THREE SOLUTIONS FOR A PERTURBED SUBLINEAR ELLIPTIC PROBLEM IN \mathbb{R}^N

GIOVANNI ANELLO and GIUSEPPE CORDARO

Department of Mathematics, University of Messina, 98166 Sant'Agata-Messina, Italy e-mail: anello@dipmat.unime.it; cordaro@dipmat.unime.it

(Received 3 August, 2004; accepted 4 October, 2004)

Abstract. In this paper we study a perturbed sublinear elliptic problem in \mathbb{R}^N . In particular, using variational methods, we establish a result that ensures the existence of at least three weak solutions.

2000 Mathematics Subject Classification. 35J20.

1. Introduction. In this paper we are concerned with the following perturbation problem

$$\begin{cases} -\Delta u = h(x)|u|^{s-2}u + \lambda f(x, u) \text{ in } \mathbb{R}^N\\ u \in D^{1,2}(\mathbb{R}^N) \end{cases}$$
(P_{\lambda})

where $s \in [1, 2[, N \ge 3, \lambda \in \mathbb{R}_+, f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, $h \in L^{\infty}_{loc}(\mathbb{R}^N) \cap L^{\frac{2N}{2N-3(N-2)}}(\mathbb{R}^N)$ is a function almost everywhere nonnegative in \mathbb{R}^N such that, for some set $A \subseteq \mathbb{R}^N$ of positive measure, ess $\inf_A h > 0$ and

$$D^{1,2}(\mathbb{R}^N) = \left\{ u \in L^{\frac{2N}{N-2}}(\mathbb{R}^N) / \nabla u \in L^2(\mathbb{R}^N) \right\}$$

is the completion of

 $C_0(\mathbb{R}^N) = \{u \in C(\mathbb{R}^N) : \operatorname{supp}(u) \text{ (support of } u) \text{ is compact}\}\$

with respect to the norm

$$\|u\| = \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, dx\right)^{\frac{1}{2}},$$

induced by the scalar product

$$(u, v) = \int_{\mathbb{R}^N} \nabla u(x) \nabla v(x) \, dx.$$

Moreover, we assume that the function f satisfies the following conditions.

(a) There exist $q \in [0, \frac{N+2}{N-2}[, \alpha \in L^t(\mathbb{R}^N) \cap L^{\infty}_{loc}(\mathbb{R}^N)]$, where we set $t = \frac{2N}{N+2-q(N-2)}$, $\beta \in L^{\frac{2N}{N+2}}(\mathbb{R}^N) \cap L^{\infty}_{loc}(\mathbb{R}^N)$ such that

$$|f(x,t)| \le \alpha(x)|t|^q + \beta(x),$$

for a.e. $x \in \mathbb{R}^N$ and all $t \in \mathbb{R}$.

(b) There exist three functions $\gamma \in L^{\frac{N}{2}}(\mathbb{R}^N, \mathbb{R}_+)$, $\delta \in L^{\frac{2N}{N+2}}(\mathbb{R}^N, \mathbb{R}_+)$ and $\chi \in L^1(\mathbb{R}^N, \mathbb{R}_+)$ such that

$$\int_0^t f(x,s) \, ds \le \gamma(x) |t|^2 + \delta(x) |t| + \chi(x).$$

for a.e. $x \in \mathbb{R}^N$ and all $t \in \mathbb{R}$.

For each $u \in D^{1,2}(\mathbb{R}^N)$,

$$E(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(x)|^2 dx - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |u(x)|^s - \lambda \int_{\mathbb{R}^N} \left(\int_0^{u(x)} f(x, s) \, ds \right) dx$$

is the energy functional relative to problem (P_{λ}) . In proving our result, we will show that the above assumptions on *h* and *f* ensure, in particular, that *E* is continuously differentiable on $D^{1,2}(\mathbb{R}^N)$. Hence the weak solutions of (P_{λ}) corresponds to the critical points of *E*.

Our result is as follows.

THEOREM 1.1. Under the assumptions stated above there exist $\sigma, \overline{\lambda} > 0$ such that, for each $\lambda \in [0, \overline{\lambda}[$, problem (P_{λ}) admits at least three distinct solutions in $D^{1,2}(\mathbb{R}^N)$ whose norms are not greater than σ .

In the literature, most of the papers that deal with multiple solutions for elliptic equations on \mathbb{R}^N consider particular types of nonlinearities as power functions, convex or concave functions; see for instance [4, 9]. This is due to the lack of compact embeddings for Sobolev spaces on unbounded domains which, in many cases, represents the main difficulty in using a variational approach. Such a difficulty is often overcome by exploiting the particular properties of the nonlinearity as homogeneities or symmetries.

In this paper, we consider a nonlinearity which is a pertubation of a particular symmetric sublinear nonlinearity (i.e. $h(x)|t|^{s-2}t$) by a function f that must satisfy only the growth conditions (a) and (b). This kind of nonlinearity allows us to study our problem by means of variational methods and, in particular, to apply a consequence (Theorem 2.1 in [1]) of a variational principle stated in [6].

The paper is organized into three sections. In Section 2 some preliminary results are stated and proved. Section 3 contains the proof of Theorem 1.1.

2. Preliminary lemmas. For the reader's convenience, we begin this section with the following known result.

LEMMA 2.1. Let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence weakly converging to u in $D^{1,2}(\mathbb{R}^N)$. Then, for $p \in [1, \frac{2N}{N-2}[$ and for any bounded measurable set $\Omega \subseteq \mathbb{R}^N$, $\{u_n|_{\Omega}\}_{n\in\mathbb{N}}$ strongly converges to $u|_{\Omega}$ in $L^p(\Omega)$.

Proof. Consider $\{u_n\}_{n\in\mathbb{N}}$ weakly converging to u in $D^{1,2}(\mathbb{R}^N)$. We note that $u_n \to u$ weakly in $L^{\frac{2N}{N-2}}(\mathbf{R}^N)$. Hence, in particular, for every $v \in C_0^{\infty}(\mathbb{R}^N)$, one has

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} u_n(x) v(x) \, dx = \int_{\mathbf{R}^N} u(x) v(x) \, dx.$$
(2.1)

Fix R > 0, $p \in [1, \frac{2N}{N-2}[$ and set $B_R = \{x \in \mathbf{R}^N : |x| \le R\}$. We prove that $u_n \to u$ strongly in $L^p(B_R)$.

Indeed, denote by $u_{|B_R}$ the restriction of u to B_R and suppose that $\{u_n\}$ does not converge to $u_{|B_R}$ weakly in $W^{1,2}(B_R)$. Since $\{u_n\}$ is norm bounded in $W^{1,2}(B_R)$, there exist a subsequence $\{u_{n_k}\}$ and $\bar{u} \in W^{1,2}(B_R)$, with $\bar{u} \neq u_{|B_R}$, such that $u_{n_k} \to \bar{u}$ weakly in $W^{1,2}(B_R)$. By the Rellich-Kondrachov's Theorem, $u_{n_k} \to \bar{u}$ strongly in $L^p(B_R)$.

Taking into account (2.1), we obtain

$$\int_{B_R} u(x)v(x)\,dx = \lim_{k\to\infty} \int_{B_R} u_{n_k}(x)v(x)\,dx = \int_{B_R} \bar{u}(x)v(x)\,dx,$$

for every $v \in C_0^{\infty}(B_R)$. Then $u(x) = \overline{u}(x)$, for almost all $x \in B_R$, against the fact that $\overline{u} \neq u_{|B_R}$. Hence $\{u_n\}$ weakly converges to $u_{|B_R}$ in $W^{1,2}(B_R)$. Applying the Rellich-Kondrachov's Theorem again, we conclude that $\{u_n\}$ strongly converges to u in $L^p(B_R)$.

LEMMA 2.2. Condition (a) implies that the functional

$$\Phi: u \to \int_{\mathbb{R}^N} \left(\int_0^{u(x)} f(x, t) \, dt \right) dx,$$

is well-defined, strongly continuous and Gateâux differentiable in $D^{1,2}(\mathbb{R}^N)$ with compact Gateâux derivative.

Proof. By standard arguments, Φ is proved to be well-defined, strongly continuous and Gateâux differentiable in $D^{1,2}(\mathbb{R}^N)$ and so we limit ourselves to prove that the Gateâux derivative Φ' is compact.

Let $\{u_n\}$ be a bounded sequence in $D^{1,2}(\mathbb{R}^N)$. There exist $\bar{u} \in D^{1,2}(\mathbb{R}^N)$ and a subsequence, which we denote by $\{u_n\}$ again, weakly converging to \bar{u} in $D^{1,2}(\mathbb{R}^N)$. Now, fix $\epsilon > 0$ arbitrarily and choose M > 0 such that

$$\|\alpha\|_{L^{t}(|x|>M)} < \epsilon, \|\beta\|_{L^{\frac{2N}{N+2}}(|x|>M)} < \epsilon.$$

For every $v \in H$ with ||v|| = 1 and $n \in \mathbb{N}$, one has

$$\begin{aligned} |(\Phi(u_n) - \Phi(\bar{u}))(v)| &\leq \left| \int_{|x| \leq M} (f(x, u_n(x)) - f(x, \bar{u}(x)))v(x) \, dx \right| \\ &+ \left| \int_{|x| > M} f(x, u_n(x)) - f(x, \bar{u}(x)))v(x) \, dx \right| \\ &\leq C_1 \left(\int_{|x| \leq M} |f(x, u_n(x)) - f(x, \bar{u}(x))|^{\frac{2N}{N+2}} \right)^{\frac{N+2}{2N}} \\ &+ C_2 \|\alpha\|_{L^1(|x| > M)}^{\frac{N+2}{2N}} + C_3 \|\beta\|_{L^{\frac{2N}{N+2}}(|x| > M)}, \end{aligned}$$

where C_1 , C_2 , C_3 are suitable positive constants. By Lemma 2.1, $\{u_n\}$ converges strongly in $L^{q+1}(|x| \le M)$, so that $f(\cdot, u_n(\cdot)) \to f(\cdot, \bar{u}(\cdot))$ strongly in $L^{\frac{2N}{N+2}}(|x| \le M)$. Hence, there exists $\nu \in \mathbb{N}$ such that, for $n > \nu$, one has

$$\|\Phi(u_n) - \Phi(\bar{u})\|_{H^*} = \sup_{v \in H, \|v\|=1} |(\Phi(u_n) - \Phi(\bar{u}))(v)| \le C_1 \epsilon + C_2 \epsilon^{\frac{N+2}{2N}} + C_3 \epsilon.$$

This proves that Φ' is a compact operator.

LEMMA 2.3. Let $\Psi : D^{1,2}(\mathbb{R}^N) \to \mathbb{R}$ be defined by

$$\Psi(u) = \frac{1}{2} \|u\|^2 - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |u(x)|^s \, dx.$$

There exists a unique $u_0 \in D^{1,2}(\mathbb{R}^N) \cap C(\mathbb{R}^N)$, with $u_0 > 0$ in \mathbb{R}^N , such that

$$\Psi(u_0) = \inf_{u \in D^{1,2}(\mathbb{R}^N)} \Psi(u).$$
(2.2)

Proof. By Lemma 2.2, the functional

$$u \to \int_{\mathbb{R}^N} h(x) |u(x)|^s dx$$

has compact Gateâux derivative in $D^{1,2}(\mathbb{R}^N)$. Hence, in particular, it follows that Ψ is weakly sequentially lower semicontinuous. Since Ψ is also coercive, $\Psi(u) = \Psi(|u|)$ and $\inf_{D^{1,2}(\mathbb{R}^N)} \Psi < 0$, there exists $u_0 \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}$ such that

$$\Psi(u_0) = \inf_{D^{1,2}(\mathbb{R}^N)} \Psi,$$
(2.3)

with $u_0 \ge 0$ almost everywhere in \mathbb{R}^N . Consequently u_0 is a weak solution of the problem

$$\begin{cases} -\Delta u = h(x)|u|^{s-2}u \text{ in } \mathbb{R}^N, \\ u \in D^{1,2}(\mathbb{R}^N). \end{cases}$$
(P₀)

From Lemma B.3 in [8] and Theorem 8.22 in [3], it follows that $u_0 \in C(\mathbb{R}^N)$. Moreover the strong maximum principle ensures that $u_0(x) > 0$, for all $x \in \mathbb{R}^N$.

Now, for each R > 0, set $B_R = \{x \in \mathbb{R}^N : |x| < R\}$ and let $u_R \in W_0^{1,2}(B_R)$ such that

$$\Psi(u_R) = \inf_{u \in W_0^{1,2}(B_R)} \Psi(u),$$

and $u_R \ge 0$ a.e. in B_R . The function u_R exists and is unique. Also the net $\{u_R\}_{R>0}$ is increasing with respect to R; see [2]. Moreover, by definition, the net $\{\Psi(u_R)\}$ is not increasing with respect to R and is bounded below by $\inf_{D^{1,2}(\mathbb{R}^N)} \Psi$. We deduce that

$$\lim_{R\to+\infty}\Psi(u_R)\geq \inf_{u\in D^{1,2}(\mathbb{R}^N)}\Psi(u).$$

Since Ψ is coercive, there exist a subsequence $\{R_n\}$, with $\lim_{n\to\infty} R_n = +\infty$, and $\tilde{u} \in D^{1,2}(\mathbb{R}^N)$ such that $u_{R_n} \to \tilde{u}$ weakly in $D^{1,2}(\mathbb{R}^N)$ as $n \to \infty$. Hence, we exploit the sequentially weak lower semicontinuity of Ψ and obtain

$$\Psi(\tilde{u}) \leq \lim_{n \to \infty} \Psi(u_{R_n}) = \lim_{R \to +\infty} \Psi(u_R).$$

Furthermore, by Lemma 2.1 and the monotony of $\{u_R\}_{R>0}$, we also have that

$$\lim_{R\to+\infty}u_R(x)=\lim_{n\to\infty}u_{R_n}(x)=\tilde{u}(x),$$

for a.e. $x \in \mathbb{R}^N$.

We claim that $\Psi(\tilde{u}) = \inf_{D^{1,2}(\mathbb{R}^N)} \Psi$. Suppose that

$$\Psi(\tilde{u}) > \inf_{D^{1,2}(\mathbb{R}^N)} \Psi.$$

Consequently, there would exist $v \in C_0^{\infty}(\mathbb{R}^N)$ such that

$$\Psi(v) < \Psi(\tilde{u}). \tag{2.4}$$

On the other hand, if we choose $\overline{R} > 0$ such that $\operatorname{supp}(v) \subseteq B_{\overline{R}}$, we also have

$$\Psi(v) \ge \inf_{u \in W_0^{1,2}(B_{\bar{R}})} \Psi(u) = \Psi(u_{\bar{R}}) \ge \Psi(\tilde{u}),$$

contradicting (2.4).

Let $\bar{u} \in D^{1,2}(\mathbb{R}^N)$ be such that

$$\Psi(\bar{u}) = \inf_{D^{1,2}(\mathbb{R}^N)} \Psi,$$

with $\bar{u} \ge 0$ a.e. in \mathbb{R}^N . It turns out that $\bar{u} = \tilde{u}$.

Indeed, for each R > 0, \bar{u} is a supersolution for the problem

$$\begin{cases} -\Delta u = h(x)u^{s-1} & \text{in } B_R \\ u = 0 & \text{on } \partial B_R, \end{cases}$$

so that $u_R \leq \bar{u}$ a.e. in \mathbb{R}^N . Passing to the limit as $R \to +\infty$, we find that

$$\tilde{u}(x) \le \bar{u}(x),\tag{2.5}$$

for a.e. $x \in \mathbb{R}^N$. From the fact that \tilde{u} and \bar{u} are, in particular, critical points of Ψ such that $\Psi(\tilde{u}) = \Psi(\bar{u})$, it follows that

$$\int_{\mathbb{R}^N} h(x) [(\tilde{u}(x))^s - (\bar{u}(x))^s] \, dx = 0.$$
(2.6)

Consequently, from (2.5) and (2.6), $\tilde{u}(x) = \bar{u}(x)$ for a.e. $x \in \mathbb{R}^N$.

LEMMA 2.4. Let Ψ and u_0 be as in Lemma 2.3. For every $u \in D^{1,2}(\mathbb{R}^N)$, the real function

$$r \to \inf_{\|w\|=r} \Psi(u+w)$$

is continuous in \mathbb{R}_+ . Moreover, there exists $r_0 > 0$ such that, for every $0 < r < r_0$, we have

$$\Psi(\pm u_0) < \inf_{\|v\|=r} \Psi(v \pm u_0).$$

Proof. Fix $u \in D^{1,2}(\mathbb{R}^N)$. For each r > 0, one has

$$\inf_{\|v\|=r} \Psi(u+v) = \frac{1}{2}r^2 + \frac{1}{2}\|u\|^2 - \sup_{\|v\|=r} \left((u,v) - \frac{1}{s} \int_{\mathbb{R}^N} h(x)|u(x) + v(x)|^s \, dx \right).$$

209

 \square

Hence the continuity follows from the weak sequential continuity of the function

$$v \to (u, v) - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |u(x) + v(x)|^s dx.$$

See Lemma 6 of [7].

Let $r_0 = 2 ||u_0||$ and suppose that, for some $0 < \overline{r} < r_0$, we have

$$\Psi(u_0) = \inf_{\|v\| = \bar{r}} \Psi(u_0 + v).$$
(2.7)

Then, we can find a sequence $\{u_k\}$ in $D^{1,2}(\mathbb{R}^N)$ with $||u_k|| = \overline{r}$, for all $k \in \mathbb{N}$, such that

$$\lim_{k\to+\infty}\Psi(u_0+u_k)=\Psi(u_0).$$

Up to a subsequence, we can suppose that $u_k \to \bar{u}$ weakly in *H*. In particular, we have $\|\bar{u}\| \leq \bar{r}$,

$$(u_k, u_0) = \int_{\Omega} \nabla u_k(x) \nabla u_0(x) \, dx \to \int_{\mathbb{R}^N} \nabla \bar{u}(x) \nabla u_0(x) \, dx = (\bar{u}, u_0) \tag{2.8}$$

and

$$\int_{\mathbb{R}^N} h(x) |u_k(x) + u_0(x)|^s \, dx \to \int_{\mathbb{R}^N} h(x) |\bar{u}(x) + u_0(x)|^s \, dx, \tag{2.9}$$

as $k \to \infty$.

Consequently, from (2.2), (2.7), (2.8) and (2.9), one has

$$\inf_{D^{1,2}(\mathbb{R}^N)} \Psi = \Psi(u_0) = \lim_{k \to +\infty} \Psi(u_0 + u_k)$$

=
$$\lim_{k \to +\infty} \left(\frac{1}{2} \|u_0\|^2 + \frac{1}{2} \bar{r}^2 + (u_k, u_0) - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |u_k(x) + u_0(x)|^s \, dx \right)$$

=
$$\frac{1}{2} \|u_0\|^2 + \frac{1}{2} \bar{r}^2 + (\bar{u}, u_0) - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |\bar{u}(x) + u_0(x)|^s \, dx$$

$$\geq \frac{1}{2} \|u_0\|^2 + \frac{1}{2} \|\bar{u}\|^2 + (\bar{u}, u_0) - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |\bar{u}(x) + u_0(x)|^s \, dx = \Psi(\bar{u} + u_0)$$

From this we deduce that $\bar{u} + u_0$ as well as $|\bar{u} + u_0|$ are global minima for Ψ and that $\|\bar{u}\| = \bar{r}$. Using the same arguments to prove regularity and positivity of u_0 , we have $|\bar{u} + u_0|, \bar{u} + u_0 \in C(\mathbb{R}^N)$ and $|\bar{u}(x) + u_0(x)| > 0$, for all $x \in \mathbb{R}^N$. Note that $\bar{u} \in C(\mathbb{R}^N)$, being $\bar{u} = (\bar{u} + u_0) - u_0$. By applying Lemma 2.3, we obtain

$$|\bar{u}(x) + u_0(x)| = u_0(x), \qquad (2.10)$$

for all $x \in \mathbb{R}^N$. At this point, put

$$A = \{x \in \mathbb{R}^N : \overline{u}(x) = 0\}$$

and

$$B = \{ x \in \mathbb{R}^N : \bar{u}(x) = -2u_0(x) \}.$$

By (2.10), $A \cup B = \mathbb{R}^N$ and, because $u_0 > 0$ in \mathbb{R}^N , $A \cap B = \emptyset$. Moreover, the continuity of \bar{u}, u_0 , implies that A and B are closed sets in \mathbb{R}^N . Since \mathbb{R}^N is connected, it results that $A = \mathbb{R}^N$ or $B = \mathbb{R}^N$.

In the former case, it should be $\bar{u} = 0$ against the fact that $\|\bar{u}\| = \bar{r} > 0$. In the latter case, it should be $\bar{u} = -2u_0$ and hence $\|\bar{u}\| = 2\|u_0\|$ contrary to $\bar{r} < 2\|u_0\|$.

Taking into account that $\Psi(-u_0) = \Psi(u_0)$, the same conclusion holds with $-u_0$ in place of u_0 , as can be easily checked.

3. Proof of Theorem 1.1. Consider the functionals Ψ , Φ : $D^{1,2}(\mathbb{R}^N) \to \mathbb{R}$ defined as follows:

$$\Psi(u) = \frac{1}{2} ||u||^2 - \frac{1}{s} \int_{\mathbb{R}^N} h(x) |u(x)|^s dx,$$

$$\Phi(u) = -\int_{\mathbb{R}^N} \left(\int_0^{u(x)} f(x, t) dt \right) dx.$$

By Lemma 2.2, it follows that Φ is weakly sequentially continuous and Ψ is weakly sequentially lower semicontinuous in $D^{1,2}(\mathbb{R}^N)$. By condition (b), it also follows that there exists $\lambda_1 > 0$ such that, for every $\lambda \in [0, \lambda_1[$, the functional $\Psi + \lambda \Phi$ is coercive.

Put $x_1 = u_0$, $x_2 = -u_0$ and fix $0 < \bar{r} < \min\{||u_0||, r_0\}$. By Lemma 2.4 it follows that the hypotheses of Theorem 2.1 in [1] are satisfied and so there exists $0 < \bar{\lambda} < \lambda_1$ such that, for every $\lambda \in]0, \bar{\lambda}[, \Psi + \lambda \Phi$ admits two distinct local minima $u_1^{(\lambda)}, u_2^{(\lambda)} \in H$, with $||x_i - u_i^{(\lambda)}|| < \bar{r}$, for i = 1, 2. Fix $\lambda \in [0, \bar{\lambda}[$. Since $\Psi + \lambda \Phi$ satisfies the Palais-Smale condition (see Example 38.25 in [10]), Theorem 1 of [5] implies the existence of a third critical point $u_3^{(\lambda)}$, distinct from $u_1^{(\lambda)}$ and $u_2^{(\lambda)}$, that satisfies

$$\Psi(u_3^{(\lambda)}) + \lambda \Phi(u_3^{(\lambda)}) = \phi(\lambda),$$

where

$$\phi(\lambda) = \inf_{\psi \in \Gamma_{\lambda}} \sup_{t \in [0,1]} (\Psi(\psi(t)) + \lambda \Phi(\psi(t))),$$

and

$$\Gamma_{\lambda} = \left\{ \psi \in C([0, 1], H) : \psi(0) = u_1^{(\lambda)} \text{ and } \psi(1) = u_2^{(\lambda)} \right\}$$

We note that, for every $\lambda \in [0, \overline{\lambda}[$, the function $\psi_{\lambda} : t \in [0, 1] \rightarrow u_1^{(\lambda)} + (1 - t)u_2^{(\lambda)}$ belongs to Γ_{λ} . Moreover, it follows that

$$\sup_{\lambda \in [0,\bar{\lambda}[} \sup_{t \in [0,1]} \|\psi_{\lambda}(t)\| \le 2(\|u_0\| + \bar{r}).$$

Exploiting the fact that Ψ is the sum of the norm squared and a sequentially weakly continuous functional and that Φ is sequentially weakly continuous, one has

$$\sup_{\lambda \in [0,\bar{\lambda}[} \phi(\lambda) \leq \sup_{\lambda \in [0,\bar{\lambda}[} \sup_{t \in [0,1]} (\Psi(\psi_{\lambda}(t)) + \lambda \Phi(\psi_{\lambda}(t)))$$

$$\leq \sup_{\|v\| \leq 2(\|u_{0}\| + \bar{r})} \Psi(v) + \bar{\lambda} \sup_{\|v\| \leq 2(\|u_{0}\| + \bar{r})} \Phi(v) < +\infty.$$
(3.11)

At this point, we can prove that $\sup_{\lambda \in [0,\overline{\lambda}[} \|u_3^{(\lambda)}\| < \infty$. In fact, if

$$\sup_{\lambda\in[0,\bar{\lambda}[} \left\| u_3^{(\lambda)} \right\| = +\infty,$$

there would exist a bounded sequence $\{\lambda_n\} \subset [0, \overline{\lambda}[$ such that $||u_3^{(\lambda_n)}|| \to +\infty$, as $n \to \infty$. Consequently, we should have

$$\begin{split} \lim_{n \to \infty} \phi(\lambda_n) &= \lim_{n \to \infty} \left(\Psi \big(u_3^{(\lambda_n)} \big) + \lambda_n \Phi \big(u_3^{(\lambda_n)} \big) \right) \\ &\geq \lim_{n \to \infty} \left(\Psi \big(u_3^{(\lambda_n)} \big) + \bar{\lambda} \min \left\{ 0, \Phi \big(u_3^{(\lambda_n)} \big) \right\} \right) = +\infty, \end{split}$$

contradicting (3.11).

Hence, set

$$\sigma = \max\left\{2(\|u_0\| + \bar{r}), \sup_{\lambda \in [0,\bar{\lambda}[} \|u_3^{(\lambda)}\|\right\}.$$

The conclusion follows.

REFERENCES

1. G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, *Arch. Math. (Basel)* 82 (2004), 172–179.

2. H. Brezis and S. Kamin, Sublinear elliptic equations in \mathbb{R}^N , *Manuscripta Math.* **74** (1992), 87–106.

3. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order* (Springer-Verlag, 1977).

4. A. Malchiodi, Multiple positive solutions of some elliptic equations on \mathbb{R}^N , *Nonlinear Anal.* **43** (2001), 159–172.

5. P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142–149.

6. B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401–410.

7. M. Schechter and K. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, *Differential Integral Equations* **3** (5) (1990), 889–899.

8. M. Struwe, Variational methods (Springer-Verlag, 1996).

9. S. B. Tshinanga, On multiple solutions of semilinear elliptic equation on unbounded domains with concave and convex nonlinearities, *Nonlinear Anal.* **28** (1997), 809–814.

10. E. Zeidler, *Nonlinear functional analysis and its applications, Vol. III* (Springer-Verlag, 1984).