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Residues and duality for singularity categories

of isolated Gorenstein singularities

Daniel Murfet

Abstract

We study Serre duality in the singularity category of an isolated Gorenstein singularity
and find an explicit formula for the duality pairing in terms of generalised fractions
and residues. For hypersurfaces we recover the residue formula of the string theorists
Kapustin and Li. These results are obtained from an explicit construction of complete
injective resolutions of maximal Cohen–Macaulay modules.

1. Introduction

Let k be a field of characteristic zero and T a k-linear triangulated category. The concept of
duality in T was formalised by Bondal and Kapranov [BK89] in terms of a triangulated functor
S : T −→ T together with a family of nondegenerate pairings

T (Y, SX)⊗k T (X, Y )−→ k (1.1)

natural in X, Y and satisfying a condition involving compatibility with suspension. The
motivating example is the bounded derived category of coherent sheaves on a smooth projective
variety Z over k. In this case it follows from classical Serre duality that there is a family
of nondegenerate pairings for the functor S = (−)⊗L ωZ [d], where d= dim(Z) and ωZ is the
canonical bundle, and the pairing can be defined explicitly in terms of residues and traces [Har66].
For this reason the functor S is referred to in general as a Serre functor.

If we take the point of view that a triangulated category is a geometric object in its
own right, then the Serre functor and pairing play a fundamental role. For example, if Z is
a Calabi–Yau variety over C, so ωZ ∼=OZ , then the pairing in the derived category computes
correlators in a quantum field theory probing the geometry of Z. The field theory is the
B-twisted supersymmetric topological sigma model with target Z on an oriented Riemann
surface M with boundary [Wit92a, Wit92b], in which the bosonic fields are the components
of maps M −→ Z. In the quantisation the basic quantities of interest are correlators defined by
Feynman path integrals over the space of fields. The boundary sector of the theory is described
by the derived category, whose objects and morphisms correspond to branes and open strings,
respectively [Dou01, Kon95]. Remarkably, the pairing in the derived category gives the correlator
of a pair of open string states, when M is a disc.

In this paper we study Serre duality in a different triangulated category, the singularity
category of a scheme with isolated Gorenstein singularities. Let Z be a separated noetherian
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scheme of finite dimension over k, and consider the inclusion

Perf(Z)⊆Db(coh Z)

of the full subcategory of perfect complexes into the bounded derived category of coherent
sheaves. Recall that a complex of coherent sheaves is perfect if it is locally isomorphic in the
derived category to a bounded complex of vector bundles. As is well-known, this subcategory
Perf(Z) is dense if and only if Z is regular, and for singular Z this motivates the study of the
Verdier quotient

Dsg(Z) := Db(coh Z)/Perf(Z).
This quotient was studied in the affine setting by Buchweitz in an unpublished
manuscript [Buc86] and more recently in the global setting by Orlov [Orl04] in connection with
string theory and mirror symmetry. In order to obtain a category whose morphism spaces are
finite-dimensional we need to restrict to schemes which are Gorenstein [AV07, Orl04], which
means that the local rings OZ,x have finite injective dimension as modules over themselves, for
every x ∈ Z.

In this paper we also restrict to singularities which are isolated, in which case Dsg(Z)
decomposes, up to direct summands, as a direct sum of categories Dsg(Spec(OZ,x)) as x ranges
over the singular locus, and it therefore suffices to consider this local situation.

So let (R,m, k) be a local Gorenstein k-algebra of Krull dimension d with an isolated
singularity, by which we mean that Rp is a regular local ring for every non-maximal prime
ideal p⊆R. The object of interest in this paper is the triangulated category

Dsg(R) := Db(modR)/Kb(projR).

The morphisms in this category are defined via a calculus of fractions, and it will be more
convenient to work in a category of ‘resolutions’, namely the homotopy category

T := Kac(freeR)

of acyclic complexes of finite free R-modules. The functor

T −→Dsg(R)
X 7→ Coker(X−1 −→X0)

is an equivalence of triangulated categories [Buc86, (4.4.1)], so we are justified in working
exclusively in the category T . We note that cokernels of the differentials in complexes in T
are precisely the maximal Cohen–Macaulay R-modules, and the stable category CM(R) of these
modules is equivalent to T . The stable category is a classical object of singularity theory; for
example, results of Knörrer [Knö87] and Buchweitz–Greuel–Schreyer [BGS87] characterise the
simple hypersurface singularities in terms of the structure of CM(R).

A fundamental theorem of Auslander [Aus78] states that T has a Serre functor S = (−)[d− 1].
There is another proof due to Buchweitz, who points out [Buc86, § 7.7] that it would be interesting
to have a closed formula for the corresponding pairing. There was little progress on this question
until 2003, when the mathematical physicists Kapustin and Li derived a formula for the pairing
in the singularity category of a hypersurface {W = 0} ⊆ Cn with an isolated singularity. More
precisely, they found a formula for disc correlators in the B-twisted supersymmetric Landau–
Ginzburg model with target space Cn and potential W [HL05, KL03b]. The singularity category
of the hypersurface appears as a category of boundary conditions in this model, so their formula
for the disc correlator gave a strong candidate for the duality pairing. However, how to prove
that this candidate pairing was actually nondegenerate remained an open question.
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Residues and duality for singularity categories

In the rest of this introduction we state our general formula for a nondegenerate pairing
on the morphism spaces of T , and explain how this specialises to the Kapustin–Li formula for
hypersurfaces.

Fix a complex X ∈ T with differential ∂. The punctured spectrum U = Spec(R)\{m} is
regular by hypothesis, so the restriction X|U is contractible. We can therefore choose a cover of
U by open sets D(t1), . . . , D(td), or, equally, choose a regular sequence t = (t1, . . . , td) in the
maximal ideal, such that ti acts null-homotopically on X for 1 6 i6 d. Choose a homotopy λi
on X with

λi ◦ ∂ + ∂ ◦ λi = ti · 1X .
Let (−1)F be the grading operator on X which sends a homogeneous element x ∈X to (−1)|x|x.
Given α ∈ T (X, X[d− 1]) we consider the following degree zero R-linear operator on X

Lα := (−1)Fα ◦ λ1 · · · λd ◦ ∂. (1.2)

The R-module X is certainly not finitely generated, so Lα does not have a trace in the usual
sense. But in each degree i we can take the trace of the endomorphism Liα of Xi, and the class

〈〈α〉〉 := (−1)(
d+1
2 )
[

tr(Liα)
t1, . . . , td

]
∈Hd

m(R) (1.3)

in local cohomology is independent of all choices: the integer i, the system of parameters t, and the
null-homotopies λj . Here we use the notation of generalised fractions, which is recalled in § 4. In
short: there is an isomorphism of local cohomology with Čech cohomology Hd

m(R)∼= Ȟd−1(U,OU )
for d > 0 which identifies 〈〈α〉〉, up to a sign, with the Čech cocycle [tr(Liα)/(t1 · · · td)].

There is a k-linear map ζ :Hd
m(R)−→ k such that composing with ζ defines an isomorphism

HomR(M, Hd
m(R))−→Homk(M, k)

for any finite-length R-module M . The value of ζ on a generalised fraction should be thought of
as a residue; indeed, if R is given as a quotient of a power series ring by a regular sequence then
ζ can be defined explicitly in terms of residues over the power series ring.

With this notation, our main theorem is the following.

Theorem. There is a nondegenerate pairing

〈−,−〉 : T (Y, X[d− 1])⊗k T (X, Y )−→ k

natural in both variables and compatible with suspension, defined by

〈ψ, φ〉= ζ〈〈ψ ◦ φ〉〉= (−1)(
d+1
2 )ζ

[
tr(ψ ◦ φ ◦ λ1 · · · λd ◦ ∂)0

t1, . . . , td

]
.

Let us now consider hypersurfaces, where 〈ψ, φ〉 agrees with the pairing of Kapustin and Li.

Matrix factorisations. Suppose now that R is a hypersurface singularity, that is, R= S/(W )
where S = k[[x1, . . . , xn]] and W is a polynomial whose zero locus in An

k has an isolated
singularity at the origin. In this case it is a theorem of Eisenbud [Eis80] that every acyclic
complex of finite free R-modules is two-periodic (up to homotopy equivalence) and there is an
alternative presentation of the category T which makes use of this additional symmetry.

A matrix factorisation of W over S is a Z2-graded free S-module of finite rank X =X0 ⊕X1

together with an S-linear map d :X −→X of degree one with d2 =W · 1X . The map d is referred
to as the differential. A morphism of matrix factorisations is an S-linear map of degree zero
which commutes with the differentials. There is an obvious notion of homotopy, using which we
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define the homotopy category hmf(S, W ) of matrix factorisations of W over S. If X is a matrix
factorisation then the differential on X ⊗S R actually squares to zero, and by the periodification
of this Z2-graded complex we mean the Z-graded complex of R-modules

· · · // X1 ⊗S R
d1⊗1 // X0 ⊗S R

d0⊗1 // X1 ⊗S R
d1⊗1 // X0 ⊗S R // · · ·

with X0 ⊗S R in degree zero. We denote this complex by X. This construction is functorial, and
one can show that X is an acyclic complex of finite free R-modules and that this defines an
equivalence of triangulated categories hmf(S, W )−→ T .

Let us write M= hmf(S, W ). Induced by this equivalence and the duality structure given
on T above, there is for X, Y ∈M a nondegenerate pairing

〈−,−〉 :M(Y, X[n])⊗kM(X, Y )−→ k (1.4)

natural in both variables and compatible with suspension. By choosing the system of parameters
t and the null-homotopies λi appropriately, the pairing can be put in the form

〈ψ, φ〉=
1
n!

(−1)(
n−1

2 ) ResS/k

[
strS(ψ ◦ φ ◦ dS/k(dX)∧n)

∂1W, . . . , ∂nW

]
. (1.5)

In this paper we use the residue symbols of Grothendieck [Har66] which are defined algebraically,
but for k = C these residues agree with the usual analytic residues defined by integration
and, modulo the sign, (1.5) is the pairing derived by Kapustin and Li [KL03b]. Recently
Segal [Seg09] found a derivation of this formula via Hochschild homology of curved dg-algebras,
and Carqueville [Car09] gave another derivation using the theory of minimal models for
A∞-categories, but neither of these approaches gives a proof of nondegeneracy. We note that
the Kapustin–Li pairing has been used in connection with Khovanov and Rozansky’s sl(N) link
homology [MSV09].

We conclude with a sketch of how this pairing arises in mathematical physics,
following [KL03b, HL05]. In the B-type supersymmetric topological Landau–Ginzburg model
with worldsheet M , flat target space Z = Cn and potential W ∈ C[x1, . . . , xn], the bosonic fields
are the components1 µi, µı̄ of maps µ :M −→ Z. For simplicity we are going to assume that
M is a disc with boundary C = ∂M and we will omit the fermionic fields η, θ and ρ from the
discussion.

Following a suggestion of Kontsevich it was explained by Kapustin and Li [KL03a] how some
matrix factorisations of W appear naturally as boundary conditions in this model, and it was
later understood how to introduce arbitrary matrix factorisations [Laz03]. Let us take this as our
starting point, and fix a matrix factorisation X of W together with a connection. A vector bundle
together with a connection is a gauge field, and in the approach of [Laz03] (following [Wit92b])
one couples the bulk theory to this gauge field by introducing a boundary term U in the partition
function

Z =
∫
DΨ exp(−S̃bulk)U . (1.6)

Here Z is a path integral over the space of all fields Ψ, and S̃bulk = S̃bulk(Ψ) is the bulk action. To
define U , consider pulling back the vector bundle X with its connection A via µ to the boundary
circle C, and taking the holonomy of the connection around this loop; then U is the supertrace

U = str
(
P exp

(
−
∮
C
dτM

))
1 We use µ rather than the more standard φ to avoid a clash of notation with the above.
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where M is a matrix built from the differential dX on X and connection A (see [HL05, (4.17)]),
dτ is the length element along C and P exp is the path-ordered exponential. Note that the entries
of dX , A are polynomials in the xi, so pulling back to C amounts to substituting µi + iµı̄ for xi.

The disc correlator of interest to us is defined by an integral similar to (1.6). Let α be a
degree d− 1 endomorphism of X in the category of matrix factorisations. Pulled back to C this
is a matrix of polynomials in the µi, µı̄. In the quantum field theory the fields µi, µı̄ are promoted
to operators µi(τ), µı̄(τ) labeled with points τ of the worldsheet. Given τ ∈ C these operators
are substituted into α in order to define the corresponding boundary observable as the matrix
of operators

Oα(τ) = α(µ(τ)).

The disc correlator 〈Oα(τ)〉 is defined by

〈
Oα M X

〉
=
∫
DΨ exp(−S̃bulk) str[H(τ)Oα(τ)] (1.7)

where H(τ) is the superholonomy operator. After some careful argument, one shows that this
path integral localises to a finite-dimensional integral on the target space Z, and this integral
is precisely the residue (1.5) with α= ψ ◦ φ. Note that the field theory is topological, so the
correlator does not depend on the position τ where Oα is inserted.

Outline. We begin in § 3 with a proof of Auslander’s duality in the singularity category
which is adapted to finding an explicit formula for the corresponding nondegenerate pairing. In
§ 4 we construct the explicit complete injective resolutions required to actually make the pairing
explicit. The main theorem of the paper, quoted above, is proven in § 5. Finally in § 6 we specialise
to hypersurfaces and discuss the Kapustin–Li formula.

2. Preliminaries

Let k be a field and T a k-linear triangulated category. A Serre functor in T is a k-linear
triangulated functor S : T −→ T together with a family of k-linear isomorphisms

ΛX,Y : T (Y, SX)−→Homk(T (X, Y ), k)

which are natural in X, Y and compatible with suspension, by which we mean that the diagram

T (Y [−1], SX) ∼=

ΛX,Y [−1] // Homk(T (X, Y [−1]), k)

T (Y, (SX)[1])

∼=

OO

T (Y, S(X[1]))

∼=

OO

∼=
ΛX[1],Y

// Homk(T (X[1], Y ), k)

∼=

OO

anticommutes. Alternatively, we can present ΛX,Y as a family of nondegenerate pairings which
satisfy conditions expressing the same naturality and compatibility with suspension.
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If we say that a local ring (R,m, k) is a k-algebra, it will be implicit that k −→R−→R/m = k
is the identity. Unless specified otherwise all tensor products are R-linear.

For background on matrix factorisations see [BD08, Yos90], for commutative algebra,
especially local cohomology, we recommend [BH93], and for triangulated categories see
[MSV01, Ver96].

3. Auslander’s duality

In this section we give a new proof of Auslander’s duality in the singularity category of a
Gorenstein isolated singularity. The argument is predicated on the fundamental fact, proved
in the next section, that we can explicitly construct complete injective resolutions. In organising
the proof this way we hope to convince the reader of the utility of complete injective resolutions
before getting down to the hard work of the construction in the next section. The reader who
wants to read the full details in linear order should proceed to read § 4 and then return here.

The setting is more general than the one adopted in the introduction: throughout (R,m, k)
is a local Gorenstein ring of Krull dimension d with an isolated singularity. We do not assume
that R is a k-algebra, but we will remark on the additional features in this case as we go along.

We have already introduced the equivalence of triangulated categories

T −→Dsg(X) (3.1)

due to Buchweitz [Buc86, (4.4.1)], where

T = Kac(freeR). (3.2)

This equivalence sends T to the cokernel of the differential T−1 −→ T 0. The inverse functor
sends a module M , viewed as an object of the category Dsg(R), to an acyclic complex of free
modules usually called the complete free resolution. This complex will play a role analogous
to that played by the projective resolution in the derived category: morphisms in Dsg(R) are
modeled by homotopy equivalence classes of maps between complete resolutions.

For convenience we choose to formalise the definition in the following way.

Definition 3.1. A complete free resolution of a finitely generated R-module M is an acyclic
complex of finite free R-modules T together with a morphism ρ : T −→M of complexes of
R-modules with the following properties:

(i) ρ is universal : for any acyclic complex F of free R-modules the induced map

HomR(F, ρ) : HomR(F, T )−→HomR(F, M)

is a quasi-isomorphism;

(ii) ρ truncates to a resolution: the sequence T−1 −→ T 0 ρ0

−→M −→ 0 is exact.

The complete free resolution, if it exists, is unique up to homotopy equivalence and is
denoted cfM .

Remark 3.2. The complete free resolution is functorial: given a morphism α :M −→N of finitely
generated R-modules with complete free resolutions cfM −→M and cfN −→N , there is a
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unique morphism cf(α) : cfM −→ cfN in K(R) making the diagram

cfM

cf(α)

��

// M

α

��
cfN // N

commute up to homotopy.

It is easy to see that every object of Dsg(R) is isomorphic to a finitely generated R-module M
with the property that ExtiR(k, M) = 0 for i < d. Equivalently, there is a sequence in m of length
d which is regular on M . Such modules are called maximal Cohen–Macaulay modules (or CM
modules, for short). Below we sketch how to construct the complete free resolution of such a
module; if a CM module has finite projective dimension then it is projective, and in this case it
will be clear that the complete free resolution is contractible. It follows that there is a functor
cf(−) from Dsg(R) to T which is, by definition, inverse to (3.1).

For complete details of the following construction see [CE56, XII.3] and [Buc86, Chr00]. Let
M be a CM R-module. We begin with free resolutions of M and its dual HomR(M, R):

· · · −→ F−1 −→ F 0 −→M −→ 0
· · · −→Q−1 −→Q0 −→HomR(M, R)−→ 0.

Then one splices F with HomR(Q, R) using the morphism

F 0 // M // HomR(HomR(M, R), R) // HomR(Q0, R) (3.3)

to obtain a complex T of finite free R-modules with F 0 in degree zero. By construction M is
the cokernel of the differential T−1 −→ T 0 and using the fact that M is CM one argues that T
is acyclic. This is the desired complete free resolution of M .

Lemma 3.3. Given T ∈Kac(freeR) the module M = Coker(T−1 −→ T 0) is CM and the
canonical map T 0 −→M , viewed as a morphism of complexes T −→M , is a complete free
resolution of M .

Proof. This is the content of [Jør07, Lemma 3.6]. The point is that brutally truncating T in
degrees 60 gives a free resolution F of M , and the mapping cone of the truncation morphism
T −→ F is homotopy equivalent to a bounded below complex K of free modules. If T ′ is an
acyclic complex of free modules then one checks that HomR(T ′, K) must be acyclic, from which
the necessary universal property of T −→M follows. 2

Next we explain why the morphism spaces in T have finite length. By hypothesis, for
each non-maximal prime ideal p the ring Rp is regular, and therefore every finitely generated
Rp-module has projective dimension 6d. If T is an acyclic complex of finite free Rp-modules then
the brutal truncation in degrees 6n serves as a free resolution of some module, and hence the
modules Zi(T ) are projective for i6 n− d+ 1. Since n is arbitrary, T is contractible.

Lemma 3.4. For X, Y ∈ T the R-module T (X, Y ) has finite length.

Proof. For p a non-maximal prime T (X, Y )p =H0 HomRp
(Xp, Np) = 0 where

N = Coker(∂−1
Y ). 2

If R is a k-algebra then it follows that T (X, Y ) is a finite-dimensional k-vector space, and
duality in T can then be formulated in terms of the dual Homk(T (X, Y ), k). In general we
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proceed differently, using the local cohomology module

Hd
m(R) := lim−→

i

ExtdR(R/mi, R). (3.4)

Because R is Gorenstein this is an injective envelope of k, and the Matlis dual HomR(−, Hd
m(R))

is therefore exact. If R is a k-algebra then the Matlis dual agrees with the usual dual on the
category of finite-length R-modules, that is, for any finite-length R-module M there is a natural
isomorphism

HomR(M, Hd
m(R))∼= Homk(M, k). (3.5)

We will have more to say about this isomorphism and its relation to residues in § 5.1, but for
now let us proceed to establish duality in T using the functor HomR(−, Hd

m(R)).
As has already been mentioned, the next theorem gives a new proof of a result originally due

to Auslander [Aus78, Proposition 8.8 in ch. 1 and Proposition 1.3 in ch. 3], of which there is
another proof by Buchweitz [Buc86, Theorem 7.7.5].

Theorem 3.5. Given X, Y ∈ T there is an isomorphism of R-modules

T (Y, X[d− 1])∼= HomR(T (X, Y ), Hd
m(R)) (3.6)

which is natural in both variables and compatible with suspension, in the sense of § 2.

Proof. Let us set N = Coker(Y −1 −→ Y 0) so that the canonical map Y −→N is a complete free
resolution. There are natural quasi-isomorphisms (' denotes quasi-isomorphism and X∨ is the
dual complex HomR(X, R))

HomR(HomR(X, Y ), Hd
m(R)) ' HomR(HomR(X, N), Hd

m(R))
∼= HomR(X∨ ⊗N, Hd

m(R))
∼= HomR(N ⊗X∨, Hd

m(R))
∼= HomR(N,HomR(X∨, Hd

m(R)))
∼= HomR(N, X∨∨ ⊗Hd

m(R))
∼= HomR(N, X ⊗Hd

m(R)).

At this point we make use of two facts whose proofs will be given in the next section. The first
is that X ⊗Hd

m(R) is an acyclic complex of injectives, and the second is that for any acyclic
complex of injectives I there is a quasi-isomorphism

HomR(N, I)−→HomR(Y ⊗Hd
m(R)[1− d], I)

induced by a special morphism of complexes N −→ Y ⊗Hd
m(R)[1− d] called the complete

injective resolution of N . Taking this as a given, we may continue with

HomR(HomR(X, Y ), Hd
m(R)) ' HomR(Y ⊗Hd

m(R)[1− d], X ⊗Hd
m(R))

∼= HomR(Y [1− d],HomR(Hd
m(R), X ⊗Hd

m(R)))
∼= HomR(Y [1− d], X ⊗ EndR(Hd

m(R)))
∼= HomR(Y [1− d], X ⊗ R̂)
' HomR(Y [1− d], X)⊗ R̂
' HomR(Y, X[d− 1]).

Here R̂ is the m-adic completion of R, and we have used a theorem of Matlis which states that
Hd

m(R) is naturally a R̂-module and sending r ∈ R̂ to multiplication by r on Hd
m(R) gives an
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isomorphism R̂∼= EndR(Hd
m(R)). The last line follows from the fact that the Hom-spaces in T

have finite length, and taking H0 in the above gives the desired isomorphism in (3.6).
Naturality of this isomorphism is clear from the construction, and compatibility with

suspension can be checked directly, but this is tedious; we will see a better proof in Lemma 5.3
below. 2

If R is a k-algebra then combining the theorem with (3.5) yields a natural isomorphism

T (Y, X[d− 1])∼= Homk(T (X, Y ), k). (3.7)

Observe that every step in the proof of the theorem makes use of explicit standard isomorphisms,
with the exception of the step involving the complete injective resolution, and if R is a k-algebra
the isomorphism (3.5). If we want explicit formulas we must therefore understand these maps.

4. Complete injective resolutions

Let (R,m, k) be a local Gorenstein ring of Krull dimension d with an isolated singularity.

Definition 4.1. A complete injective resolution of an R-module M is an acyclic complex of
injective R-modules I together with a morphism of complexes ϑ :M −→ I which is universal, in
the sense that for any acyclic complex J of injective R-modules the induced map

HomR(ϑ, J) : HomR(I, J)−→HomR(M, J)

is a quasi-isomorphism [EJ95].
The complete injective resolution, if it exists, is unique up to homotopy equivalence and

denoted ciM . If α :M −→N is a morphism of R-modules the induced morphism on the complete
injective resolutions is denoted ci(α).

Let M be a CM R-module with complete free resolution ρ : T −→M . The differential on T
will be denoted ∂. Because the singularity of R is isolated the complex Tp is contractible for
every non-maximal prime p. We are going to construct a complete injective resolution of M ,
essentially by making explicit the fact that T is ‘supported’ on the closed point, and for this we
use the stable Koszul complex of local cohomology.

Let t = (t1, . . . , td) be a system of parameters for R, that is, a sequence of length d generating
an m-primary ideal in R. Since R is Gorenstein, this is the same as a regular sequence of
length d in m or a sequence t such that the open sets D(ti) cover the punctured spectrum
U = Spec(R)\{m}. The stable Koszul complex K∞ = K∞(t) is the tensor product

K∞ :=
d⊗
i=1

(R can // R[t−1
i ]θi), (4.1)

where the underline indicates cohomological degree zero. Here the θi are formal variables of
degree one, introduced to keep track of the grading. If we adopt the convention that the θi
anticommute and that θ2

i = 0, then K∞ is the Z-graded R-module

K∞ =
⊕

i1<···<ip

R[t−1
i1
, . . . , t−1

ip
]θi1 · · · θip

with the differential δ given by left multiplication with
∑

i θi. If a prime ideal p is non-
maximal then p ∈D(ti) for some i, so Rp −→Rp[t−1

i ] is an isomorphism and (K∞)p is contractible.
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Hence the cohomology of K∞ is supported on the closed point m, and moreover the projection

ε : K∞ −→R

is the universal morphism in the unbounded derived category D(R) from a complex supported
on the closed point to R. More precisely, if Z is a complex whose cohomology is supported on m

then any morphism Z −→R in the derived category factors uniquely through ε.
The local cohomology of R is defined by H i

m(R) :=H i(K∞). The cone of the projection ε is a
shift of the Čech complex of U and it follows that Hd

m(R)∼=Hd−1(U,OU ) for d > 0. Since R is
Gorenstein we have H i

m(R) = 0 for i < d and therefore an augmentation quasi-isomorphism

γ : K∞ −→Hd
m(R)[−d],

which amounts to an epimorphism R[t−1
1 , . . . , t−1

d ]θ1 · · · θd −→Hd
m(R). Given r ∈R and integers

e1, . . . , ed > 0 one introduces the generalised fraction [SZ82a, SZ82b][
r

te11 , . . . , t
ed

d

]
:= (−1)dγ

(
r · θ1 · · · θd
te11 · · · t

ed

d

)
∈Hd

m(R).

We also use the notation [r/te11 , . . . , t
ed

d ]. This can be viewed as a Čech cocycle, since

Hd
m(R) =H(· · · −→⊕i1<···<id−1R[t−1

i1
, . . . , t−1

id−1
]−→R[t−1

1 , . . . , t−1
d ]). (4.2)

It is clear from the definition that acting on a generalised fraction [r/te11 , . . . , t
ed

d ] with some ti
has the effect of decreasing the exponent of ti in the denominator and that if ei = 1 then
ti · [r/te11 , . . . , t

ed

d ] = 0 in Hd
m(R). In the same way, we define generalised fractions in Hd

m(N)
for any R-module N .

In special cases the description of injective envelopes in terms of inverse polynomials goes
back to Gabriel [Gab58], Hartshorne [Har70] and Northcott [Nor74]. Our presentation largely
follows the one in Lipman’s monograph [Lip84] or Kunz’s recent book [Kun08]. See also
[LNS05, §§ 3, 4].

While K∞(t) is defined using a specific system of parameters t, it has a universal property
in the derived category and therefore Hd

m(R) is independent of this choice, up to canonical
isomorphism. We will have to manipulate generalised fractions in Hd

m(R) with denominators
given by different regular sequences, and these can be related by the so-called transformation
rule or transition formula contained in the next proposition. Note that if s, t are systems of
parameters then for some n > 0 we have (sn1 , . . . , s

n
d )R⊆ (t1, . . . , td)R.

Proposition 4.2. Let t, s be systems of parameters such that (s1, . . . , sd)R⊆ (t1, . . . , td)R
with si =

∑
j aijtj (aij ∈R). Then as elements of Hd

m(R) we have[
1

t1, . . . , td

]
=
[

det(aij)
s1, . . . , sd

]
.

Proof. See for example [Lip87, Corollary 2.8] or [Kun08, Theorem 4.18]. 2

Given x ∈ T 0 the image under the complete resolution ρ : T −→M is denoted x ∈M . We are
now prepared to state the main theorem.

Theorem 4.3. Let t be a system of parameters with ti · 1T null-homotopic for 1 6 i6 d and
choose for each i a homotopy λi on T with λi ◦ ∂ + ∂ ◦ λi = ti · 1T . Then the morphism

ϑ :M −→ T ⊗Hd
m(R)[1− d]
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defined by

ϑ(x) = (−1)(
d+1
2 )λ1 · · · λd ◦ ∂(x)⊗

[
1

t1, . . . , td

]
(4.3)

is a complete injective resolution. Up to homotopy ϑ is independent of the system of parameters
t and homotopies λi.

The proof will occupy the rest of this section. In outline: since M is the cokernel of the
differential ∂−1 there is a unique map i :M −→ T 1 with i ◦ ρ0 = ∂0, and this defines a morphism
of complexes i :M −→ T [1]. We will prove that the projection ε : T ⊗K∞ −→ T is a homotopy
equivalence and produce, using the perturbation lemma, an explicit inverse ι∞ involving the λi.
The composite

M
i // T [1]

ι∞ // T ⊗K∞[1]
γ // T ⊗Hd

m(R)[1− d] (4.4)

turns out to be described by (4.3), and we prove that it has the necessary universal property.

Lemma 4.4. There exists a system of parameters t such that ti · 1T is null-homotopic for
1 6 i6 d.

Proof. The R-module T (T, T ) of homotopy equivalence classes of self-maps of T has finite length
by Lemma 3.4, so the annihilator contains a system of parameters. 2

Lemma 4.5. The complex T ⊗Hd
m(R) is an acyclic complex of injective R-modules.

Proof. Since Hd
m(R) is injective, it suffices to prove that this complex is acyclic. The argument

is standard: given an injective R-module J and a pair of integers j < i the brutal truncation T6i

is a free resolution of the module of cocycles Zi+1T , so we have

Hj(T ⊗ J) =Hj(T6i ⊗ J) = Tori−j(Zi+1T, J)

which vanishes for j < i− d since J has projective dimension 6d (here we use that R is
Gorenstein). We conclude that T ⊗ J is acyclic. 2

From now on we suppose that a system of parameters t and sequence of null-homotopies
{λi}di=1 has been chosen, and we construct the inverse to the projection ε : T ⊗K∞ −→ T . The
basic idea is to begin with a homotopy equivalence between T ⊗K∞ and T with the differential
δ on K∞ ‘turned off’ and then perturb this differential back in while maintaining the homotopy
equivalence.

Definition 4.6. A deformation retract datum of complexes of R-modules consists of a diagram

(L, b)
ι

// (M, b),
poo

h

where (L, b) and (M, b) are complexes, p and ι are morphisms of complexes, and h is a degree
one R-linear map M −→M , which together satisfy the following two conditions:

(i) pι= 1;

(ii) ιp= 1 + bh+ hb.

Notice that in particular p is a homotopy equivalence with inverse ι.
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Suppose we are given a deformation retract datum. A degree one R-linear map µ :M −→M
is a small perturbation if (b+ µ)2 = 0 and (µh)n = 0 for all sufficiently large integers n. In this
case

(1− µh)
∑
n>0

(µh)n = 1

so 1− µh is an isomorphism of graded R-modules, and we set

A= (1− µh)−1µ=
∑
n>0

(µh)nµ.

Consider the following collection of data:

(L, b)
ι∞

// (M, b+ µ),
poo

h∞ (4.5)

where

ι∞ = ι+ hAι, h∞ = h+ hAh. (4.6)

The next result is known as the homological perturbation lemma [Bro67, Gug72, Shi62].

Theorem 4.7. If µ is a small perturbation and

ph= 0, pµ= 0

then (4.5) is a deformation retract datum.

Proof. See [Cra04, Theorem 2.3]. 2

Given a sequence i = i1 < · · ·< ip we define R[t−1
i ] :=R[t−1

i1
, . . . , t−1

ip
] and θi := θi1 · · · θip .

The complex (T ⊗K∞, ∂ ⊗ 1) is a direct sum of T and T [t−1
i ]θi for various sequences i. In the

notation of the theorem λi ◦ ∂ + ∂ ◦ λi = ti · 1T and therefore over R[t−1
i ]

(t−1
i λi) ◦ ∂ + ∂ ◦ (t−1

i λi) = 1T .

Thus each complex T [t−1
i ]θi is contractible, with t−1

j λj giving a contracting homotopy for any
j ∈ i. For convenience, we use j = i1 in what follows. The upshot is that the inclusion of T as
a subcomplex of (T ⊗K∞, ∂ ⊗ 1) is a homotopy equivalence. We can express this in terms of a
deformation retract by introducing the R-linear homotopy

h : T ⊗K∞ −→ T ⊗K∞, h=
∑

i=i1<···<ip

hi

where for the empty sequence i = ∅ we set hi = 0, and for sequences of positive length we define

hi : T [t−1
i ]θi −→ T [t−1

i ]θi,

hi = t−1
i1
λi1 .

It is then easily checked that there is a deformation retract datum

(T, ∂)
ι

// (T ⊗K∞, ∂ ⊗ 1),
εoo −h (4.7)

where ι is the inclusion of T into T ⊗K∞. Since K∞ is bounded it is clear that µ= 1⊗ δ is
a small perturbation on T ⊗K∞, so as a consequence of the perturbation lemma we have the
following.
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Lemma 4.8. There is a deformation retract datum

(T, ∂)
ι∞

// (T ⊗K∞, ∂ ⊗ 1 + 1⊗ δ),
εoo

h∞

where ι∞ =
∑

m>0(−1)m(hδ)mι. In particular, ε is a homotopy equivalence with inverse ι∞.

We define ϑ to be the composite in (4.4), noting that there is a sign due to the isomorphism

T ⊗ (Hd
m(R)[−d])∼= (T ⊗Hd

m(R))[−d]. (4.8)

Lemma 4.9. The map ϑ is given by the formula in (4.3).

Proof. Let a homogeneous element x ∈ T be given. Then

γι∞(x) =
∑
m>0

(−1)mγ(hδ)mι(x).

Since h decreases the T -degree by one and δ increases the K∞-degree by one, only the m= d
term survives after applying γ, so γι∞(x) = (−1)dγ(hδ)dι(x). Here δ = 1⊗ δ applies to T ⊗K∞
with Koszul signs, as we move the fields θ past elements of T .

Since δ is left multiplication by
∑

i θi the product (hδ)d expands as a sum of d2 terms. It
follows from (4.2) that in Hd

m(R) a fraction without a full complement of ti vanishes, and since h
applied to x · θi multiplies by t−1

i1
the only one of these d2 summands which contributes a nonzero

cocycle in local cohomology is the one where we apply hθd, then hθd−1, and so on; that is,

γ(hδ)dι(x) = γhθ1 · · · hθdι(x)

= (−1)d|x|+(d

2)γ
(
λ1 · · · λd(x) · θ1 · · · θd

t1 · · · td

)
.

Multiplying by the extra factor of (−1)d and accounting for the sign from (4.8), this recovers
the formula of (4.3). Note that if x ∈ T 0 then i(x) = ∂(x). 2

It remains to check that ϑ has the desired universal property.

Lemma 4.10. Let I be an acyclic complex of injective R-modules. Then the induced map

HomR(i, I) : HomR(T [1], I)−→HomR(M, I)

is a quasi-isomorphism.

Proof. We will prove that HomK(R)(T [1], I)−→HomK(R)(M, I) is surjective and leave the proof
of injectivity to the reader. If f :M −→ I is a morphism of complexes then there is a factorisation
f :M −→ Z, where Z = Z0(I), as in the following commutative diagram.

· · · // T−1
−∂ // T 0

−ρ !!CC
CC

CC
CC

−∂ // T 1
−∂ // T 2 // · · ·

M

f

��

f
��

i

>>||||||||

Z

  BB
BB

BB
BB

· · · // I−2 // I−1

=={{{{{{{{
// I0 // I1 // · · ·
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Using projectivity of the top row and acyclicity of the bottom row, we lift f to a sequence of
maps F i : T i+1 −→ Ii making the diagram commute in degrees i6−1. Then using acyclicity
of the top row and injectivity of the bottom row we produce the F i for i> 0, and together these
maps define a morphism F : T [1]−→ I lifting f . 2

Lemma 4.11. Let I be an acyclic complex of injective R-modules. Then the induced map

HomR(γ, I) : HomR(T ⊗K∞, I)−→HomR(T ⊗Hd
m(R)[−d], I)

is a quasi-isomorphism.

Proof. Let F = T60 and K = T>1[1] be the brutal truncations. There is a triangle

T // F // K
+ // (4.9)

from which we deduce morphisms of triangles (we write J =Hd
m(R)[−d] to avoid clutter)

T ⊗K∞ //

��

F ⊗K∞ //

��

K ⊗K∞

��

+ //

T ⊗ J // F ⊗ J // K ⊗ J + //

(4.10)

and (writing [−,−] = HomR(−,−)) gives us the following diagram.

[T ⊗K∞, I] [F ⊗K∞, I]oo [K ⊗K∞, I]oo +oo

[T ⊗ J, I]

ψ′

OO

[F ⊗ J, I]

ψ

OO

oo [K ⊗ J, I]oo

ψ′′

OO

+oo

(4.11)

To prove that ψ′ is a quasi-isomorphism, it suffices to prove that both ψ and ψ′′ are. Let C
denote the cone of the quasi-isomorphism γ : K∞ −→ J , so that C is a bounded acyclic complex.
Then

[P ⊗ C, I]∼= [P, [C, I]].

Any morphism from C to I factors through a bounded below complex of injectives and is therefore
null-homotopic, that is, [C, I] is acyclic. Hence [P ⊗ C, I] is acyclic and ψ is a quasi-isomorphism.

The cone of ψ′′ is [K ⊗ C, I]. We know that T ⊗ J is acyclic, so the first two vertical maps in
(4.10) are quasi-isomorphisms. Hence the third vertical map is a quasi-isomorphism, and K ⊗ C
is a bounded below acyclic complex. But then [K ⊗ C, I] is acyclic, so ψ′′ is a quasi-isomorphism
and we are done. 2

Proof of Theorem 4.3. For an acyclic complex of injective R-modules I we apply [−, I] =
HomR(−, I) to (4.4) to obtain a chain of quasi-isomorphisms using Lemmas 4.11, 4.8 and 4.10:

[T ⊗Hd
m(R)[1− d], I] // [T ⊗K∞[1], I] // [T [1], I] // [M, I] .

This proves that ϑ is a complete injective resolution. It only remains to argue that, up to
homotopy, ϑ is independent of t and the λi. But this is clear, since the definition in (4.4) involves
no choices. 2

We include the following remarks for completeness: they will not be needed in the following.

Remark 4.12. A complex of finite free R-modules X is minimal if k ⊗X has zero differential.
Any isomorphism class in T contains a minimal complex [AM02, § 8] which is unique up to
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isomorphism in the category of complexes. If M has no free summands and we take both F and
Q to be minimal resolutions, then the complete resolution of M constructed in (3.3) is minimal.

A complex of injective R-modules I is minimal if an endomorphism f : I −→ I is a homotopy
equivalence if and only if it is an isomorphism of complexes; equivalently, if for every n ∈ Z
the inclusion Zn(I)−→ In is an injective envelope [Kra05, Lemma B.1]. Suppose that T ∈ T is
minimal and consider the isomorphism

HomR(k, T ⊗Hd
m(R))∼= HomR(k, Hd

m(R))⊗ T ∼= k ⊗ T. (4.12)

Set I = T ⊗Hd
m(R). Since HomR(k, I) has zero differential, for n ∈ Z the socle of In is contained

in Zn(I). Every element of In is m-torsion, so it follows that the inclusion Zn(I)−→ In is
essential, and thus I is minimal. Hence if M is a CM R-module and T a minimal complete free
resolution of M , Theorem 4.3 will produce a minimal complete injective resolution.

Remark 4.13. The homotopy class of ϑ is independent of the ordering of the symbols
λ1, . . . , λd, ∂ in (4.3), up to signs: applying these maps in any order defines a morphism
M −→ T ⊗Hd

m(R)[1− d] homotopic to sgn(σ)ϑ where σ is the corresponding permutation on
d+ 1 letters.

To see this note that λi ◦ ∂ + ∂ ◦ λi = ti · 1T annihilates any generalised fraction with
t1, . . . , td in the denominator, so ∂ effectively anticommutes with λi in (4.3). Let t′ be t
with tj and tj+1 interchanged. By the transformation rule (Proposition 4.2) there is an equality
[1/t] =−[1/t′] of generalised fractions, and hence λj and λj+1 anticommute in (4.3).

Remark 4.14. Complete injective resolutions give an embedding of the singularity category into
a compactly generated triangulated category, for any separated noetherian scheme X. Using
Brown representability Krause proves in [Kra05] that complete injective resolutions exist in this
generality, and that taking complete injective resolutions defines a fully faithful functor

ci(−) : Dsg(X)−→Kac(InjX)

where Kac(InjX) is the homotopy category of acyclic complexes of injective quasi-coherent
sheaves. Moreover, he shows that this category is compactly generated and that the image of the
embedding ci(−) is, up to split idempotents, exactly the subcategory of compact objects.

5. Computing the pairing

Let (R,m, k) be a local Gorenstein ring of Krull dimension d with an isolated singularity and
define

T = Kac(freeR). (5.1)
Given X, Y ∈ T the isomorphism of Theorem 3.5 corresponds to a nondegenerate pairing

〈〈−,−〉〉 : T (Y, X[d− 1])⊗ T (X, Y )−→Hd
m(R). (5.2)

In this section we give an explicit formula for this pairing, using the construction of
complete injective resolutions in § 4. When R is a k-algebra this can be refined to a nondegenerate
pairing taking values in k, by taking residues of generalised fractions. Our convention is that
functions taking values in local cohomology (respectively in k) are given double brackets 〈〈−〉〉
(respectively ordinary brackets 〈−〉).

We will see that the pairing 〈〈−,−〉〉 factors as composition followed by a ‘pretrace’ map

T (Y, X[d− 1])⊗ T (X, Y ) −◦− // T (X, X[d− 1])
〈〈−〉〉 // Hd

m(R),
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that is 〈〈ψ, φ〉〉= 〈〈ψ ◦ φ〉〉. We are going to first describe a formula for 〈〈−〉〉, and then prove that
the pairing determined by this formula is indeed the one produced by Theorem 3.5. To this end
we fix a complex X ∈ T with differential ∂ and, as in the previous section, we choose a system of
parameters t acting null-homotopically on X together with null-homotopies λi on X such that

λi ◦ ∂ + ∂ ◦ λi = ti · 1X . (5.3)

Given a morphism α :X −→X[d− 1] we define the degree zero operator Lα on X as in (1.2) of
the introduction. Recall the claim made in the introduction that the class

〈〈α〉〉 := (−1)(
d+1
2 )
[

tr(Liα)
t1, . . . , td

]
= (−1)(

d+1
2 )+i

[
tr(α ◦ λ1 · · · λd ◦ ∂)i

t1, . . . , td

]
∈Hd

m(R) (5.4)

is independent of all choices: the integer i, the system of parameters t, and the null-homotopies
λj . Independence of the second two choices will follow from the next theorem, and independence
of i is the statement of the following lemma. We write 〈〈−〉〉X for 〈〈−〉〉 if we want to emphasise X.

Lemma 5.1. For i ∈ Z we have the following equality in Hd
m(R):[

tr(Liα)
t1, . . . , td

]
=
[

tr(L0
α)

t1, . . . , td

]
.

Proof. It suffices to prove that tr(Liα) = tr(L0
α) in R/(t). But using (5.3) we have

tr(L0
α) = tr(α1−d ◦ λ2−d

1 · · · λ1
d ◦ ∂0)

= (−1)d tr(α1−d ◦ ∂−d ◦ λ1−d
1 · · · λ0

d)
= −tr(∂−1 ◦ α−d ◦ λ1−d

1 · · · λ0
d)

= −tr(α−d ◦ λ1−d
1 · · · λ0

d ◦ ∂−1)
= tr(L−1

α ).

Continuing to ‘rotate’ ∂ through the trace in this direction takes care of all i < 0, and for i > 0
we simply rotate the other way. 2

The main theorem states that the functional 〈〈−〉〉 determines Auslander’s duality.

Theorem 5.2. The nondegenerate pairing of (5.2) takes the value

〈〈ψ, φ〉〉= 〈〈ψ ◦ φ〉〉= (−1)(
d+1
2 )
[
tr(ψ ◦ φ ◦ λ1 · · · λd ◦ ∂)0

t1, . . . , td

]
for a pair of morphisms ψ : Y −→X[d− 1] and φ :X −→ Y .

Proof. If we set M = Coker(∂−1) then the morphism ϑ :M −→X ⊗Hd
m(R)[1− d] defined by

ϑ(x) = (−1)(
d+1
2 )λ1 · · · λd ◦ ∂(x)⊗ [1/t1, . . . , td]

is a complete injective resolution, by Theorem 4.3. If we begin with a morphism ψ : Y −→
X[d− 1] at the end of the chain of quasi-isomorphisms in the proof of Theorem 3.5, then the
corresponding function HomR(X, Y )−→Hd

m(R) evaluates on φ :X −→ Y to the image of
the identity under the composite, as follows.

X∨ ⊗M
1⊗ϑ // X∨ ⊗X ⊗Hd

m(R)[1− d]
1⊗(ψ◦φ)⊗1 // X∨ ⊗X ⊗Hd

m(R)

ev ⊗1
��

R

coev

OO

Hd
m(R)
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Here coev :R−→X∨ ⊗M denotes the map sending 1 ∈R to
∑

i e
∗
i ⊗ ei for a basis ei of X0,

and ev :X∨ ⊗X −→R is the usual evaluation map. For readability we omit the canonical
isomorphisms used to pull shifts out of components of the tensor product. We conclude that

〈〈ψ, φ〉〉 =
∑
i

ev(1⊗ ψ ◦ φ⊗ 1)(1⊗ ϑ)(e∗i ⊗ ei)

= (−1)(
d+1
2 )∑

i

ev(e∗i ⊗ ψ ◦ φ ◦ λ1 · · · λd ◦ ∂(ei)) · [1/t1, . . . , td]

= (−1)(
d+1
2 ) tr(ψ ◦ φ ◦ λ1 · · · λd ◦ ∂)0 · [1/t1, . . . , td]

= 〈〈ψ ◦ φ〉〉

as claimed. 2

Finally we enumerate some basic properties of the pretrace map

〈〈−〉〉 : T (X, X[d− 1])−→Hd
m(R).

Since the pairing 〈〈−,−〉〉 is canonically defined and 〈〈ψ〉〉= 〈〈ψ, 1〉〉 we see that 〈〈−〉〉 does not
depend on a choice of system of parameters or null-homotopies.

Lemma 5.3. The pretrace map has the following properties.

(i) For morphisms ψ : Y −→X[d− 1] and φ :X −→ Y , 〈〈ψ ◦ φ〉〉= 〈〈φ ◦ ψ〉〉.
(ii) For a morphism ψ :X −→X[d− 1], 〈〈ψ〉〉X = (−1)d · 〈〈ψ〉〉X[1].

Proof. Part (i) is an immediate consequence of the naturality of the isomorphism in Theorem 3.5.
If we use the null-homotopies λ′j =−λj for the action of tj on X[1], then part (ii) follows from
Lemma 5.1. 2

Remark 5.4. In the formula (5.4) the maps ψ, λ1, . . . , λd, ∂ are graded commutative, that is,
if a, b stand for one of these maps then interchanging ab with (−1)|a||b|ba does not change the
cohomology class of the fraction in Hd

m(R). This follows by the arguments of Remark 4.13 and
Lemma 5.1.

5.1 The case of k-algebras
Let us now assume in addition that R is a k-algebra. In this section we elaborate on the
isomorphism (3.5) and its consequences for duality. An R-module M is called m-torsion if every
element of M is annihilated by some power of m. The Hom-spaces T (X, Y ) are finite length and
therefore m-torsion, and it is evident from (3.4) that the infinite module Hd

m(R) is also m-torsion.
A dualising pair (E, ζ) is an m-torsion module E together with a k-linear map ζ : E −→ k

which is universal, in the sense that for every m-torsion module M the map induced by ζ

HomR(M, E)−→Homk(M, k) (5.5)

is an isomorphism. Clearly dualising pairs are unique up to isomorphism.
Every m-torsion module is a direct limit of its finite-length submodules and Homk(−, k) is

exact, so (5.5) is an isomorphism for all M if and only if it is an isomorphism for M = k. Thus
(E, ζ) is a dualising pair if and only if the socle HomR(k, E) is one-dimensional and ζ is nonzero
on the socle. In this case there is a unique R-linear map ι : k −→ E such that ζ ◦ ι= 1, and one
can check that E is an injective R-module and that ι is an injective envelope.

Reversing this, it is easy to produce a dualising pair abstractly: if E is an injective envelope
of k then any k-linear map ζ : E −→ k which does not vanish on the socle must be a dualising
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pair; see for example [deS02, Proposition 0.4]. Since R is Gorenstein we know that Hd
m(R) is an

injective envelope of k, so a dualising pair (Hd
m(R), ζ) exists.

The following is immediate from Theorem 3.5 once we choose a dualising pair.

Corollary 5.5. Given X, Y ∈ T there is a nondegenerate pairing

〈−,−〉 : T (Y, X[d− 1])⊗k T (X, Y )−→ k

defined by 〈ψ, φ〉= ζ〈〈ψ, φ〉〉 which is natural in both variables and compatible with suspension.

Remark 5.6. Let S denote the functor (−)[d− 1] on T . Together with the isomorphism S ◦ [1]∼=
[1] ◦ S given by (−1)d−1 · 1[d] this is a triangulated functor, and it follows from Lemma 5.3 and
the previous corollary that T is (d− 1)-Calabi–Yau in the sense of [Kel08, Proposition 2.2].

To obtain a concrete nondegenerate pairing on the morphism spaces of T it only remains
to find an explicit k-linear functional ζ on Hd

m(R) which is nonvanishing on the socle. Such a
functional is unique up to an automorphism, but fixing this automorphism is quite subtle: while
any element of Hd

m(R) can be presented as a generalised fraction, this presentation is not unique,
so it is a challenge to assign scalars to fractions in a way which is well defined.

This is the classical problem of defining residues of meromorphic differential forms on
algebraic varieties, solved by Serre [Ser59, ch. II] and Tate [Tat68] for curves and generalised by
Grothendieck to arbitrary varieties [Con00, Har66]. The theory of residue symbols is extensive,
and we only sketch the parts we need; for more details see [Lip01, § 5.3], [Lip84, pp. 64–67]
or [HK90, Kun08, Lip87].

We begin with residues over power series rings, and then move on to singular rings.

Example 5.7. If S = kJx1, . . . , xnK there is a canonical k-linear map ResS/k :Hn
m(ωS)−→ k with

ResS/k

[
dx1 ∧ · · · ∧ dxn
xe11 , . . . , x

en
n

]
=

{
1 e1 = · · ·= en = 1,
0 otherwise.

(5.6)

Here ωS is a suitably defined module of top-degree differential forms. This determines the value
of ResS/k on any generalised fraction with powers of the variables in the denominator. If f is a
regular sequence of length n in S then there exist integers e1, . . . , en > 1 such that xei

i ∈ (f)S,
say

xei

i =
∑
j

aijfj .

Then by the transformation rule of Proposition 4.2 (with dV := dx1 ∧ · · · ∧ dxn)

ResS/k

[
s · dV

f1, . . . , fn

]
= ResS/k

[
s · det(aij) · dV
xe11 , . . . , x

en
n

]
(5.7)

so (5.6) uniquely determines the value of ResS/k on every generalised fraction. This is called, for
obvious reasons, the residue symbol. In the case k = C the residue symbol can also be constructed
by integration, see [GH78, ch. V]. To see that the definition in terms of local cohomology agrees
with the analytic definition, it suffices to observe that both constructions obey the transformation
rule and both have the same values on the basic fractions in (5.6).

Here we trivialise ωS ∼= S via the generator dV and note that the map ResS/k :Hn
m(S)−→ k

thus defined is nonvanishing on the socle (the fraction in (5.6) with all ei = 1 generates the socle,
which is one-dimensional). Thus (Hn

m(S), ResS/k) is a dualising pair for S.
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From now on suppose that our local Gorenstein k-algebra R is a complete intersection, i.e.

S = kJx1, . . . , xnK, R= S/(f1, . . . , fc)

for a regular sequence f = (f1, . . . , fc) in m. Hence n= d+ c. In order to canonically define
residues over R, one has to introduce modules of regular differential forms (see [HK90]). But if
one simply wants to construct a dualising pair for R which is computable in terms of residues
over S, one can proceed more directly by relating generalised fractions over R and S.

Proposition 5.8. There is a well-defined S-linear map

τ :Hd
m(R)−→Hn

m(S),

which for a system of parameters t in R is given by

τ

[
r

t1, . . . , td

]
=
[

r
f1, . . . , fc, t1, . . . , td

]
.

Moreover τ is injective and defines an isomorphism between Hd
m(R) and the submodule of

elements of Hn
m(S) annihilated by the ideal (f).

Proof. The proof is technical and we have relegated it to Appendix A. See Lemma A.7. 2

The residue map ResS/k :Hn
m(S)−→ k is a dualising pair for S, and the composite

ζ := ResS/k ◦ τ :Hd
m(R)−→Hn

m(S)−→ k,

ζ

[
r

t1, . . . , td

]
= ResS/k

[
r

f1, . . . , fc, t1, . . . , td

]
is easily seen to be a dualising pair for R. Combining this dualising pair with Theorem 5.2 we
have a more explicit form of the duality for complete intersections.

Corollary 5.9. When R is a complete intersection there is a nondegenerate pairing

〈−,−〉 : T (Y, X[d− 1])⊗k T (X, Y )−→ k

defined in the above notation by

〈ψ, φ〉= (−1)(
d+1
2 ) ResS/k

[
trR(ψ ◦ φ ◦ λ1 · · · λd ◦ ∂)0

f1, . . . , fc, t1, . . . , td

]
which is natural in both variables and compatible with suspension.

6. Matrix factorisations

Throughout this section k is a field of characteristic zero, S = kJx1, . . . , xnK, and W ∈ S is
a polynomial chosen such that the zero locus {W = 0} in An

k has an isolated singularity
at the origin. Then R= S/(W ) is a local Gorenstein k-algebra with an isolated singularity, and
the results of the previous section apply to the triangulated category Kac(freeR). The arguments
work more generally for any regular local k-algebra S, but for simplicity we stick to power series.

Throughout this section all matrix factorisations will be defined over S and factorise W , and
∂i denotes ∂/∂xi. Recall the construction, given in the introduction, of a Z-graded complex X
of finite free R-modules from any matrix factorisation X.

Lemma 6.1 [Buc86, Eis80]. The complex X is an acyclic complex of finite free R-modules and
the functor

(−) : hmf(S, W )−→Kac(freeR)
is an equivalence.
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Proof. Let us recall the proof that X is acyclic. If x ∈ Zi(X) then diX(x) ∈W ·Xi+1 and hence
diX(x) = diX ◦ d

i−1
X (y) for some y ∈Xi−1. But since diX ◦ d

i−1
X =W · 1X is injective diX must be

injective, whence x= di−1
X (y) is a coboundary, and X is acyclic. There is a diagram of functors

hmf(S, W )

F &&MMMMMMMMMM

(−) // Kac(freeR)

Gxxpppppppppp

CM(R)

which commutes up to natural isomorphism, where CM(R) is the stable category of maximal
Cohen–Macaulay R-modules, G(Y ) = Coker(∂−1

Y ) and F (X) = Coker(d1
X). The functor G is an

equivalence by [Buc86, (4.4.1)] and F is an equivalence by [Eis80], therefore periodification is
also an equivalence. 2

We know an explicit formula (see Corollary 5.9) for the nondegenerate pairing on the
morphism spaces of T = Kac(freeR), since R is a complete intersection with c= 1. Using
the equivalence of T with the homotopy category of matrix factorisations M= hmf(S, W ) we
obtain a nondegenerate pairing on the morphism spaces of M. What we find is the following
theorem.

Theorem 6.2. For matrix factorisations X, Y there is a nondegenerate pairing

〈−,−〉 :M(Y, X[n])⊗kM(X, Y )−→ k (6.1)

defined by

〈ψ, φ〉=
1
n!

(−1)(
n−1

2 ) ResS/k

[
strS

(
ψ ◦ φ ◦ dS/k(dX)∧n

)
∂1W, . . . , ∂nW

]
which is natural in both variables and compatible with suspension.

Regarding the notation: we choose homogeneous bases for X, Y so that the matrix-valued
n-form

dS/k(dX)∧n =
∑
σ∈Sn

sgn(σ) · ∂σ(1)(dX) · · · ∂σ(n)(dX) · dx1 ∧ · · · ∧ dxn

makes sense,2 where Sn is the symmetric group. The supertrace of a homogeneous endomorphism
α of a finite free Z2-graded S-module is by definition the trace of (−1)Fα. We also note that
(−)[2] is the identity functor on M, so X[d− 1] =X[n− 2] =X[n].

The proof will be preceded by a series of lemmas, establishing some basic commutative algebra
which we will need. The main mismatch between our current setting and that of § 5 which needs
to be accounted for is the following: to apply our earlier results, we need a system of parameters
t = (t1, . . . , tn−1) in R acting null-homotopically on the acyclic complex X associated to a matrix
factorisation X, and associated null-homotopies λj .

This data almost comes for free: since the singularity of the hypersurface {W = 0} at the
origin is isolated the partial derivatives w = (∂1W, . . . , ∂nW ) form a regular sequence,3 and
these derivatives act null-homotopically on any matrix factorisation and therefore also on the
periodification.

2 The careful reader will note that we are confusing Kähler differentials over the polynomial and power series
ring, but this is harmless since we work within a generalised fraction killed by all sufficiently high powers of the
variables.
3 For k = C see [GLS07, Lemma 23]. The generalisation to arbitrary k is routine.
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Lemma 6.3. Let X be a matrix factorisation. The periodification of the map ∂i(dX) is a
homotopy

∂i(dX) :X −→X

satisfying ∂i(dX) ◦ dX + dX ◦ ∂i(dX) = ∂iW · 1X .

Proof. Since (dX)2 =W , this follows by the Leibniz rule ∂i(dX) ◦ dX + dX ◦ ∂i(dX) =
∂iW · 1X . 2

If we could find a system of parameters for R as a subset of w, say (∂1W, . . . , ∂n−1W ),
then we could take as our null-homotopies the ∂i(dX) and Corollary 5.9 would provide a residue
formula for the pairing in M. This is not quite the Kapustin–Li pairing, but it is very close.

But we are getting ahead of ourselves: it is not true in general that a subset of w gives a
system of parameters for R. However this can always be arranged by a change of variables, or
what amounts to the same thing, replacing w by the sequence

w′ =
( n∑
j=1

c1j · ∂jW, . . . ,
n∑
j=1

cnj · ∂jW
)

(6.2)

for some invertible n× n matrix C over k. We can always choose C such that

t := (w′1, . . . , w
′
n−1) (6.3)

is a system of parameters for R. This is the content of the next pair of lemmas.

Lemma 6.4. Let (A,m) be a Cohen–Macaulay local ring of dimension d > 0 which is an algebra
over an infinite field K, and let u1, . . . , um be elements of A generating an m-primary ideal. There
are linear combinations yi =

∑m
j=1 aijuj with coefficients aij ∈K such that y1, . . . , yd forms a

system of parameters for A.

Proof. Let p1, . . . , pr be the associated primes of A. We claim that there exists a linear
combination y = b1u1 + · · ·+ bmum (bi ∈K) which is a regular element of A. Suppose to the
contrary that every such linear combination is a zero-divisor, and therefore belongs to the union⋃
i pi. If we set Vi = {(b1, . . . , bm) ∈Km |

∑
j bjuj ∈ pi} for 1 6 i6 r then our assumption implies

that
⋃
i Vi =Km. But every Vi is a proper subspace, because if Vi =Km then {u1, . . . , um} ⊆ pi

which would imply pi = m, contradicting our assumption that d > 0. We have reached the desired
contradiction, because K is infinite and thus Km is not a finite union of proper subspaces.
Applying the claim recursively we produce the desired system of parameters for A. 2

Lemma 6.5. There is an invertible matrix C over k such that (6.3) is a system of parameters
for R.

Proof. By hypothesis w generates an ideal primary for the maximal ideal in S, and therefore
also in R. Using Lemma 6.4, we can find n− 1 vectors {(ci1, . . . , cin) ∈ kn}16i6n−1 such that
t is a system of parameters for R. These vectors must be linearly independent (otherwise we
would have dim(R)< n− 1) and we can define the desired matrix C by appending to this list
an arbitrary, linearly independent, vector (cn1, . . . , cnn) from kn. 2

In what follows we assume that C and thus w′ and t have been fixed, such that t is a system
of parameters for R. It follows from Lemma 6.3 that the homotopies

λi :=
n∑
j=1

cij · ∂j(dX)

on X satisfy λi ◦ dX + dX ◦ λi = w′i · 1X for 1 6 i6 n.
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Proof of Theorem 6.2. By Corollary 5.9 there is a nondegenerate pairing (6.1) given by

〈ψ, φ〉= (−1)(
n−1

2 ) ResS/k

[
trR(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ dX)0

t1, . . . , tn−1, W

]
.

Note that the sign ε= (−1)(
n−1

2 ) above has a contribution from moving W from the left end of
the denominator to the right. Because of the extra Z2-symmetry of X, it is convenient to rewrite
this in terms of supertraces of S-linear endomorphisms of X, making use of Lemma 5.1

〈ψ, φ〉=
1
2
ε ResS/k

[
strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ dX)

t1, . . . , tn−1, W

]
.

Here we abuse notation and write λi for the map
∑

j cij · ∂j(dX) on X. Next we observe that the
sequence (t1, . . . , tn−1, W · w′n) = (w′1, . . . , w

′
n−1, W · w′n) is regular, and by the transformation

rule

〈ψ, φ〉 =
1
2
ε ResS/k

[
strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ (w′n · 1X) ◦ dX)

w′1, . . . , w
′
n−1, W · w′n

]
=

1
2
ε ResS/k

[
strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ (λn ◦ dX + dX ◦ λn) ◦ dX)

w′1, . . . , w
′
n−1, W · w′n

]
=

1
2
ε ResS/k

[
strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ λn ◦ (dX)2) + δ

w′1, . . . , w
′
n−1, W · w′n

]
where δ = strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ dX ◦ λn ◦ dX). The (dX)2 =W · 1X cancels with the W in
the denominator, so that

〈ψ, φ〉=
1
2
ε ResS/k

[
strS (ψ ◦ φ ◦ λ1 · · · λn)

w′1, . . . , w
′
n

]
+

1
2
ε ResS/k

[
δ

w′1, . . . , w
′
n−1, W · w′n

]
. (6.4)

Working modulo the sequence w′1, . . . , w
′
n−1, W · w′n, so that dX anticommutes with every λj

except for λn, we have

δ = strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ dX ◦ λn ◦ dX)
= −strS(dX ◦ ψ ◦ φ ◦ λ1 · · · λn−1 ◦ dX ◦ λn)
= (−1)n+1 strS(ψ ◦ φ ◦ dX ◦ λ1 · · · λn−1 ◦ dX ◦ λn)
= strS(ψ ◦ φ ◦ λ1 · · · λn−1 ◦ (dX)2 ◦ λn)
= W · strS(ψ ◦ φ ◦ λ1 · · · λn).

If we insert this into the residue then the polynomials W cancel as before, and from (6.4) we
conclude

〈ψ, φ〉 = ε ResS/k

[
strS(ψ ◦ φ ◦ λ1 · · · λn)

w′1, . . . , w
′
n

]
=

1
n!
ε
∑
σ∈Sn

sgn(σ) ResS/k

[
strS(ψ ◦ φ ◦ λσ(1) · · · λσ(n))

w′1, . . . , w
′
n

]

=
1
n!
ε ResS/k

[
det(C) · strS(ψ ◦ φ ◦ dS/k(dX)∧n)

w′1, . . . , w
′
n

]
=

1
n!
ε ResS/k

[
strS(ψ ◦ φ ◦ dS/k(dX)∧n)

w1, . . . , wn

]
.

In the first step we use the fact that the pairing 〈−,−〉 is independent of the ordering of
the regular system of parameters and homotopies, so that effectively the λi anticommute
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within the supertrace (see Remark 5.4 and also [DM11, Appendix A] for a direct proof) and
therefore all permutations contribute equally. In the last step we use the transformation rule. 2

Consider for any matrix factorisation X the trace map

〈−〉 :M(X, X[n])−→ k (6.5)

defined by 〈ψ〉= 〈ψ, 1〉, that is

〈ψ〉=
1
n!

(−1)(
n−1

2 ) ResS/k

[
strS(ψ ◦ dS/k(dX)∧n)
∂1W, . . . , ∂nW

]
. (6.6)

The nondegenerate pairing 〈−,−〉 is determined by the trace map, since 〈ψ, φ〉= 〈ψ ◦ φ〉. If we
want to emphasise the underlying matrix factorisation, we write 〈−〉X for 〈−〉. For convenience,
let us state the following immediate consequence of Lemma 5.3.

Lemma 6.6. For matrix factorisations X, Y we have:

(i) for morphisms ψ : Y −→X[d− 1] and φ :X −→ Y , 〈ψ ◦ φ〉X = 〈φ ◦ ψ〉Y ;

(ii) for a morphism ψ :X −→X[d− 1], 〈ψ〉X = (−1)d · 〈ψ〉X[1].

Remark 6.7. There is a more general statement which follows from the lemma: if ψ : Y −→X is
a morphism of degree d− 1− a and φ :X −→ Y is a morphism of degree a then

〈ψ ◦ φ〉X = 〈φ ◦ ψ〉Y [a] = (−1)da〈φ ◦ ψ〉Y = (−1)|ψ||φ|〈φ ◦ ψ〉Y .

Remark 6.8. A classical invariant associated to the singular hypersurface {W = 0} is the k-
algebra ΩW = S/(w), called the Jacobi algebra of W . It is a classical result of local duality (see
for example [GH78, p. 659] when k = C) that ΩW together with the functional

γ : ΩW −→ k,

γ(s) = ResS/k[s · dV/∂1W, . . . , ∂nW ]

is a Frobenius algebra, that is, the pairing (r, s) = γ(rs) is nondegenerate. The explicit formula
suggests that the trace map of (6.5) factors into two pieces

M(X, X[n])
β // ΩW

γ // k

where

β(ψ) =
1
n!

(−1)(
n−1

2 ) strS(ψ · dS/k(dX)∧n). (6.7)

This is known in physics literature as the boundary-bulk map, as it sends boundary states
(endomorphisms of X) to closed states (elements of ΩW ). Rather than argue directly that β
is well-defined, let us proceed as follows: local duality states that there is an isomorphism of
ΩW -modules

ΩW −→HomS(ΩW , H
n
m(S))

r 7→ {s 7→ [rs · dV/∂1W, . . . , ∂nW ]}.
(6.8)

The morphism spaces in M are annihilated by (w) and the S-linear map

τ ◦ 〈〈−〉〉 :M(X, X[n])−→Hn−1
m (R)−→Hn

m(S)

(with τ as in Proposition 5.8) must therefore factor through the submodule HomS(ΩW , H
n
m(S)) of

Hn
m(S). Composing this factorisation with the isomorphism (6.8) we have a canonical morphism

of ΩW -modules M(X, X[n])−→ ΩW and this is precisely the map β described in (6.7).

2093

https://doi.org/10.1112/S0010437X13007082 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007082


D. Murfet

Example 6.9. Set S = k[[x, y]] and W = x2y + y4. This is an isolated singularity of type D5.
Given a power series g(x, y) we write Cxiyj (g) for the coefficient of xiyj in g, or in terms of
residue symbols

Cxiyj (g) = Res[g · dx ∧ dy/xi+1yj+1].

Using the transformation rule as explained in Example 5.7 we see that

Res[f · dV/∂xW, ∂yW ] = Res[(−1
2y

3 + 1
8x

2)f · dV/x3, y4] =−1
2Cx2(f) + 1

8Cy3(f). (6.9)

Let ψ be an endomorphism of the matrix factorisation X with differential

dX =
(

0 d1

d0 0

)
, d0 =

(
xy y2

y2 −x

)
, d1 =

(
x y2

y2 −xy

)
.

Let us calculate 〈ψ〉 using the formula (6.6). One checks that

str(ψ(∂x(dX) · ∂y(dX)− ∂y(dX) · ∂x(dX))) = x · ψ0
11 − 4y2 · ψ0

12 + 4y · ψ0
21 − x · ψ0

22

+ x · ψ1
11 + 4y · ψ1

12 − 4y2 · ψ1
21 − x · ψ1

22.

Hence

〈ψ〉 = 1
4{−Cx(ψ0

11)− Cy(ψ0
12) + Cy2(ψ0

21) + Cx(ψ0
22)

− Cx(ψ1
11) + Cy2(ψ1

12)− Cy(ψ1
21) + Cx(ψ1

22)}. (6.10)

For example, (ψ0, ψ1) =
((

0 1
−y 0

)
,
(

0 −y
1 0

))
is an endomorphism of X and we compute that 〈ψ〉= 0

and 〈y · ψ〉=−1. The matrix factorisation X is taken from [Yos90, ch. 9]. For further examples
of the Kapustin–Li formula in physics literature, see [HL05, KL03a, KL03b].
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Appendix A. Residual complexes and generalised fractions

Let (S, n, k) be a Cohen–Macaulay local ring of dimension n> 1, and let (R,m, k) denote
the local ring R := S/W for some regular element W ∈ S. Our aim in this appendix is to
compare generalised fractions over S and its quotient R, using a theorem of Sastry and Yekutieli
from [SY95]. Note that R is Cohen–Macaulay, so both R and S are equidimensional and catenary,
and the remarks of [SY95, §§ 2.1–2.2] apply. We allow n= 1, so that R may be Artinian.

First we recall some basic material from [BH93, § 3.3]. A finitely generated S-module C is
called a canonical module of S if dimk ExtiS(k, C) = δin. A canonical module of S exists if and
only if S is a homomorphic image of a Gorenstein local ring and, if a canonical module of S exists,
it is unique up to (non-canonical) isomorphism. If S is Gorenstein then S itself is a canonical
module, so any canonical module is free of rank one.
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Suppose that S has canonical module ωS and let η : ωS −→ IS be a minimal injective resolu-
tion. The complex IS is then a residual complex for S, that is, IS is a bounded below complex
of injective S-modules with finitely generated cohomology, such that there is an isomorphism⊕

i∈Z
IiS
∼=

⊕
p∈Spec(S)

ES(S/p).

Indeed, given p ∈ Spec(S) with ht(p) = c we define IS(p) :=Hc
p(IS) to be the submodule of

elements in IcS annihilated by some power of p. Then IS(p)∼= ES(S/p) and for 0 6 c6 n
the inclusions define a coproduct IcS =

⊕
ht(p)=c IS(p) and we write µp : IcS −→ IS(p) for the

corresponding projection morphisms. We introduce a family of morphisms ∂[t], following Sastry
and Yekutieli [SY95, § 2.1].

Definition A.1. Given a saturated chain (p, q) in Spec(S) (i.e. ht(q/p) = 1), ∂(p,q) is the
morphism

∂(p,q) : IS(p) inc−→ IcS
∂c

−→ Ic+1
S

µq−→ IS(q)

where c= ht(p). Given 0 6 c < n and t ∈ S we define a morphism ∂[t] : IcS −→ Ic+1
S by

∂[t] =
∑

(p,q) saturated
ht(p)=c,t∈q\p

∂(p,q).

If p is a prime ideal of S then IS(p)∼= ES(S/p) so (0 :IS(p) W ) is nonzero if and only if p

contains W , in which case (0 :IS(p) W )∼= ER(R/p) as R-modules. In what follows ht(p) always
denotes the height of the prime ideal p in S. From the canonical module and its resolution over S,
we obtain the same data over R.

Definition A.2. The module ωR := ωS/WωS is a canonical module for R with minimal injective
resolution IR := HomS(R, IS)[1] (see Lemma A.3 below). Given p ∈ Spec(S) containing W , we
set IR(p) = (0 :IS(p) W ). Then IR is concentrated in degrees [0, n− 1] and given in degree c by

IcR = HomS(R, Ic+1
S )∼=

⊕
ht(p)=c+1,

W∈p

IR(p).

Lemma A.3. There is a quasi-isomorphism κ : ωR −→ IR defined for γ ∈ ωS by

κ(γ) = ∂[W ]

(
1
W
· η(γ)

)
=

∑
(p,q) saturated
ht(p)=0,W∈q\p

∂(p,q)

(
1
W
· η(γ)

)
, (A.1)

and this is a minimal injective resolution of ωR over R.

Proof. SinceW is regular it does not belong to any prime ideal p in S of height zero, so 1/W · η(γ)
makes sense as an element of I0

S . Let {p1, . . . , pr} be the associated primes of W in S, which agree
with the minimal primes since S is Cohen–Macaulay. As an S-module R has free resolution PR

0−→ S
W−→ S −→R−→ 0,

and there is a pair of quasi-isomorphisms

HomS(PR, ωS)
Hom(1,η) // HomS(PR, IS) HomS(R, IS).oo (A.2)
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The only nonzero cohomology of HomS(PR, ωS) is H1 HomS(PR, ωS) = ωR, so HomS(R, IS)[1]
is an injective resolution of ωR over R, with resolution map κ obtained by applying H1 to (A.2):

κ : ωR ∼=H1 HomS(PR, ωS)
∼=−→H1 HomS(PR, IS)

∼=−→H1 HomS(R, IS) =H0IR.

It remains to calculate κ.
Let γ ∈ ωS be given and consider the coboundary in HomS(PR, IS)1:

∂0
HomS(PR,IS)(1/W · η(γ)) =

(
−W
∂0
IS

)
(1/W · η(γ)) =

(
−η(γ)

∂0
IS

(1/W · η(γ))

)
.

For a prime ideal p of height zero in S, let ηp denote the composite of η : ωS −→ I0
S with the

projection µp : I0
S −→ IS(p). Since η is a morphism of complexes 0 = µq∂

0
IS
η =

∑
ht(p)=0 ∂(p,q)ηp

whenever ht(q) = 1. Let q be a prime ideal of height one not equal to some pi, and thus not
containing W . Then W acts as a unit on IS(q) and

µq∂
0
IS

(1/W · η(γ)) =
∑

ht(p)=0

∂(p,q)µp(1/W · η(γ)) = 1/W ·
∑

ht(p)=0

∂(p,q)ηp(γ) = 0.

It follows that

∂0
IS

(1/W · η(γ)) =
∑

ht(p)=0

r∑
i=1

∂(p,pi)
(1/W · η(γ)) = ∂[W ](1/W · η(γ)).

Observe that this element is killed by W , and therefore belongs to I0
R = HomS(R, IS)1. Hence(

−W
∂0
IS

)
(1/W · η(γ)) =

(
0

∂[W ](1/W · η(γ))

)
−
(
η(γ)

0

)
,

which shows that as we pass from left to right in (A.2) with the cohomology class of γ, we arrive
at ∂[W ](1/W · η(γ)) on the right-hand side. We conclude that κ is an injective resolution of ωR,
and it only remains to check that IR is minimal. There exists a minimal subcomplex J of IR,
which must be a residual complex since it is a minimal resolution of ωR. We already know that
IR is a residual complex, so we conclude that J = IR and IR is minimal. 2

Remark A.4. Since IR is a residual complex, as above we define morphisms ∂(p,q),R : IR(p)−→
IR(q) for any saturated chain (p, q) in Spec(R) with ht(p) = c+ 1 (in S) and thus for any
t ∈R a morphism ∂[t],R : IcR −→ Ic+1

R . We also set Hn
n (ωS) := (IS)n and Hn−1

m (ωR) := (IR)n−1 =
(0 :Hn

n (ωS) W ).

This model for local cohomology differs from the one introduced in § 4 and we want to explain
how they are related.

Remark A.5. Let (B,m, k) be a Cohen–Macaulay local ring of dimension d> 0 with a canonical
module ωB and let κ : ωB −→ IB be a minimal injective resolution, so (IB)d is isomorphic to the
injective envelope EB(k). Let t be a system of parameters for B. We define

Hd
m(ωB, t) :=Hd(K∞(t)⊗ ωB).

Obviously this depends on the system of parameters t. Let us also set

Hd
m(ωB) := (IB)d = lim−→

j

ExtdB(B/mj , ωB).
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The injective resolution IB determines an isomorphism Hd
m(ωB, t)∼=Hd

m(ωB), as follows.
Tensoring the augmentation ε : K∞(t)−→B with Hd

m(ωB) gives an isomorphism

ε⊗ 1 : K∞(t)⊗Hd
m(ωB)

∼=−→Hd
m(ωB) (A.3)

since Hd
m(ωB)⊗B[t−1

i ] = 0. Let v :Hd
m(ωB)−→ IB[d] denote the morphism of complexes given

by the identity in degree zero. There is a degree-wise split exact sequence

0−→Hd
m(ωB) v−→ IB[d]−→ Coker(v)−→ 0,

and since ωB is a canonical module, Coker(v) involves only indecomposable injectives EB(B/p)
for non-maximal primes p. It follows that K∞(t)⊗ Coker(v) is contractible, and we deduce a
homotopy equivalence

Hd
m(ωB)

(A.3)

∼=
// K∞(t)⊗Hd

m(ωB)
1⊗v // K∞(t)⊗ IB[d] ∼=

// (K∞(t)⊗ IB)[d]. (A.4)

Hence the resolution morphism κ : ωB −→ IB induces the desired isomorphism:

Hd
m(ωB, t) =Hd(K∞(t)⊗ ωB)

Hd(1⊗κ)

∼=
// Hd(K∞(t)⊗ IB)

(A.4)

∼=
// Hd

m(ωB).

We define generalised fractions in Hd
m(ωB) by transferring the generalised fractions in Hd

m(ωB, t)
defined in § 4 along this isomorphism.

Let t2, . . . , tn denote a system of parameters for R so that W, t2, . . . , tn is a system
of parameters for S. As explained above, we introduce generalised fractions in Hn−1

m (ωR)
and Hn

n (ωS), and a theorem of Sastry–Yekutieli relates these generalised fractions to the
morphisms ∂[t].

Theorem A.6 [SY95, (2.2.2)]. If s1, . . . , sn is a system of parameters for S and γ ∈ ωS then

[γ/s1, . . . , sn]S = (−1)(
n

2)∂[sn] ◦ · · · ◦ ∂[s1](η(γ)/s1 · · · sn).

Using this theorem one can relate generalised fractions over R and S.

Lemma A.7. For γ ∈ ωS , [γ/t2, . . . , tn]R = [γ/W, t2, . . . , tn]S as elements of Hn−1
m (ωR)⊆

Hn
n (ωS).

Proof. By definition for any 0 6 c6 n− 2 and t ∈ S the diagram

IcR

j
��

−∂[t],R // Ic+1
R

j
��

Ic+1
S ∂[t]

// Ic+2
S

commutes, where j denotes inclusions. In particular by Theorem A.6 we have

j[γ/t2, . . . , tn]R = (−1)(
n−1

2 )j ◦ ∂[tn],R ◦ · · · ◦ ∂[t2],R(κ(γ)/t2 · · · tn)

= (−1)(
n−1

2 )+n+1∂[tn] ◦ · · · ◦ ∂[t2] ◦ j(κ(γ)/t2 · · · tn)

which by Lemma A.3 and Theorem A.6 becomes

= (−1)(
n−1

2 )+n+1∂[tn] ◦ · · · ◦ ∂[t2] ◦ ∂[W ](η(γ)/Wt2 · · · tn)

= (−1)(
n−1

2 )+(n

2)+n+1[γ/W, t2, . . . , tn]S = [γ/W, t2, . . . , tn]S

as required. 2
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