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Abstract Let m be a measure supported on a relatively closed subset X of the unit disc. If f is a
bounded function on the unit circle, let fm denote the restriction to X of the harmonic extension of f
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1. Introduction

Let D denote the open unit disc in the complex plane, let T be the unit circle and let dθ

denote the normalized linear measure on T . Let m denote a positive σ-finite measure on
D and consider the operator

Γ : f → f̃ |X ,

where f ∈ L∞(dθ), X is the closed support (relative to D) of m and f̃ |X denotes the
restriction to X of the harmonic extension f̃ of f to D. We are interested here in the
operator

Λ : L1(m) → L1(dθ)

having Γ as its adjoint. Our main concern is to give necessary and sufficient conditions
on m in order that Λ has a non-trivial kernel. This was one of several problems studied
by Bonsall in [1] and our work is motivated by his results.

Let φ ∈ ker Λ. We assume that φ is real valued and can conclude that

∫
T

Λ(φ)(ζ)f(ζ) dζ =
∫

D

φ(z)f̃(z) dm = 0
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for any bounded measurable function f on the unit circle T . Since φ is real valued, it is
evident that φ ∈ ker Λ if and only if

∫
D

φ(z)h(z) dm = 0

for any h ∈ H∞(D), where H∞(D) consists of all bounded analytic functions in D.
The kernel of Λ is also closely connected with sets of determination for bounded har-

monic functions. Let U denote an open subset of the plane and let the space of all
bounded harmonic functions on U be denoted by h∞(U). A subset S of U is called a set
of determination for h∞(U) if

sup{|f(z)|, z ∈ S} = sup{|f(z)|, z ∈ U}

for all f ∈ h∞(U). If H∞(U) denotes the bounded analytic functions on U , sets of
determination for H∞(U) are defined in the same way. By the work of Brown et al . [2]
and Bonsall [1], it follows that the sets of determination for H∞(D) and h∞(D) coincide.
Hence, this is true if D is replaced by any set U conformally equivalent to the unit disc D.
Moreover, S ⊂ D is a set of determination for h∞(D) if and only if it has the following
geometric property.

Definition 1.1. Almost all z ∈ T (with respect to dθ) is in the closure of a sequence
{zn} from S converging non-tangentially to z, meaning that |z − zn|/(1 − |zn|) remains
bounded as n → ∞.

We shall start by looking at discrete measures m of the form

m =
∑

mν ,

where mν is the point measure at zν ∈ D, ν = 1, 2, 3, . . . . In this case it is an easy
exercise to show that Λ has the form

Λ : {λν} →
∑

λνPzν
,

where {λν} ∈ l1 and Pzν denotes the Poisson kernel for zν considered as an element of
L1(dθ). The adjoint map Γ is now given by

Γ : f → {f̃(zν)}.

Note that Γ is an isometry if and only if S = {zν} is a set of determination for H∞(D).
As observed by Bonsall, it follows in this case from Banach’s Closed Range Theorem [1]
that, for such S, Λ is surjective. But then it is easy to see that ker Λ is non-trivial. Indeed,
since S \{z1} is a set of determination if and only if S is a set of determination, it follows
that

Pz1 =
∞∑
2

γµPzµ
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for suitable coefficients {γµ} ∈ l1. Hence, the sequence 1, −γ2, −γ3, . . . is mapped to 0
by Λ. The main result in § 2 is that, for discrete measures m, ker Λ is non-empty if and
only if S has a subset being a set of determination at some ‘local’ level inside D.

If m is not discrete, the characterization of when Λ has a non-trivial kernel is more
complicated. The details are given in § 3. For a given compact set Y , the uniform algebra
R(Y ) consists of all uniform limits on Y of rational functions with their poles away from
Y . We say that R(Y ) is a Dirichlet algebra on ∂Y if the real parts of functions in R(Y )
are dense in C(∂Y ). We refer the reader to [5] for more details about R(Y ) and general
properties of uniform algebras.

2. Main result

Theorem 2.1. Let m be a positive measure supported on a countable subset S of
the unit disc D. The associated linear operator Λ has a non-trivial kernel if and only if
there is a simply connected subset U of D such that S ∩ U is a set of determination for
H∞(U).

Proof. Suppose that φ ∈ L1(m) is non-zero and Λ(φ) = 0. Then the measure σ =
φ dm annihilates any f ∈ H∞(D).

The simply connected subset U of D postulated in Theorem 2.1 is obtained by following
lemma.

Lemma 2.2. Let Υ be the collection of all compact subsets Y of D̄ which support σ

and such that R(Y ) is Dirichlet and σ is orthogonal to R(Y ). Then if Y ∈ Υ , we can find
Ỹ ∈ Υ such that Ỹ ⊂ Y and |f(z)| � ‖f‖S∩Y o for all z ∈ Ỹ ∩ Y o and f ∈ H∞(Y o).

To prove Lemma 2.2, let us first remark that, for any Y ∈ Υ , the measure σ is carried
by Y o and is orthogonal to H∞(Y o). This follows since any ζ ∈ ∂Y is a peak point for
R(Y ) and since R(Y ) is pointwise boundedly dense in H∞(Y o) when R(Y ) is a Dirichlet
algebra. Now let Y ∈ Υ and define

Z = {z ∈ Y o : |f(z)| � ‖f‖S∩Y o , f ∈ H∞(Y o)},

where, for a set K, ‖f‖K denotes the supremum of |f | over K. Let Ỹ denote the closure
of Z. The uniform algebra R(Ỹ ) consists of all uniform limits on Ỹ of rational functions
with their poles away from Ỹ . Consider the Banach algebra B consisting of all functions
on Ỹ ∩Y o being uniformly approximable there by functions from H∞(Y o). If a ∈ Y o \ Ỹ ,
there is h ∈ H∞(Y o) such that h(a) = 1 and ‖h‖S∩Y o < 1. Then

1 − h = (z − a)g

with g ∈ H∞(Y o) and hence

1
z − a

=
g

1 − h
=

∞∑
n=0

ghn,
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and we conclude that the function (z −a) is invertible in B. Since σ is carried by S ∩Y o,
it follows that ∫

f dσ = 0 for all f ∈ R(Ỹ ).

We must show that Ỹ ∈ Υ . From the way Ỹ was constructed, it follows by the maximum
principle that any component V of C \ Ỹ with V ∩ Y o �= ∅ has the property that ∂V

must meet C \Y o. We recall the well-known fact that the analytic capacity of a compact
connected set is comparable to its diameter (see, for example, [5, Theorem 2.1, p. 199]).
Therefore, near any ζ ∈ ∂Ỹ ∩ Y o there is, for small r, a compact connected set in
{z : |z − ζ| < r} ∩ (C \ Ỹ ) with analytic capacity comparable to r.

By the work in [3,5], a general set Y ∈ Υ , being a Dirichlet algebra, is characterized
by the following:

(a) R(∂Y ) = C(∂Y );

(b) R(Y ) is pointwise boundedly dense in H∞(Y o), and C \ Y o is connected.

Moreover, properties (a) and (b) can be characterized using analytic capacity (see [5,
Chapter VII] and [6]). If ζ is a boundary point of Ỹ not in Y o, it must belong to ∂Y , and
we can verify that (a) and (b) hold for Ỹ since they hold for Y . In addition, the interior
of Ỹ has a connected complement, since it is obtained from C \ Y o by adding certain
connected sets V having non-empty intersection with C \ Y o. It follows that Ỹ ∈ Υ .

Now let λ(Υ ) be the greatest lower bound to area(Y ) as Y varies over Υ . Let Yn denote
a sequence from Υ such that area(Yn) → λ(Υ ). By in [7, Theorem 3.6] we may assume
that Yn ⊂ Yn−1, and by the same theorem it follows that

Y∞ =
∞⋂

n=1

Yn

belongs to Υ . Since the measure σ was assumed to be non-trivial and R(Y∞) is a Dirichlet
algebra on ∂Y∞, we must have λ(Υ ) > 0, and the interior Ω of Y∞ must be non-empty.
Since Y∞ has minimal area within Υ , Lemma 2.2 gives that S∩Ω is a set of determination
for H∞(Ω).

Conversely, assume that there is a simply connected set U such that S ∩ U is a set of
determination for H∞(U). Let V denote a component of U . If S ∩ V = z1, z2, . . . , there
exist coefficients γµ, µ = 2, 3, . . . , such that

h(z1) =
∞∑
2

γµh(zµ)

for all h ∈ H∞(V ). This follows from the corresponding result in the unit disc by con-
formal mapping. Hence, σ = mz1 −

∑∞
2 γµmzµ belongs to the kernel of Λ. �
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3. General measures

In this section we consider a positive regular Borel measure m on D, which is finite on
compact subsets of D, and investigate for which m the linear operator

Λ : L1(m) → L1(dθ)

described in § 1 has a non-trivial kernel. The main obstacle when trying to repeat the
construction from § 2 comes from the fact that the restriction m|X of the measure m to
the boundary ∂X of a compact subset X of D̄ may be non-trivial. As a consequence, the
concept ‘set of determination’ for H∞(Ω) must be generalized to cover sets that partially
meet the boundary of Ω. The sets X we encounter when characterizing ker Λ for general
m will fortunately have the following nice property: R(X) is a Dirichlet algebra viewed
as a function algebra on ∂X. Owing to the fundamental work by Davie [3] and Gamelin
and Garnett [6] on R(X) as a Dirichlet algebra, these more general sets of determination
are easily described in terms of harmonic measure and conformal mappings from D to
components Ω of the interior Xo of X.

We now give the known facts from [3,6] which we shall need to find kerΛ for general m.
Consider a compact subset X of D̄ such that R(X) is a Dirichlet algebra on ∂X. Let

Ui denote a component of the interior Xo of X.

Lemma 3.1. Let φ : D → Ui be conformal. There is then a subset Si ⊂ ∂D such that
φ has radial limit φ∗(eiθ) ∈ ∂Ui for all eiθ ∈ Si and such that φ∗ is one-to-one on Si and
T \ Si has zero linear measure.

This result is due to Davie [3]. We can now define a measure λi on ∂Ui by the relation

λi(B) = µ{eiθ : φ∗(eiθ) ∈ B},

where µ denotes normalized linear measure on T and B is any Borel set. It is not hard to
see that λi is actually a harmonic measure on ∂Ui representing the point φ(0). Moreover,
if i �= j, λi and λj are mutually singular. We form the measure

λ =
∑

i

2−iλi,

where the summation extends over all components Ui of Xo. Of course, this definition
of λ makes sense for any open plane set, and in the following λ shall have this meaning
when U is given. If f ∈ L∞(λ), we define

f̃(z) =
∫

∂U

f dλz,

where z ∈ U and λz is harmonic measure on ∂Ui representing z; here Ui is the component
of U containing z. Moreover, since R(X) is a Dirichlet algebra on ∂X, the mapping f → f̃

is an isometry from H∞(λ) onto H∞(U), where H∞(λ) denotes the w∗ closure of R(Ū)
in L∞(λ).
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Definition 3.2. Let U denote an open subset of the complex plane with connected
complement. Let B ⊂ ∂U be a Borel set and let E ⊂ U be relatively closed in U . The
pair {B, E} is called a set of determination for h∞(U) if

‖f‖L∞(λ) = max{‖χBf‖L∞(λ), ‖f̃‖E}

for any f ∈ L∞(λ), where χB denotes the characteristic function of B and ‖g‖E denotes
the pointwise supremum of |g| on E.

In connection with the statement and proof of the next theorem it may be appropriate
to briefly discuss the case where U = Y o and R(Y ) is a Dirichlet algebra on ∂Y . In
the light of the isometric map f → f̃ mentioned before Definition 3.2, we can define a
pair {B, E} as a set of determination for H∞(U) exactly as in Definition 3.2. It is then
clear that {B, E} is also a set of determination for h∞(U), because if u is a bounded
harmonic function in U with a harmonic conjugate ũ, then eu+iũ ∈ H∞(U) and from
this it is immediate that u satisfies the conditions in Definition 3.2. In this special case
(which occurs in Theorem 3.3) we can describe sets of determination for H∞(U) in a
more geometric way using the notation from Lemma 3.1: {B, E} is a set of determination
for H∞(U) if and only if, for all i, the non-tangential closure of φ−1(E ∩ Ui) contains
almost all of T \ ((φ∗)−1(B ∩ ∂Ui)). For details see the proof of Theorem 3.3.

Suppose now that µ is a measure absolutely continuous with respect to λ, so that
dµ = h dλ. The set of all ζ such that h(ζ) �= 0 is called a minimal support set for µ. Such
a set is, of course, unique up to a set of zero λ-measure.

We can now formulate our main result for general measures.

Theorem 3.3. Let m be a positive regular Borel measure supported on the open unit
disc D. The linear operator Λ : L1(m) → L1(dθ) has a non-trivial kernel if and only if
there is a simply connected subset U of D such that R(Ū) is a Dirichlet algebra on ∂U

and the following holds. If m|∂U = µ + ν with µ absolutely continuous and ν singular
with respect to λ, then {B, E} is a set of determination for h∞(U), where B is a minimal
support set for µ and E �= ∅ is the closed support of m in U .

Before proving Theorem 3.3, let us consider a measure m corresponding to a set of
determination in the special case where U is the unit disc D and λ is linear measure
on ∂D. We assume here that m is a measure on the closed unit disc and that B and E

correspond to m as in Theorem 3.3. Let mD denote the restriction of m to D. We assume
that mD is non-zero. If {B, E} is a set of determination for h∞(D), it is evident that the
mapping

f → {fχB , f̃ |E}

is an isometry from L∞(λ) into L∞(χBλ) × L∞(mD).
Moreover, we conclude in this special case that {B, E} is a set of determination for

h∞(D) if and only if the non-tangential closure of E on ∂D contains λ-almost all points
of ∂D \ B. Indeed, if this geometric condition holds, Fatou’s Theorem on non-tangential
limits gives the isometry, while if the geometric condition fails, the isometric property
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fails by a standard argument [2,8]. It is easy to verify that the isometry given above is
the adjoint of the mapping

T : L1(χBλ) × L1(mD) → L1(λ)

given by

T (φ, ψ) = φ +
∫

Pzψ dmD(z).

Here Pz denotes the Poisson kernel and
∫

Pzψ dmD(z) is the (unique) function in L1(λ)
such that the duality relation〈 ∫

Pzψ dmD(z), h
〉

=
∫

ψ(z)h̃(z) dmD(z)

holds with h ∈ L∞(λ). We can easily verify that T has a non-trivial kernel. Indeed, since
its adjoint T ∗ is an isometry, it follows in particular that T ∗ is one-to-one and has closed
range. By a theorem of Banach [4, p. 488], it follows that T is surjective. Let K denote
a compact subset of D with 0 < mD(K) < ∞ and let fK = T (χK). Now replace the
measure m by the measure m0 obtained from m by removing all mass located on K. The
operator T0 associated with m0 is clearly also surjective, and therefore fK = T0(g) for
some g ∈ L1(m0). Hence, g − χK belongs to the kernel of T .

We can now give the proof of Theorem 3.3. Let us first show that kerΛ is non-trivial
if m has the properties listed in Theorem 3.3. Let H∞(λ) denote the w∗ closure of R(Ū)
in L∞(λ). As is well known, since R(Ū) is a Dirichlet algebra, the mapping f → f̃ is
an isometry between H∞(λ) and H∞(U). Fix a component U0 of U . Let φ : D → U0

denote a conformal map and let ψ denote its inverse. Then φ extends to be defined almost
everywhere on ∂D by Fatou’s Theorem and this extended function is still denoted by φ.
Likewise, ψ has a natural extension to ∂U0 defined almost everywhere with respect to λ

in the light of the isometric mapping between H∞(λ) and H∞(U). This extension is also
denoted by ψ. Then the composite functions φ ◦ ψ and ψ ◦ φ coincide with the identity
almost everywhere with respect to λ and the linear measure on ∂D, respectively. We can
conclude that {B, E} is a set of determination for h∞(U0) if and only if {φ−1(B), φ−1(E)}
is a set of determination for h∞(D). Owing to the geometric characterization of sets of
determination mentioned in the remarks following Theorem 3.3, we conclude that even
{B, E \ V } is a set of determination for h∞(U0), provided that V is a set with compact
closure inside U0. As in the special case where U0 = D, we conclude that the mapping

T0 : L1(χBλ) × L1(mU0) → L1(λ)

given by

T0(φ, ψ)(f) =
∫

∂U0

fφ dλ +
∫

U0

ψf̃ dm

has a non-trivial kernel. If T0(φ, ψ) = 0, it is clear that also Λ(φ + ψ) = 0 (here we
consider φ + ψ as an element of L1(m)), and hence Λ has a non-trivial kernel.

Conversely, let us assume that Λ has a non-trivial kernel. Let φ �= 0 be a real-valued
element of ker Λ. This means that the measure ν = φ dm is orthogonal to H∞(D). We
formulate the following result, which is similar to Lemma 2.2.
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Lemma 3.4. Let Υ be the collection of all compact subsets X of D̄ which support ν

and such that R(X) is Dirichlet and ν is orthogonal to R(X). Then if X ∈ Υ , we can find
X̃ ∈ Υ such that X̃ ⊂ X and |f(z)| � ‖f‖L∞(|ν|) for all z ∈ X̃ ∩ Xo and f ∈ H∞(Xo).

We now explain the content of Lemma 3.4 in some detail. Given X ∈ Υ , let λ denote the
weighted sum of harmonic measures defined after Lemma 3.1. Since compact subsets of
∂X of zero λ-measure are peak interpolation sets for R(X), ν|∂X is absolutely continuous
with respect to λ. If f ∈ H∞(Xo), it has, as explained after Lemma 3.1, ‘boundary values’
in H∞(λ) and the meaning of ‖f‖L∞(|ν|) should now be clear.

The proof of Lemma 3.4 and the application of it to complete the proof of Theorem 3.3
is so similar to the corresponding argument in § 2 that we omit the details.
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