were 10 m in radius rather than 1 m.

The refractive index of air is n ∼ 1, so the spectral radiance in frequency units
is given by equation 1.6 with ε = n = 1. From equation 1.3, the frequency corre-
sponding to 1 μm is ν = c/λ = 2.998 × 1014 Hz. Substituting into equation 1.6,
we find that

Lν = 2.21 × 10−13 W m−2Hz−1ster−1. (1.43)

Alternatively, we can substitute the wavelength of 1 × 10−6 m into equation 1.7 to
obtain

Lλ = 6.62 × 107 W m−3ster−1. (1.44)

The solid angle subtended by the detector system as viewed from the source is
given by equation 1.10. The area of the entrance aperture is 7.854 × 10−3 m2, so

� = 7.854 × 10−9ster. (1.45)

The 1% bandwidth corresponds to 0.01×2.998×1014 Hz = 2.998×1012 Hz, or to
0.01×1×10−6 m = 1×10−8 m. The radius of the area accepted into the beam of the
detector system at the distance of the source is 1.745 m, and, since it is larger than
the radius of the source, the entire visible area of the source will contribute to the
signal. The projected area of the source is 3.14 m2 (since it is a Lambertian emitter,
no further geometric corrections are required for its effective emitting area). Then,
computing the power at the entrance aperture of the detector system by multiplying
the spectral radiances by the source area (projected), spectral bandwidth, and solid
angle received by the system, we obtain P = 1.63 × 10−8 W.

Because the angular diameter of the source is less than the field of view, it is
equally convenient to use the irradiance. The surface area of the source is 12.57 m2.
Using equation 1.12 and frequency units, we obtain

Eν = 6.945 × 10−19 W m−2 Hz−1. (1.46)

Similarly for wavelength units,

Eλ = 2.08 × 102 W m−3. (1.47)

Multiplying by the bandpass and entrance aperture area yields a power of
1.63 × 10−8 W, as before.
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The power received by the detector is reduced by optical inefficiencies to 50%
of the power incident on the entrance aperture, so it is 8.2 × 10−9 W. The energy
per photon can be computed from equation 1.3 to be 1.99 × 10−19 J. The detector
therefore receives 4.12 × 1010 photons s−1.

If the blackbody source were 10 m in radius, the spectral radiances, Lν and Lλ,
would be unchanged. The irradiances, Eν and Eλ, would increase in proportion to
the surface area of the source, so they would be 100 times larger than computed
above. The field of view of the optical system, however, no longer includes the
entire source; therefore, the power at the system entrance aperture is most easily
computed from the spectral radiances, where the relevant surface area is that within
the field of view and hence has a radius of 1.745 m. The power at the entrance
aperture therefore increases by a factor of only 3.05, giving P = 4.97 × 10−8 W,
as do the power falling on the detector (2.48 × 10−8 W) and the photon rate
(1.25 × 1011 photons s−1).

1.5 Problems

1.1 A spherical blackbody source at 300 K and of radius 0.1 m is viewed from a
distance of 1000 m by a detector system with an entrance aperture of radius
1 cm and field of view half angle of 0.1 degree.

(a) Compute the spectral radiances in frequency units at 1 and 10 μm.
(b) Compute the spectral irradiances at the entrance aperture.
(c) For spectral bandwidths 1% of the wavelengths of operation and assuming

that 50% of the incident photons are absorbed in the optics before they
reach the detector, compute the powers received by the detector.

(d) Compute the numbers of photons hitting the detector per second.

1.2 Consider a detector with an optical receiver of entrance aperture 2 mm diam-
eter, optical transmittance (excluding bandpass filter) of 0.8, and field of view
1◦ in diameter. This system views a blackbody source of 1000 K with an exit
aperture of diameter 1 mm and at a distance of 2 m. The signal out of the black-
body is interrupted by a shutter at a temperature of 300 K. The receiver system
is equipped with two bandpass filters, one with λ0 = 20μm and �λ = 1μm
and the other with λ0 = 2μm and �λ = 0.1μm; both have transmittances of
0.8. The transmittance of the air between the source and receiver is 1 at both
wavelengths. Compute the net signal at the detector, that is compute the change
in power incident on the detector as the shutter is opened and closed.

1.3 For blackbodies, the wavelength of the maximum spectral irradiance times the
temperature is a constant, or

λmaxT = C. (1.48)
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This expression is known as the Wien displacement law; derive it. For wave-
length units, show that C ∼ 0.3 cm K.

1.4 Show that for hν/kT � 1 (setting ε = n = 1),

Lν = 2kT ν2/c2. (1.49)

This expression is the Rayleigh–Jeans law and is a useful approximation at
long wavelengths. For a source temperature of 100 K, compute the shortest
wavelength for which the Rayleigh–Jeans law is within 20% of the result given
by equation 1.6. Compare with λmax from Problem 1.3.

1.5 Derive equation 1.11. Note the particularly simple form for small θ .
1.6 Consider a bandpass filter that has a transmittance of zero outside the passband

�λ and a transmittance that is the same for all wavelengths within the pass-
band. Compare the estimate of the signal passing through this filter when the
signal is determined by integrating the source spectrum over the filter passband
with that where only the effective wavelength and FWHM bandpass are used
to characterize the filter. Assume a source radiating in the Rayleigh–Jeans
regime. Show that the error introduced by the simple effective wavelength
approximation is a factor of

1 + 5

6

(
�λ

λ 0

)2

(1.50)

plus terms of order (�λ/λ0)
4 and higher. Evaluate the statement in the text that

the approximate method usually gives acceptable accuracy for �λ/λ0 ≤ 0.2.
1.7 From equation 1.51, show that the Bose–Einstein correction to the rms photon

noise 〈N2〉1/2 is less than 10% if (5ετηkT/hν)< 1 . Consider a blackbody
source at T = 1000 K viewed by a detector system with optical efficiency 50%
and quantum efficiency 50%. Calculate the wavelength beyond which the cor-
rection to the noise would exceed 10%. Compare this wavelength with that at
the peak of the source output.

1.8 Compute the Fourier transform of f (x) = H(x)+sech(10x), whereH(x) = 0
for x < 0 and = 1 for x ≥ 0.

1.6 Note

This note discusses the correction to simple noise estimates due to the boson nature
of photons. Equation 1.24 is derived using the assumption that the particles arrive
completely independently; the bunching of Bose–Einstein particles increases the
noise above this estimate. The full description of photon noise shows it to be

〈
N2

〉 = n

[
1 + ετη

ehν/kT − 1

]
, (1.51)
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where 〈N2〉 is the mean square noise, n is the average number of photons detected,
h is Planck’s constant, ε is the emissivity of the source of photons, τ is the trans-
mittance of the system optics, η is the detector quantum efficiency, ν is the photon
frequency, k is Boltzmann’s constant, and T is the absolute temperature of the
photon source (see van Vliet 1967). Comparing with equation 1.24, it can be seen
that the term in square brackets in equation 1.51 is a correction factor for the
increase in noise from the Bose–Einstein behavior. It becomes important only at
frequencies much lower than that of the peak emission of the blackbody, and then
only for highly efficient detector systems. In most cases of interest, particularly with
realistic instrument efficiencies, this correction factor is sufficiently close to unity
that it can be ignored. Moreover, the entire theory of this noise behavior is rather
complex and the predicted phenomena are yet to be observed (Lee and Talghader
2018).

1.7 Further Reading

Boreman (2001) – good introduction to the MTF and its applications
Bukshtab (2019) – advanced and very extensive treatment of photometry and radiometry
Grant (2011) – short and practical guide to practice of radiometry
Grum and Becherer (1979) – classic description of radiometry
McCluney (2014) – a good introduction to radiometry
Palmer and Grant (2009) – excellent introduction to radiometry, starting from first

principles
Press et al. (2007) – thorough and practical general description of numerical methods,

including Fourier transformation
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