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GENERALISED UMBILICS ON EMBEDDED SPHERES 

J. L. NOAKES 

ABSTRACT. We study two kinds of generalized umbilics on smoothly em
bedded n-manifolds in R"+1. A sectional umbilic occurs where two of the 
principal curvatures are equal, and a split sectional umbilic is a more general 
notion. 

1. Introduction. Let N be a smooth oriented rc-manifold (n > 2), smoothly em
bedded in Rn+1, and let v be the smobth unit normal field to N obtained by requiring 
{ vi, V2,..., vn, v(w)} to be a positively oriented basis for R"+1 whenever { vi, V2,... 
. . . , vn} is a positively oriented basis for TNW. Identify v with a smooth map from TV to 
the unit sphere Sn in Rn+1, and TNW with TSn

v{w) where w £ N. Then the derivative di/w 

is self-adjouint with respect to the usual metric on TS"(W); the eigenvalues are therefore 
real, and their negatives are the principal curvatures c\(w) < C2(w) < • • • < cn(w) at w 
of the hypersurface N. The eigenvectors are called principal directions. The function a 
is differentiate at points w such that c/-i(w) / Q(W) / c/+i(w), by the implicit function 
theorem, and c* is continuous on the whole of N, by Rouchés theorem. A point x G N is 
an umbilic, in the classical sense, when c\(x) — cn(x). 

For example, if N = S2 then there must be at least one umbilic, because the principal 
directions would otherwise define continuous nonsingular line element fields on S2, and 
this cannot happen because S2 has nonzero Euler characteristic. On the other hand, there 
is no proof as yet that a convex immersion of S2 in R3 has at least two umbilics; this was 
conjectured by Carathéodory and proved only in the ananlytic case by Hamburger [3]. 
Another proof, also in the analytic case, was given by Bol and Klotz [2], [4], and also 
by Titus [9]. Some examples where N ~ S2 are described by Spivak in [8]; note also 
that the ellipsoids of revolution which are not spheres have just two umbilics namely the 
fixed points of the rotation group. 

When n > 2 there is no particular reason to suppose that a hypersurface N will have 
umbilics, except in special circumstances, and in the present paper we consider the ex
istence of generalized umbilics when TV = Sn. 

Generalized umbilics are related to results on Bott periodicity and symplectic geom
etry. 

In [6, §4] Section 2, for example a real vector bundle E^ over Sn is used to construct 
a hypersurface MER in Rm+1 without generalized umbilics of a particular kind; here 
2(n+p)+1. In [6, §4] E^ is an orthogonal real 2/?-plane bundle associated with a unitary 
complex/7-plane bundle E over Sn, and MEK is used to construct a Lagrangian immersion 
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CE: W ^ Sn+l x Km~n —• T* Rm+1. The Gauss class of CE is then related to the classifying 
map of E by means of a Bott homotopy equivalence. The hypersurface MER is noncom-
pact, and the search for compact examples leads to questions about generalised umbilics 
whenA^S"2. 

I take this opportunity to thank Professor R. Bott for discussions about the relationship 
between umbilics and symplectic geometry, and also Professor J. R. Vanstone for some 
stimulating conversations about a version of §3. I am very grateful to the referee, for 
pointing out the important paper of Smyth and Xavier [7], as well as for a number of 
helpful comments. 

2. Sectional Umbilics. We call x a sectional umbilic of N at the /-th position when 
Ci(x) = a+\ (x) for some i between 1 and n — 1. The multplicity mx of a sectional umbilic 
x is defined to be the number of positions / between 1 and n — 1 at which x is a sectional 
umbilic. An umbilic in the classical sense is precisely a sectional umbilic of multiplicity 
n-\. 

Unless TN is a direct sum of line bundles, there must be at least one sectional umbilic, 
because otherwise the eigenspaces of the di/w would define n mutually orthogonal line-
sub-bundles of TN. To verify local triviality for these line sub-bundles we prove 

LEMMA 1. Let h: E —• F be a continuous vector bundle map whose fibrewise kernels 
Kw(w G AO have constant dimension d. Then K = UW^KW is a continuous vector bundle 
over N. 

(We have in mind the case where E = F = TN, and h\ TNW is dvw + Q(W)1 .) 

PROOF. Without loss E, F are trivial bundles: there is no need for K to be trivial in 
such a case, even when h is surjective; for example h might be orthogonal projection 
from m n+11 Sn onto the normal bundle of Sn in R n+]. To prove local triviality of K, it is 
sufficient to observe that any matrix of nullity d can be reduced to the matrix with d 1 's 
down the diagonal and O's elsewhere, by means of elementary row and column opera
tions, and that a continuous perturbation of the original matrix requires only continuous 
perturbation of the operations. The row and column operations correspond to coordinate 
changes in the fibres of £, F. Note that for the purposes of Lemma 1 there is no need for 
TV to be a manifold. 

It follows that if N = Sn where n ^ 3,7, then N has at least one sectional umbilic, 
because line bundles over simply-connected spaces are trivial, and the only parallelisable 
spheres are those of dimensions 1,3,7. We take this observation further as follows. 

Let i\ < Î2 < 13 < • — < ik be the positions at which sectional umbilics do not 
occur for any value of x in N. We call the ordered /:-tuple (i\, 12,13, • • •, ik) the profile of 
N. When k — 0, which happens for example when N = S2

y the profile is empty. 

LEMMA 2. TN is a direct sum ofk + 1 mutually orthogonal sub-bundles E\, E2,..., 
Ek+i of dimensions d\ = i\, d2 — ii — iud^ — i?> — 12, . • -, dk = ik — ik-u dk+\ — n — ik. 

The fibre EjW of Ej over wGiVis spanned by the principal directions corresponding 
to Cij_l+\(w\ Cij_]+2(w),..., Cij(w), and the definition of the profile gives dim^ Ejw — dj 
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for all w G N. To prove that the union of these fibres is a vector bundle we refer again to 
Lemma 1. (We do not say that the Ej are smooth sub-bundles of 77V.) 

We call the sub-bundles Ej the summands of 77V, and the dj the summand dimensions. 
It would be interesting to argue in the opposite direction; for example, is there an embed
ding of S3 in R4 without Section 1 umbilics? We take N = Sn for the remainder of this 
section. This would be the case, for example if N was connected, compact, and strictly 
convex (namely c\(w) > 0 for all w G N), by [5] Theorem 5.6. 

LEMMA 3. Let E(\) and EQ) be vector bundles over Sn with positive fibre dimensions 
P\ < Ply and let E be the direct sum of these bundles. Then E has at least p\ everywhere 
linearly independent cross-sections. 

PROOF. Let H+ and H~ be the closed hemispheres in Sn consisting of those points 
whose n+1 -st coordinates are non-negative and non-positive respectively. Because hemi
spheres are contractible we can choose everywhere linearly independent cross-sections 
s\,\, $1,2» $1,3» • • • > s\,pi of the restriction of E(\) to H+. Similarly we can choose everywhere 
linearly independent cross-sections S2,\, 2̂,2, ^2,3, • • • > S2,P2 of the restrictions of E(2) to H~. 
We extend these cross-sections to cross-sections e\t\,^1,2^1,3, • • • e\tPl of E(\) and cross-
sections e2,\, <?2,2<?2,3, • • • e2,P2 of E(2)', we do not say that the extended cross-sections are 
linearly independent everywhere. 

For 1 <i<p\ define si to be the cross-section of E given by the sum e\j + <?2,/- Since 
the e\j are linearly independent over one hemisphere and the e2j are linearly independent 
over the other, it follows that the 57 are everywhere linearly independent. 

The following combinatorial procedure is needed. Suppose we are given a set S of 
£ + 1 positive integers d\,d2,...,dc+x whose sum is a given integer n. Partition S into 
two disjoint subsets U, V and let a be the smaller of Y.u dj and £v dj. Define /x(5) to be 
the maximum value of a as the partitions vary; a partition which achieves this maximum 
value is called optimal. 

To state Theorem 1 we make a particular choice of S as follows. Let m\,m2 be the 
number of summand dimensions that are 1,2 respectively. The remaining £+1 = k+\ — 
m\ —m2 summand dimensions are our dj and these make up S. Note that n = n—m\ — 2w2-

THEOREM 1. /x(5) + mx + 2m2 < p(n + 1). 

Here p(n + 1) is the Radon-Hurwitz number, defined as follows. Write n + 1 in the 
form (la + 1)2*, and then write b = c + 4d where a, b, c, d are integers and 0 < c < 3. 
Then p(n + 1) = 2C + 8J. For example p(n + 1) = 1 when n is even, p(4) = 4, p(6) = 2, 
p(8) = 8, p(10) = 2, p(12) = 4, p(14) = 2, p(16) = 9, p(18) = 2, p(20) = 4. 

When n — 2 Theorem 1 holds trivially, and so we take n > 2 for the purposes of 
the proof. Let E(\), E(2) be obtained by taking the direct sums of the summands of TSn 

corresponding to elements of an optimal partition of S. Then by Lemma 3 E has at least 
/i(S) everywhere linearly independent cross-sections. Note that TSn is the direct sum of 
E with the summands of dimensions 1,2. Since n > 2, all vector bundles over Sn of fibre 
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dimensions 1,2 are trivial and so TSn has at least p(S) + m\ + 2mi everywhere linearly 
independent cross-sections. 

But a famous result of J. F. Adams [1] asserts that TSn has at most p(n + 1) — 1 
everywhere linearly independent cross-sections. This proves Theorem 1. 

REMARK 1. In the situation of Theorem 1, S contains only integers > 3, and it 

follows that p(S)> 3 [%^]. 

REMARK 2. £raJC > n — k — 1, where the multiplicities mx are summed over all 
sectional umbilics x. 

To justify Remark 2 consider the profile (i\, iï, j'3, . . . 4) of N. By definition of the 
profile, for every integer q G (//_i, //) there is at least one x which is a sectional umbilic 
at the qth position; the sum of the multiplicities of these sectional umbilics is therefore 
at least as large as dj — 1. Allowing y to vary, and summing, we obtain Remark 2. 

Theorem 1 is easy to apply. 
Examples: 

(1) When n is even p(n + 1) = 1, and so p(S) = m\ — mi = 0 and the profile is 
therefore empty. So £ mx > n — 1. 

(2) Theorem 1 says nothing about the cases where n — 3,7. 
(3) When n — 5, p(n + 1) = 2 and so p,(S) + m\ + 2ra2 < 1. Therefore ni2 = 0 and 

(m\,fj,(S)) is either (0,0), (1,0) or (0,1). In the first case the profile is empty and 
therefore YLmx > 4. If the profile is nonempty then, because p(S) > 3 unless 
£ = 0, we have m\ — 1, mi = 0, £ = 0. So Y,mx > 5 — 2 — 3, and the only 
possible nonempty profiles are (1), (4). 

(4) When n = 9we have p(« + 1) = 2 again and so m^ — 0 and (m\,p(S)) is either 
(0,0), (1,0) or (0,1). In the first case the profile is empty and therefore £ mx > 8. 
If the profile is nonempty then the only possibilities are (1), (8), and then we have 
Emx>l. 

(5) When n — 11 we have p(n + 1) = 4 and so p(S) + m\ + 2m^ < 3. If the 
profile is empty then E % > 10. The other possibilities are (p,(S),m\,m2) = 
(0,1,0), (0,2,0), (0,3,0), (0,0,1 ), (0,1,1 ), (3,0,0) and we would have £ mx > 
9,8,7,9,8,9 respectively. 

3. Split Sectional Umbilics. As noted, Theorem 1 says nothing about sectional um
bilics when n — 3,7, and this leads us to introduce a weaker notion. A split sectional 
umbilic at the ith position of a smoothly embedded oriented hypersurface Af is an ordered 
pair (y,z) of points in N such that ct(y) = q+i(z). The multiplicity m^ of a split sec
tional umbilic is the number of positions / between 1 and n — 1 at which (y, z) is a split 
sectional umbilic. Then for x G N, (x,x) is a split sectional umbilic precisely when x is a 
sectional umbilic, and the multiplicities agree. 

Suppose again that Af is connected, compact, and strictly convex; then N = Sn. 
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THEOREM 2. E % z ) > ft — 1> where the multiplicities are summed over all split 
sectional umbilics (y, z) ofN. 

As the referee points out, Theorem 2 follows from the principal curvature theorem of 
Smyth and Xavier [7 § 1]. Because the principal curvature theorem applies to hypersur-
faces which are not necessarily compact or convex it is to be expected that their proof 
should be less elementary than my proof of Theorem 2. Their immersion/o appears as 
my/r, but we seem to argue differently from that point on, and it may helpful to give my 
relatively simple proof for the special situation in Theorem 2. 

So for r e R define a smooth map/r: TV —•> Rn+1 by/r(w) = w + rv(w). Here w G N. 
Given w, let { vf.j — 1,2, • • • ,n} be an orthonormal basis of TSn

U(W) = TNW such that v7 

is a nonzero eigenvector of the eigenvalue — c/(w) of di/w. We have 

(1) dfwivj) = Vj + rdvw(vj) = (l - rcj(w))vj 

and this equation determines the linear transformation dfrw. We now prove Theorem 2 
by contradiction. 

Suppose that for some / we can choose r G ( l / min{ ci+\(z): z G N}, 1 / max{ c,-(̂ ): 
yGiV}). Then by (1 ),/ r is an immersion. Let o;7-: R -^ N(j — 1, • • •, n) be smooth curves 
with ujj(0) = w, and whose velocity vectors at time 0 are v7. We argue in a familiar way [8, 
Proposition 8 p. 90]. Choosep <G R"+1 and define Lp:fr(N) —> R by Lp(q) = \\q-p\\2. 
Choose w Ç i V s o that/r(w) is a point of relative maximum of Lp. Then 0 is a critical 
point of each LpUj, namely 

(2) 2[d(fruJ)/dtJrujJ-p)^ = 0 

and also 

d2(Lpfrujj)/dt2
t=o 

(3) = l((d2(frCJj)/ dt2
t^fr(w) -P) + (difrCUj)/ dtf^ dffrWj)/ dt^)] 

< 0 

Now i/(w) is orthogonal to the image of dfm, by (1), and so by (2) we have 

(4) fr(w)-p = ai/(w) 

for some nonzero a G R. Since (v(uj(t)\dfrujj{t)dojjt{\)) = 0 for all t, we have 

(v(w),d2(frWj)/dt2
t^0) = -(di/w(Vj), (1 - rcj(w))vj) = C/(w)(l - rcj(w)) which is 

positive or negative according as j < i, j > /, because of our choice of r. So by (4) we 

have ( a(fr(w) — p), d2(frujj)/ dt2
t^0) positive or negative according to our choice of j . 

This contradicts (3), and Theorem 2 is proved. 
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