VoL. 43 (1991) [393-397]

VOLUME INEQUALITIES USING SECTIONS OF CONVEX SETS

Paul R. Scott

Abstract

We give a general result for the lower bound of the volume of a compact convex set K in E^{d} in terms of the volumes of orthogonal sections of K.

1. Introduction

Let K be a compact convex body in E^{d}, and let $\mathcal{H}=\left\{H_{1}, \ldots, H_{d}\right\}$ be a family of d pairwise orthogonal hyperplanes in E^{d}. If S is an r-dimensional body in E^{d}, we use $|S|$ to denote the r-dimensional volume of S. In [2], Meyer gives a lower bound for the volume $|K|$ of K in terms of the volumes of the sections $K_{i}=K \cap H_{i}$ of K. He shows:

Lemma 1.

$$
[d!|K|]^{d-1} \geqslant[(d-1)!]^{d} \prod_{i=1}^{d}\left|K_{i}\right| .
$$

Equality occurs for example when K is a cross polytope (generalised octahedron).
Let $l_{i}=\cap_{j \neq i} H_{j}(1 \leqslant i \leqslant d)$, and for each i define $Y_{i}=K \cap l_{i}$. The following result is a weak version of Theorem 4 of [3]:

Lemma 2.

$$
d!|K| \geqslant \prod_{i=1}^{d}\left|Y_{i}\right|
$$

It is easy to see (and we shall show) that equality occurs here for example when K is a cross polytope.

The purpose of this note is to show that Lemmas 1 and 2 are special cases of a wider family of such inequalities involving the volumes of orthogonal sections.

By suitable choice of coordinate system, we may assume that for each i, the hyperplane H_{i} of \mathcal{H} has equation $x_{i}=0$. For $1 \leqslant r<d$, let $V_{t_{1} t_{2} \ldots t_{r}}\left(1 \leqslant t_{1}<t_{2}<\ldots\right.$ $<t_{d} \leqslant d$) denote the r-dimensional subspace, occurring as the intersection of the distinct hyperplanes $H_{t_{1}}, \ldots, H_{t_{r}}$, and let $S_{t_{1} t_{2} \ldots t_{r}}=K \cap V_{t_{1} t_{2} \ldots t_{r}}$, the section of K by $V_{t_{1} t_{2} \ldots t_{r}}$. These are the only types of section that will be considered. We shall prove:

[^0]Theorem 1. For $d \geqslant 2$,

$$
\begin{equation*}
[d!|K|]^{d-1} \geqslant(r!)^{d} \prod_{\text {cyclic }}\left|S_{12 \ldots} \ldots r\right| \cdot\left(\prod_{i=1}^{d}\left|Y_{i}\right|\right)^{d-r-1}, \tag{1}
\end{equation*}
$$

where the first product is the product of the d terms obtained from the given term by cyclically permuting the subscripts $1,2, \ldots, d$. Equality occurs for example when K is a cross polytope.

Theorem 2. For $d \geqslant 2$,

$$
[d!|K|]^{d-1} \geqslant(r!)^{d} \prod\left|S_{t_{1} t_{2} \ldots t r}\right|^{d /\binom{d}{r}} \cdot\left(\prod_{i=1}^{d}\left|Y_{i}\right|\right)^{d-r-1},
$$

where the first product is taken over the $\binom{d}{r}$ terms obtained by choosing $1 \leqslant t_{1}<t_{2}<$ $\ldots<t_{r} \leqslant d$. Equality occurs for example when K is a cross polytope.

We observe that Lemmas 1 and 2 are special cases of Theorems 1 and 2, with $r=d-1$ and $r=1$ respectively.

2. Proof of Theorem 1

The proof will rely on Steiner symmetrisation, so we shall need:
Lemma 3. Let S be a section of the convex body K formed by the intersection of K with some subset of \mathcal{H}, and suppose that S, K map to S^{\prime}, K^{\prime} respectively under Steiner symmetrisation about the hyperplane $H_{j}: x_{j}=0$. Then
(a) $\left|K^{\prime}\right|=|K|$;
(b) $\left|S^{\prime}\right|=|S|$ if S lies in a hyperplane perpendicular to H_{j};
(c) $\left|S^{\prime}\right| \geqslant|S|$ otherwise.

The properties are well-known and simple to prove (see for example [1]).
We now symmetrise K about each of the hyperplanes H_{1}, \ldots, H_{d} in turn to obtain the symmetral K^{*}. Suppose that section S maps to S^{*} under this symmetrisation. According to Lemma 3,

$$
\left|K^{*}\right|=|K|,\left|S^{*}\right| \geqslant|S| .
$$

It will thus be sufficient to establish our results for symmetrised bodies, and henceforth we assume that K is symmetric about each hyperplane of \mathcal{H}.

Let Q denote the closed positive orthant $\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \geqslant 0,1 \leqslant i \leqslant d\right\}$. Set $k=K \cap Q, y_{i}=Y_{i} \cap Q, s_{t_{1} \ldots t_{r}}=S_{t_{1} \ldots t_{r}} \cap Q$. By the symmetry of K we have
$|K|=2^{d}|k|,\left|Y_{i}\right|=2\left|y_{i}\right|$, and $\left|S_{t_{1} \ldots t_{r}}\right|=2^{r}\left|s_{t_{1} \ldots t_{r}}\right|$. Thus to obtain inequality (1), it will be enough to show

$$
\begin{equation*}
[d!|k|]^{d-1} \geqslant(r!)^{d} \prod_{\text {cyclic }}\left|s_{12} \ldots r\right| \cdot\left(\prod_{i=1}^{d}\left|y_{i}\right|\right)^{d-r-1} \tag{2}
\end{equation*}
$$

We progressively build up a ($d-r-1$)-fold pyramid with basis $s_{12} \ldots$ by taking

$$
\begin{aligned}
& p_{r+1}=\operatorname{conv}\left\{s_{12 \ldots r} \cup y_{r+1}\right\}, \\
& p_{r+2}=\operatorname{conv}\left\{p_{r+1} \cup y_{r+2}\right\} \\
& \ldots \\
& p=p_{d-1}=\operatorname{conv}\left\{p_{d-2} \cup y_{d-1}\right\}
\end{aligned}
$$

at each step choosing a segment y_{j} to increase the dimension by 1 . The resulting pyramid p lies in the hyperplane H_{d}. Now for any point M in k, the cone $C_{d}=$ conv $\{M, p\}$ with vertex M and basis p is contained in k. Cyclically permuting the numbers $1,2, \ldots, d$ gives rise to d such cones, all with vertex M. Since for each j the basis of the cone C_{j} lies in the coordinate hyperplane H_{j}, the intersection $C_{i} \cap C_{j}$ of distinct cones C_{i}, C_{j} itself lies in a hyperplane - the hyperplane determined by M and the ($d-2$)-space $H_{i} \cap H_{j}$. It follows that for all $i \neq j$ we have $\left|C_{i} \cap C_{j}\right|=0$.

Thus, for any point $M=\left(x_{1}, \ldots, x_{d}\right)$ in k we have

$$
\begin{equation*}
|k| \geqslant\left|C_{1}\right|+\left|C_{2}\right|+\cdots+\left|C_{d}\right|=\sum_{\text {cyclic }} \frac{r!}{d!}\left(\left|s_{12 \ldots r}\right|\left|y_{r+1}\right| \cdots\left|y_{d-1}\right|\right) x_{d} \tag{3}
\end{equation*}
$$

using the same cyclic notation on the subscripts as before.
Because M is an arbitrary point of k, it follows that k is contained in the simplex L :

$$
L=\left\{\left(x_{1}, \ldots, x_{d}\right) \in Q: \sum_{\text {cyclic }}\left(\left|s_{12 \ldots} \ldots\right|\left|y_{r+1}\right| \ldots\left|y_{d-1}\right|\right) x_{d} \leqslant \frac{d!}{r!}|k|\right\}
$$

Since the volume of L is given by ($1 / d!$) times the product of the axial intercepts,

$$
|L|=\frac{1}{d!}\left[\frac{d!|k|}{r!}\right]^{d}\left(\prod_{c y}\left|s_{12 \ldots c l i c}\right| \cdot\left[\prod_{i=1}^{d} y_{i}\right]^{d-r-1}\right)^{-1}
$$

Substituting $|k| \leqslant|L|$ and simplifying gives

$$
[d!|k|]^{d-1} \geqslant(r!)^{d} \prod_{\text {cyclic }} \mid s_{12 \ldots} \ldots\left(\prod_{i=1}^{d} y_{i}\right)^{d-r-1}
$$

This establishes (2), and Theorem 1 follows. Equality is obtained when k coincides with the simplex L; this occurs for example when K is a cross polytope.

3. Proof of Theorem 2

It is clear that the argument used in proving Theorem 1 is not restricted to sections whose subscripts are cyclic permutations of $(1,2, \ldots, r)$. Let T denote the set of (unordered) r-tuples obtained by cyclically permuting the elements of ($1,2, \ldots, d$). Thus

$$
T=\{(1,2, \ldots, r),(2,3, \ldots, r+1), \ldots,(d, 1,2, \ldots, r-1)\} .
$$

Geometrically, we can think of each of these r-tuples as a set of r connected vertices of a regular d-gon. It follows that the group of automorphisms of T is the dihedral group D_{d}, having order $2 d$. Now the symmetric group S_{d} of order d ! can be partitioned into the $d!/(2 d)$ left cosets of D_{d}. Mapping the set T using the permutations of S_{d} gives rise to $d!/(2 d)$ sets of r-tuples, (call these d-sets say). In the listing of these sets the total number of r-tuples derived from T is $d!/(2 d) \times d$. All possible r-tuples appear, and by symmetry, all appear the same number of times. Since there are $\binom{d}{r}$ possible distinct r-tuples, each appears (1/2)d! $\left.\begin{array}{l}d \\ r\end{array}\right)$ times.

Collecting together the sections with r-tuple subscripts lying in each of the above d-sets, and using the argument of the proof of Theorem 1 on each such collection, we obtain $d!/(2 d)$ inequalities of the form (1), except that in each inequality the subscripts for the sections S form the r-tuples of a d-set. Multiplying these inequalities together, and taking the $2 d /(d!)$-th power gives:

$$
[d!|K|]^{d-1} \geqslant(r!)^{d-1}\left(\prod\left|S_{t_{1} t_{2} \ldots t_{d}}\right|\right)^{d /\binom{d}{r}}\left(\prod_{i=1}^{d}\left|Y_{i}\right|\right)^{d-r-1}
$$

where the first product is taken over the $\binom{d}{r}$ terms obtained by selecting $1 \leqslant t_{1}<$ $\boldsymbol{t}_{\mathbf{2}}<\cdots<\boldsymbol{t}_{\boldsymbol{r}} \leqslant \boldsymbol{d}$. Equality is given for example when K is a cross polytope, as for Theorem 1 .

4. Final Remarks

We conclude by observing that further (more complicated!) inequalities can be obtained using this method. Thus in expression (3), in the cyclic summation, the representative term contains the volume of the section $s_{12 \ldots r}$ multiplied by $\left|y_{r+1}\right|, \ldots,\left|y_{d}\right|$, and x_{d}. By fixing $s_{12 \ldots d}$ and permuting the suffixes $r+1, \ldots, d$, we obtain $d-r$ terms which can be used to contribute towards a suitable sum for estimating the volume of K. This leads to an inequality in the situation where the space E^{d} occurs as a direct sum of the vector subspaces $V_{t_{1} t_{2} \ldots t_{r}}$ which determine the sections $S_{t_{1} t_{2} \ldots t_{r}}$.

References

[1] K. Leichtweiss, Konvexe Mengen (Springer, Berlin, 1980).
[2] M. Meyer, 'A volume inequality concerning sections of convex sets', Bull. Lond. Math. Soc. 20 (1988), 151-155.
[3] P.R. Scott, 'Properties of axial diameters', Bull. Austral. Math. Soc. 39 (1989), 329-333.

Department of Pure Mathematics
The University of Adelaide
Adelaide SA 5000
Australia

[^0]: Received 30th May, 1990.
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

