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SPECTRAL ANALYSIS OF MARKOV KERNELS
AND APPLICATION TO THE CONVERGENCE
RATE OF DISCRETE RANDOM WALKS
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Abstract

Let {Xn}n∈N be a Markov chain on a measurable space X with transition kernel P,
and let V : X→[1,+∞). The Markov kernel P is here considered as a linear bounded
operator on the weighted-supremum space BV associated with V . Then the combination
of quasicompactness arguments with precise analysis of eigenelements of P allows us to
estimate the geometric rate of convergence ρV (P ) of {Xn}n∈N to its invariant probability
measure in operator norm on BV . A general procedure to compute ρV (P ) for discrete
Markov random walks with identically distributed bounded increments is specified.
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1. Introduction

Let (X,X) be a measurable space with a σ -field X, and let {Xn}n≥0 be a Markov chain
with state space X and transition kernels {P(x, ·) : x ∈ X}. Let V : X→[1,+∞). Assume that
{Xn}n≥0 has an invariant probability measure π such that π(V ) := ∫

X
V (x)π(dx) < ∞. This

paper is based on the connection between spectral properties of the Markov kernel P and the
so-called V -geometric ergodicity [12] which is the following convergence property for some
constants cρ > 0 and ρ ∈ (0, 1):

sup
|f |≤V

sup
x∈X

|E[f (Xn) | X0 = x] − π(f )|
V (x)

≤ cρρ
n. (1.1)

Let us introduce the weighted-supremum Banach space (BV , ‖ · ‖V ) composed of measurable
functions f : X→C such that

‖f ‖V := sup
x∈X

|f (x)|
V (x)

< ∞.

Then (1.1) reads as ‖Pnf − π(f ) 1X ‖V ≤ cρρ
n for any f ∈ BV such that ‖f ‖V ≤ 1, and

there is great interest in obtaining upper bounds for the convergence rate ρV (P ) defined by

ρV (P ) := inf
{
ρ ∈ (0, 1), sup

‖f ‖V≤1
‖Pnf − π(f ) 1X ‖V = O(ρn)

}
. (1.2)
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Spectral analysis of Markov kernels 1037

For irreducible and aperiodic discrete Markov chains, criteria for the V -geometric ergodicity
are well known from the literature using either the equivalence between geometric ergodicity
and V -geometric ergodicity of N-valued Markov chains [5, Proposition 2.4], or the strong drift
condition. For instance, when X := N (with limn V (n) = +∞), the strong drift condition is

PV ≤ �V + b 1{0,1,...,n0}
for some � < 1, b < ∞, and n0 ∈ N (see [12]). Estimating ρV (P ) from the parameters �, b,
and n0 is a difficult issue. This often leads to unsatisfactory bounds, except for stochastically
monotone P (see [1], [10], [13], and the references therein).

In this work we present a new procedure to study the convergence rate ρV (P ) under the
following weak drift condition.

(WD) There exist N ∈ N
∗, d ∈ (0,+∞), and δ ∈ (0, 1) such that PNV ≤ δNV + d 1X .

The V -geometric ergodicity clearly implies (WD). Conversely, such a condition with N = 1
was introduced in [12, Lemma 15.2.8] as an alternative to the drift condition [12, Condition
(V4)] to obtain the V -geometric ergodicity under suitable assumptions on V . Note that, under
condition (WD), the following real number δV (P ) is well defined:

δV (P ) := inf{δ ∈ [0, 1) : there exist N ∈ N
∗ and d ∈ (0,+∞)

such that PNV ≤ δNV + d 1X}.
A spectral analysis ofP is presented in Section 2 using quasicompactness. More specifically,

when the Markov kernel P has an invariant probability distribution, the connection between
the V -geometric ergodicity and the quasicompactness of P is made explicit in Proposition 2.1.
Namely, P is V -geometrically ergodic if and only if P is a power-bounded quasicompact
operator on BV for which λ = 1 is a simple eigenvalue and the unique eigenvalue of modulus
1. In this case, if ress(P ) denotes the essential spectral radius of P on BV (see (2.2)) and if V
denotes the set of eigenvalues λ of P such that ress(P ) < |λ| < 1, then the convergence rate
ρV (P ) is given by (Proposition 2.1):

ρV (P ) = ress(P ) if V = ∅ and ρV (P ) = max{|λ|, λ ∈ V} if V 	= ∅. (1.3)

Interesting bounds for generalized eigenfunctions f ∈ BV ∩ ker(P − λI)p associated with
λ ∈ V are presented in Proposition 2.2. Property (1.3) is relevant to study the convergence rate
ρV (P ) provided that first an accurate bound of ress(P ) is known and second the above set V
is available. Bounds of ress(P ) related to drift conditions can be found in [4] and [17] under
various assumptions (see Subsection 2.1). In view of our applications, let us just mention that
ress(P ) = δV (P ) in the case in which X := N and limn V (n) = +∞ (see Proposition 3.1).
However, even if the state space is discrete, finding the above set V is difficult.

In Section 3, the above spectral analysis is applied to compute the rate of convergence
ρV (P ) of discrete random walks (RWs). In particular, a complete solution is presented for
RWs with identically distributed (i.d.) bounded increments. In fact, Proposition 3.3 allows us
to formulate an algebraic elimination procedure to compute ρV (see Corollary 4.1). To the
best of our knowledge, this general result is new. Note that it requires neither reversibility nor
stochastic monotonicity of P .

This procedure is illustrated in Section 4. First we consider the case of the birth-and-death
Markov kernel P defined by P(0, 0) := a and P(0, 1) := 1 − a for some a ∈ (0, 1) and by

P(n, n− 1) := p, P (n, n) := r, P (n, n+ 1) := q, for all n ≥ 1,
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where p, q, r ∈ [0, 1] are such that p + r + q = 1 and p > q > 0. An explicit formula for
ρV (P ) with respect to V := {(p/q)n/2}n∈N is given in Proposition 4.1. When r := 0, such a
result has been obtained for a < p in [14] and [1, Section 8.4] using Kendall’s theorem, and
for a ≥ p in [10] using the stochastic monotony of P . Our method gives a unified and simpler
computation of ρV (P ) which moreover encompasses the case r 	= 0. For general RWs with
i.d. bounded increments, the elimination procedure requires the use of symbolic computations.
The second example illustrates this point with the nonreversible RW defined for all n ≥ 2 by

P(n, n− 2) = a−2, P (n, n− 1) = a−1, P (n, n) = a0, P (n, n+ 1) = a1,

for any nonnegative ai satisfying a−2 +a−1 +a0 +a1 = 1, a−2 > 0, and 2a−2 +a−1 > a1 > 0,
and any finitely many boundary transition probabilities. In Section 5, specific examples of RWs
on X := N with unbounded increments considered in the literature are investigated.

To conclude this introduction, we mention a point which can be a source of confusion in a
first reading. In this paper we are concerned with the convergence rate (1.2) with respect to some
weighted-supremun Banach space BV . Thus, we do not consider here the decay parameter
or the convergence rate of ergodic Markov chains in the usual Hilbert space L

2(π) which is
related to spectral properties of the transition kernel with respect to this space. In particular,
for birth-and-death Markov chains, we cannot compare our results with those of [16] on the
�2(π)-spectral gap and the decay parameter. A detailed discussion is provided in Remark 4.2.

2. Quasicompactness on BV and V -geometric ergodicity

We assume that P satisfies (WD) . Then P continuously acts on BV , and iterating (WD)
shows that P is power bounded on BV , namely, supn≥1 ‖Pn‖V < ∞, where ‖ · ‖V also stands
for the operator norm on BV . Thus, we have r(P ) := limn ‖Pn‖1/n

V = 1 since P is Markov.

2.1. From quasicompactness on BV to V -geometric ergodicity

Let I denote the identity operator on BV . Recall that P is said to be quasicompact on BV

if there exist r0 ∈ (0, 1), m ∈ N
∗, λi ∈ C, and pi ∈ N

∗ ( i = 1, . . . , m) such that

BV =
m⊕
i=1

ker(P − λiI )
pi ⊕H, (2.1a)

where the λi are such that

|λi | ≥ r0 and 1 ≤ dim ker(P − λiI )
pi < ∞, (2.1b)

and H is a closed P -invariant subspace such that

inf
n≥1

(
sup

h∈H, ‖h‖≤1
‖Pnh‖

)1/n
< r0. (2.1c)

Concerning the essential spectral radius of P , denoted by ress(P ), here it is enough to have in
mind that if P is quasicompact on BV then we have (see, for instance, [3])

ress(P ) := inf{r0 ∈ (0, 1) such that (2.1a)–(2.1c) hold}. (2.2)

As mentioned in the introduction, the essential spectral radius of Markov kernels acting
on BV is studied in [4] and [17]. For instance, under condition (WD), the following result
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is proved in [4]: if P � is compact from B0 to BV for some � ≥ 1, where (B0, ‖ · ‖0) is
the Banach space composed of bounded measurable functions f : X→C equipped with the
supremum norm ‖f ‖0 := supx∈X |f (x)|, then P is quasicompact on BV with

ress(P ) ≤ δV (P ).

Moreover, the equality ress(P ) = δV (P ) holds in many situations, in particular in the discrete-
state case with V (n)→∞ (see Proposition 3.1).

Next we give a result which makes explicit the relationship between the quasicompactness
of P and the V -geometric ergodicity of the Markov chain {Xn}n∈N with transition kernel P .
Moreover, we provide an explicit formula for ρV (P ) in terms of the spectral elements of P .
Note that, for any r0 ∈ (ress(P ), 1), the set of all the eigenvalues λ of P such that r0 ≤ |λ| ≤ 1
is finite (use (2.2)).

Proposition 2.1. Let P be a transition kernel which has an invariant probability measure π
such that π(V ) < ∞. The following two assertions are equivalent:

(a) P is V -geometrically ergodic,

(b) P is a power-bounded quasicompact operator on BV , for which λ = 1 is a simple
eigenvalue (i.e. ker(P − I ) = C 1X) and the unique eigenvalue of modulus 1.

Under any of these conditions, we have ρV (P ) ≥ ress(P ). In fact, for r0 ∈ (ress(P ), 1),
denoting the set of all the eigenvalues λ of P such that r0 ≤ |λ| < 1 by Vr0 , we have

• either ρV (P ) ≤ r0 when Vr0 = ∅,

• or ρV (P ) = max{|λ|, λ ∈ Vr0} when Vr0 	= ∅.

Moreover, if Vr0 = ∅ for all r0 ∈ (ress(P ), 1) then ρV (P ) = ress(P ).

The V -geometric ergodicity of P obviously implies that P is quasicompact on BV with
ρV (P ) ≥ ress(P ) (see, e.g. [7]). This follows from (2.2) using H := {f ∈ BV : π(f ) =
0} in (2.1a)–(2.1c). The property that P has a spectral gap on BV in the recent paper [8]
corresponds here to the quasicompactness of P (which is classical terminology in spectral
theory). The spectral gap in [8] corresponds to the value 1−ρV (P ). Then, [8, Proposition 1.1])
is another formulation, underψ-irreducibility and aperiodicity assumptions, of the equivalence
of properties (a) and (b) of Proposition 2.1 (see also [8, Lemma 2.1]). Details on the proof of
Proposition 2.1 are provided in [2]. For general quasicompact Markov kernels on BV , the result
[17, Theorem 4.6] also provides interesting additional material on peripheral eigenelements.
The next subsection completes the previous spectral description by providing bounds for the
generalized eigenfunctions associated with eigenvalues λ such that δ ≤ |λ| ≤ 1, with δ given
in (WD).

2.2. Bound on generalized eigenfunctions of P

Proposition 2.2. Assume that the weak drift condition (WD) holds. If λ ∈ C is such that
δ ≤ |λ| ≤ 1, with δ given in (WD), and if f ∈ BV ∩ ker(P − λI)p for some p ∈ N

∗, then
there exists c ∈ (0,+∞) such that

|f | ≤ c V ln |λ|/ln δ(1 + lnV )p(p−1)/2.
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Thus, if λ is an eigenvalue such that |λ| = 1 then any associated eigenfunction f is bounded
on X. By contrast, if |λ| is close to δV (P ) then |f | ≤ cV β(λ) with β(λ) close to 1. The proof
of Proposition 2.2 is based on the following lemma.

Lemma 2.1. Let λ ∈ C be such that δ ≤ |λ| ≤ 1. Then, for all f ∈ BV and all x ∈ X, there
exists c ∈ (0,+∞) such that

|λ|−n(x)|(P n(x)f )(x)| ≤ cV (x)ln |λ|/ln δ (2.3)

with, for any x ∈ X, n(x) := �− lnV (x)/ln δ, where �· denotes the integer part function.

Proof. First note that the iteration of (WD) gives

P kNV ≤ δkNV + d

(k−1∑
j=0

δjN
)

1X ≤ δkNV + d

1 − δN
1X for all k ≥ 1.

Let g ∈ BV and x ∈ X. Using the last inequality, the positivity of P, and |g| ≤ ‖g‖V V , we
obtain, with b := d/(1 − δN),

|(P kNg)(x)| ≤ (P kN |g|)(x) ≤ ‖g‖V (P kNV )(x) ≤ ‖g‖V (δkNV (x)+ b) for all k ≥ 1.
(2.4)

This inequality is also fulfilled with k = 0. Next, let f ∈ BV and n ∈ N. Writing n = kN + r ,
with k ∈ N and r ∈ {0, 1, . . . , N − 1}, and applying (2.4) to g := P rf , we obtain, with
ξ := max0≤�≤N−1 ‖P �f ‖V (use Pnf = P kN(P rf )),

|(P nf )(x)| ≤ ξ [δkNV (x)+ b] ≤ ξ [δ−r (δnV (x)+ b)] ≤ ξδ−N(δnV (x)+ b). (2.5)

Using the inequality

− lnV (x)

ln δ
− 1 ≤ n(x) ≤ − lnV (x)

ln δ

and the fact that ln δ ≤ ln |λ| ≤ 0, inequality (2.5) with n := n(x) gives

|λ|−n(x)|(P n(x)f )(x)| ≤ ξδ−N((δ|λ|−1)n(x)V (x)+ b|λ|−n(x))
= ξδ−N(en(x)(ln δ−ln |λ|)elnV (x) + be−n(x) ln |λ|)
≤ ξδ−N(e(lnV (x)/ln δ+1)(ln |λ|−ln δ)elnV (x) + belnV (x) ln |λ|/ln δ)
= ξδ−N(eln |λ| lnV (x)/ln δeln |λ|−ln δ + bV (x)ln |λ|/ln δ)
= ξδ−N(eln |λ|−ln δ + b)V (x)ln |λ|/ln δ.

This gives inequality (2.3) with c := ξδ−N(eln |λ|−ln δ + b).

Proof of Proposition 2.2. If f ∈ BV ∩ker(P−λI) then |λ|−n(x)|(P n(x)f )(x)| = |f (x)|, so
that (2.3) gives the expected conclusion whenp = 1. Next, let us proceed by induction. Assume
that the conclusion of Proposition 2.2 holds for some p ≥ 1. Let f ∈ BV ∩ ker(P − λI)p+1.
We can write

Pnf = (P − λI + λI)nf = λnf +
min(n,p)∑
k=1

(
n

k

)
λn−k(P − λI)kf. (2.6)
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For k ∈ {1, . . . , p}, we have fk := (P − λI)kf ∈ ker(P − λI)p+1−k ⊂ ker(P − λI)p; thus,
from the induction hypothesis there exists c′ ∈ (0,+∞) such that, for all k ∈ {1, . . . , p} and
all x ∈ X,

|fk(x)| ≤ c′V (x)ln |λ|/ln δ(1 + lnV (x))p(p−1)/2. (2.7)

Now, it follows, from (2.6) (with n := n(x)), (2.7), and Lemma 2.1, that, for all x ∈ X,

|f (x)| ≤ |λ|−n(x)|(P n(x)f )(x)|

+ c′V (x)ln |λ|/ln δ(1 + lnV (x))p(p−1)/2|λ|− min(n,p)
min(n,p)∑
k=1

(
n(x)

k

)
≤ cV (x)ln |λ|/ln δ + c1V (x)

ln |λ|/ln δ(1 + lnV (x))p(p−1)/2n(x)p

≤ c2V (x)
ln |λ|/ln δ(1 + lnV (x))p(p−1)/2+p

with some constants c1, c2 ∈ (0,+∞) independent of x. This gives the expected result.

3. Spectral properties of discrete RWs

In the sequel, the state space X is discrete. For the sake of simplicity, we assume that X := N.
Let P = (P (i, j))i,j∈N2 be a Markov kernel on N. The function V : N→[1,+∞) is assumed
to satisfy

lim
n
V (n) = +∞ and sup

n∈N

(PV )(n)

V (n)
< ∞.

We focus first on the estimation of ress(P ) from condition (WD).

Proposition 3.1. Let X := N. The following two conditions are equivalent:

(a) condition (WD) holds with V ,

(b) L := infN≥1(�N)
1/N < 1, where �N := lim supn→+∞ (PNV )(n)/V (n).

In this case, P is power bounded and quasicompact on BV with ress(P ) = δV (P ) = L.

The proof of the equivalence (a) ⇔ (b), as well as the equality δV (P ) = L, is straightforward
(see [2, Corollary 4]). That P is quasicompact on BV under (WD) in the discrete case, with
ress(P ) ≤ δV (P ), can be derived from [4] or [17] (see Subsection 2.1 and use the fact that
the injection from B0 to BV is compact when X := N and limn V (n) = +∞). The equality
ress(P ) = δV (P ) can be proved by combining the results [4], [17] (see [2, Corollary 1] for
details).

In Sections 3 and 4, sequences of the special form Vγ := {γ n}n∈N for some γ ∈ (1,+∞)

will be considered. The associated weighted-supremum space Bγ ≡ BVγ is defined by

Bγ :=
{
{f (n)}n∈N ∈ C

N : sup
n∈N

γ−n|f (n)| < ∞
}
.

https://doi.org/10.1239/aap/1418396242 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396242


1042 L. HERVÉ AND J. LEDOUX

3.1. Quasicompactness of RWs with bounded state-dependent increments

Let us fix c, g, d ∈ N
∗, and assume that the kernel P satisfies the following conditions:

c∑
j=0

P(i, j) = 1 for all i ∈ {0, . . . , g − 1}, (3.1a)

P(i, j) =
{
aj−i (i) if i − g ≤ j ≤ i + d,

0 otherwise,
for all i ≥ g and all j ∈ N, (3.1b)

where (a−g(i), . . . , ad(i)) ∈ [0, 1]g+d+1 satisfies
∑d
k=−g ak(i) = 1 for all i ≥ g. This kind of

kernel arises, for instance, from the time discretization of Markovian queueing models. Note
that more general models and their use in queueing theory are discussed in [6]. In particular,
conditions for (non)positive recurrence are provided.

Proposition 3.2. Assume that, for every k ∈ Z such that −g ≤ k ≤ d, limn ak(n) = ak ∈
[0, 1], and that there exists γ ∈ (1,+∞) such that

φ(γ ) :=
d∑

k=−g
akγ

k < 1. (3.2)

Then P satisfies condition (WD) with δ = φ(γ ). Moreover, P is power bounded and quasi-
compact on Bγ with ress(P ) = L = φ(γ ).

Lemma 3.1. When a−g and ad are positive, condition (3.2) is equivalent to

(NERI)
∑d
k=−g kak < 0.

Then there exists a unique real number γ0 > 1 such that φ(γ0) = 1 and

φ(γ ) < 1 for all γ ∈ (1, γ0),

and there exists a unique γ̂ such that

δ̂ := φ(γ̂ ) = min
γ∈(1,∞)

φ(γ ) = min
γ∈(1,γ0)

φ(γ ) < 1.

Condition (NERI) means that the expectation of the probability distribution of the random
increment is negative. Although the results of the paper on RWs with i.d. bounded increments
involving condition (NERI) and a−g, ad > 0 will be valid for γ ∈ (1, γ0), only this value γ̂
is considered in the statements. Note that the essential spectral radius ress(P|B γ̂

) of P with
respect to B γ̂ , which will be denoted by r̂ess(P ) in the sequel, is the smallest value of ress(P|Bγ

)

on Bγ for γ ∈ (1, γ0). When γ ↗ γ0, the essential spectral radius ress(P|Bγ
) ↗ 1 since the

space Bγ becomes large. When γ ↘ 1, then ress(P|Bγ
) ↗ 1 since Bγ becomes close to the

space B0 of bounded functions. In this case, the geometric ergodicity is lost since the RWs are
typically not uniformly ergodic (i.e. V ≡ 1) due the nonquasicompactness of P on B0.

Example 3.1. (State-dependent birth-and-death Markov chains.) When c = g = d := 1 in
(3.1a)–(3.1b), we obtain the standard class of state-dependent birth-and-death Markov chains:

P(0, 0) := r0, P (0, 1) := q0

P(n, n− 1) := pn, P (n, n) := rn, P (n, n+ 1) := qn, for all n ≥ 1.
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Here (p0, q0) ∈ [0, 1]2, p0 + q0 = 1, and (pn, rn, qn) ∈ [0, 1]3, pn + rn + qn = 1. Assume
that

lim
n
pn := p, lim

n
rn := r, lim

n
qn := q.

If γ ∈ (1,+∞) is such that φ(γ ) := p/γ + r + qγ < 1 then it follows from Proposition 3.2
that ress(P ) = p/γ + r + qγ . The conditions γ > 1 and p/γ + r + qγ < 1 are equivalent to
the following conditions (use r = 1 − p − q for (i)):

(i) either q > 0, q − p < 0 (i.e. (NERI)), and 1 < γ < γ0 = p/q;

(ii) or q = 0, p > 0, and γ > 1.

(i) When p > q > 0 and 1 < γ < γ0, P is power bounded and quasicompact on Bγ with
ress(P ) = φ(γ ). Set γ̂ := √

γ0 = √
p/q ∈ (1, γ0). Then minγ>1 φ(γ ) = φ(γ̂ ) = r + 2

√
pq

and the essential spectral radius r̂ess(P ) on B γ̂ satisfies r̂ess(P ) = r + 2
√
pq.

(ii) When q := 0, p > 0 and γ > 1, ress(P ) = φ(γ ) = p/γ + r .

Remark 3.1. If c is allowed to be +∞ in condition (3.1a), that is,∑
j≥0

P(i, j)γ j < ∞ for all i ∈ {0, . . . , g − 1}, (3.3)

then the conclusions of Proposition 3.2 and Example 3.1 are still valid under the additional
condition (3.3).

Proof of Proposition 3.2. Setφn(γ ) :=∑d
k=−g ak(n)γ k . We have (PVγ )(n)= φn(γ )Vγ (n)

for each n ≥ g. Thus, �1 = limn φn(γ ) = φ(γ ). Now assume that

�N−1 := limn(P
N−1V )(n)

V (n)
= φ(γ )N−1 for some N ≥ 1.

Since

(PNV )(i) =
d∑

j=−g
aj (i)(P

N−1V )(i + j) for all i ≥ Ng,

we obtain

(PNV )(i)

V (i)
=

d∑
j=−g

aj (i)γ
j (P

N−1V )(i + j)

γ i+j
→ φ(γ )φ(γ )N−1 as i→ + ∞.

Hence, �N = φ(γ )N , and φ(γ ) = L = ress(P ) from Proposition 3.1.

Proof of Lemma 3.1. Since the second derivative of φ is positive on (0,+∞), φ is convex
on (0,+∞). When a−g and ad are positive, then limt→0+ φ(t) = limt→+∞ φ(t) = +∞ and,
since φ(1) = 1, condition (3.2) is equivalent to φ′(1) < 0, that is, (NERI) holds. The other
properties of φ(·) are immediate.
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3.2. Spectral analysis of RW with i.d. bounded increments

Let P := (P (i, j))(i,j)∈N2 be the transition kernel of an RW with i.d. bounded increments.
Specifically, we assume that there exist some positive integers c, g, d ∈ N

∗ such that

c∑
j=0

P(i, j) = 1 for all i ∈ {0, . . . , g − 1}, (3.4a)

P(i, j) =
{
aj−i if i − g ≤ j ≤ i + d,

0 otherwise,
for all i ≥ g and all j ∈ N, (3.4b)

a−g > 0, ad > 0,
d∑

k=−g
ak = 1 for (a−g, . . . , ad) ∈ [0, 1]g+d+1. (3.4c)

Let us assume that condition (NERI) holds. We know from Lemma 3.1 and Proposition 3.2
that P is quasicompact on B γ̂ with

r̂ess(P ) = δ̂ := φ(γ̂ ) < 1,

where φ(·) is given by (3.2).
For any λ ∈ C, we denote by Eλ the set of complex roots of Eλ(·), where Eλ(·) denotes the

following polynomial of degree N := d + g:

Eλ(z) := zg(φ(z)− λ) =
d∑

k=−g
akz

g+k − λzg for all z ∈ C.

Since Eλ(0) = a−g > 0, we have, for any λ ∈ C,

z ∈ Eλ ⇐⇒ Eλ(z) = 0 ⇐⇒ λ = φ(z).

In Proposition 3.3 below we investigate the eigenvalues ofP on B γ̂ which belong to the annulus

� := {λ ∈ C : δ̂ < |λ| < 1}.
To that end, for any λ ∈ �, we introduce the following subset E−

λ of Eλ:

E−
λ := {z ∈ C : Eλ(z) = 0, |z| < γ̂ }.

If E−
λ = ∅, we set N(λ) := 0. If E−

λ 	= ∅ then N(λ) is defined as

N(λ) :=
∑
z∈E−

λ

mz,

where mz denotes the multiplicity of z as a root of Eλ(·). Finally, for any z ∈ C, we set
z(1) := {zn}n∈N, and, for any k ≥ 2, z(k) ∈ C

N is defined by

z(k)(n) := n(n− 1) · · · (n− k + 2) zn−k+1 for all n ∈ N.

Proposition 3.3. Assume that assumptions (3.4a)–(3.4c) and (NERI) hold. Then there exists
η ≥ 1 such that, for all λ ∈ �,

N(λ) = η.
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Moreover, the following two assertions are equivalent:

(a) λ ∈ � is an eigenvalue of P on B γ̂ ,

(b) there exists a nonzero {αλ,z,k}z∈E−
λ , 1≤k≤mz ∈ C

η such that

f :=
∑
z∈E−

λ

mz∑
k=1

αλ,z,kz
(k) ∈ C

N (3.5)

satisfies the boundary equations λf (i) = (Pf )(i) for all i = 0, . . . , g − 1.

The first step in the elimination procedure of Section 4 is to substitute f of the form (3.5)
into the boundary equations. This gives a linear system in αλ,z,k . Since� is infinite, thatN(λ)
does not depend on λ is crucial to initialize this procedure. To specify the value of η, it is
sufficient to compute N(λ) for some (any) λ ∈ �.

Remark 3.2. Under condition (NERI), φ(·) is decreasing from (1, γ̂ ) to (̂δ, 1), so we have, for
all λ ∈ (̂δ, 1), φ−1(λ) ∈ (1, γ̂ ). Since φ−1(λ) ∈ Eλ, we obtain

N(λ) ≥ 1 for all λ ∈ (̂δ, 1). (3.6)

Remark 3.3. Let condition (NERI) be satisfied. Set E+
λ := {z ∈ C : Eλ(z) = 0, |z| > γ̂ }.

Then
Eλ = E−

λ � E+
λ for all λ ∈ �.

In other words, for any λ ∈ �, Eλ(·) has no root of modulus γ̂ . Indeed, consider λ ∈ � and
z ∈ Eλ, and assume that |z| = γ̂ . Since λ = φ(z), we obtain the inequality |λ| ≤ φ(|z|) =
φ(γ̂ ), which is impossible since φ(γ̂ ) = δ̂ and λ ∈ �.

Remark 3.4. Proposition 3.3(b) does not mean that the dimension of the eigenspace ker(P −
λI) associated with λ is η. We shall see in Subsection 4.2 that we can have η = 2 when g = 2,
d = 1, and c = 2 in (3.4a)–(3.4c), while dim ker(P − λI) ≤ 1 since Pf = λf and f (0) = 0
clearly imply that f = 0 (by induction).

The following surprising lemma, based on Remark 3.3, is used to derive Proposition 3.3.

Lemma 3.2. Under condition (NERI), the function N(·) is constant on �.

Proof. Since� is connected andN(·) is N-valued, it suffices to prove thatN(·) is continuous
on �. Note that the set

⋃
λ∈� Eλ is bounded in C since the coefficients of Eλ(·) are obviously

uniformly bounded in λ ∈ �. Now let λ ∈ � and assume that N(·) is not continuous at λ.
Then there exists a sequence {λn}n∈N ∈ �N such that limn λn = λ and

(a) either N(λn) ≥ N(λ)+ 1 for all n ≥ 0,

(b) or N(λn) ≤ N(λ)− 1 for all n ≥ 0.

For any n ≥ 0, let us denote the roots of Eλn(·) by z1(λn), . . . , zN(λn), and suppose for
convenience that they are listed by increasing modulus, and by increasing argument when they
have the same modulus. Applying Remark 3.3 to λn, we obtain

|zi(λn)| < γ̂ for all i ∈ {1, . . . , N(λn)}
and |zi(λn)| > γ̂ for all i ∈ {N(λn)+ 1, . . . , N}.
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By passing to a subsequence, we may suppose that, for every 1 ≤ i ≤ N , the sequence
{zi(λn)}n∈N converges to some zi ∈ C. Note that

Eλ = {z1, z2, . . . , zN },
where zi is repeated in this list with respect to its multiplicity mzi , since

Eλ(z) = lim
n
Eλn(z) = lim

n
ad

N∏
i=1

(z− zi(λn)) = ad

N∏
i=1

(z− zi) for all z ∈ C.

In case (a), we have

|z1(λn)| < γ̂ , . . . , |zN(λ)+1(λn)| < γ̂ , for all n ≥ 0.

When n→ + ∞, this gives, using Remark 3.3,

|z1| < γ̂ , . . . , |zN(λ)+1| < γ̂ .

Thus, at least N(λ)+ 1 roots of Eλ(·) (counted with their multiplicity) are of modulus strictly
less than γ̂ . This contradicts the definition of N(λ).

In case (b), we have

|zN(λ)(λn)| > γ̂ , |zN(λ)+1(λn)| > γ̂ , . . . , |zN(λn)| > γ̂ , for all n ≥ 0

and this similarly gives, when n→ + ∞,

|zN(λ)| > γ̂ , |zN(λ)+1| > γ̂ , . . . , |zN | > γ̂ .

Thus, at least N − N(λ) + 1 roots of Eλ(·) (counted with their multiplicity) are of modulus
strictly larger than γ̂ . This contradicts the definition of N(λ).

Proof of Proposition 3.3. From Lemma 3.2 and (3.6), for all λ ∈ �, we obtain N(λ) = η

for some η ≥ 1. Now we prove the implication (a) ⇒ (b). Let λ ∈ � be any eigenvalue of P on
B γ̂ , and let f := {f (n)}n∈N be a nonzero sequence in B γ̂ satisfying Pf = λf . In particular,
f satisfies the equalities

λf (i) =
i+g∑
j=i−g

aj−if (j) for all i ≥ g. (3.7)

Since the characteristic polynomial associated with these recursive formulae is Eλ(·), there
exists {αλ,z,k}z∈Eλ, 1≤k≤mz ∈ C

η such that

f =
∑
z∈Eλ

mz∑
k=1

αλ,z,kz
(k) ∈ C

N,

where mz denotes the multiplicity of z ∈ Eλ. Next, since |f | ≤ C Vγ̂ for some C > 0
(i.e. f ∈ B γ̂ ), it can be easily seen that αλ,z,k = 0 for every z ∈ Eλ such that |z| > γ̂ and, for
every k = 1, . . . , mz: first deleteαλ,z,mz for z of maximum modulus and formz maximal if there
are several z of maximal modulus (to that effect, divide f by n(n−1) · · · (n−mz+2) zn−mz+1
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and use |f | ≤ CVγ̂ ). Therefore, f is of the form (3.5), and it satisfies the boundary equations
in (b) since Pf = λf by hypothesis.

To prove the implication (b) ⇒ (a), note that any f := {f (n)}n∈N of the form (3.5) belongs
to B γ̂ and satisfies (3.7) since E−

λ ⊂ Eλ. If, moreover, f is nonzero and satisfies the boundary
equations, then Pf = λf . This gives (a).

We conclude this study with an additional refinement of Proposition 3.3. For any λ ∈ �, let
us define the set E−

λ,τ as follows:

E−
λ,τ := {z ∈ C : Eλ(z) = 0, |z| < γ̂ τ } with τ ≡ τ(λ) := ln |λ|

ln δ̂
.

Moreover, define the associated function N ′(·) by

N ′(λ) :=
∑
z∈E−

λ,τ

mz,

where mz is the multiplicity of z as root of Eλ(·) (with the convention that N ′(λ) = 0 if
E−
λ,τ = ∅).

Lemma 3.3. Assume thatP := (P (i, j))(i,j)∈N2 satisfies conditions (3.4a)–(3.4c) and (NERI).
Moreover, assume that

φ(t) < t ln δ̂/ ln γ̂ for all t ∈ (1, γ̂ ). (3.8)

Then the function N ′(·) is constant on �: there exists η′ ≥ 1 such that N ′(λ) = η′ for all
λ ∈ �.

From Lemma 3.3, all the assertions of Proposition 3.3 are still valid when η and E−
λ are

replaced with η′ and E−
λ,τ , respectively. That E−

λ may be replaced with E−
λ,τ in (3.5) follows

from Proposition 2.2. Consequently, under the additional condition η′ ≤ g, the elimination
procedure of Section 4 may be adapted by using Lemma 3.3. Since η′ ≤ η, the resulting
procedure is computationally interesting when g or d are large.

Remark 3.5. Condition (3.8) is the additional assumption in Lemma 3.3 with respect to
Lemma 3.2. Since φ is decreasing on (1, γ̂ ) under condition (NERI), condition (3.8) is
equivalent to

z < γ̂ ln φ(z)/ ln δ̂ for all z ∈ (1, γ̂ ). (3.9)

Indeed, for every t ∈ (1, γ̂ ), we have u := t ln δ̂/ ln γ̂ ∈ (̂δ, 1) and z := φ−1(u) ∈ (1, γ̂ ). Hence,

(3.8) ⇐⇒ φ(γ̂ ln u/ ln δ̂) < u for all u ∈ (̂δ, 1) ⇐⇒ (3.9). (3.10)

Therefore, under condition (3.8), for any λ ∈ (̂δ, 1), we have E−
λ,τ 	= ∅ since z = φ−1(λ)

satisfies z < γ̂ τ(λ) from (3.9).

Proof of Lemma 3.3. The proof is similar to that of Lemma 3.2. Under condition (3.8),
Remark 3.3 extends as follows:

Eλ = E−
λ,τ � (Eλ ∩ {z ∈ C : |z| > γ̂ τ }). (3.11)

Indeed, consider λ ∈ � and z ∈ Eλ such that |z| = γ̂ τ . Since λ = φ(z), we have |λ| ≤ φ(|z|);
thus, |λ| ≤ φ(γ̂ τ ). This inequality contradicts condition (3.8) (use the definition of τ and the
second equivalence in (3.10) with u := |λ|). Next, using (3.11) and the continuity of τ(·),
Lemma 3.2 easily extends to the function N ′(·).
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4. Convergence rate for RWs with i.d. bounded increments

Let us recall that any RW with i.d. bounded increments defined by (3.4a)–(3.4c) and satisfying
(NERI) has an invariant probability measure π on N such that π(Vγ̂ ) < ∞, where Vγ̂ :=
{γ̂ n}n∈N and γ̂ is defined in Lemma 3.1. Indeed, δ̂ := φ(γ̂ ) < 1 so that condition (WD) holds
with Vγ̂ from Proposition 3.2. The expected conclusions on π can be deduced from the first
statement of [2, Corollary 5]. Note that, from Lemma 3.1, the previous fact is valid for any
γ ∈ (1, γ0) in place of γ̂ .

The Vγ̂ -geometric ergodicity of the RW may be studied using Proposition 2.1. Next we
can derive from Proposition 3.3 an effective procedure to compute the rate of convergence
with respect to B γ̂ (see (1.2)), denoted by ρ̂(P ). The most favorable case for initializing the
procedure (see (4.3) and (4.5)) is to assume that, for some (any) λ ∈ �,

η := N(λ) ≤ g. (4.1)

• First step: checking condition (4.1). From Lemma 3.2, computing η and testing η ≤ g

of assumption (4.1) can be done by analyzing the roots of Eλ(·) for some (any) λ ∈ �.

• Second step: linear and polynomial eliminations. This second step consists in applying
some linear and (successive) polynomial eliminations in order to find a finite set Z ⊂ �

containing all the eigenvalues of P on B γ̂ in�. Conversely, the elements of Z providing
eigenvalues of P on B γ̂ can be identified using condition (b) of Proposition 3.3. Note
that the explicit computation of the roots of Eλ(·) is only required for the elements λ of
the finite set Z. This is detailed in Corollary 4.1.

Under the assumptions of Proposition 3.3, we define the set

M :=
{
(m1, . . . , ms) ∈ {1, . . . , s}s : s ∈ {1, . . . , η}, m1 ≤ . . . ≤ ms, and

s∑
i=1

mi = η

}
.

Note that M is a finite set and that, for every λ ∈ �, there exists a unique μ ∈ M such that the
set E−

λ is composed of s distinct roots of Eλ(·) with multiplicity m1, . . . , ms, respectively.

Corollary 4.1. Assume that assumptions (3.4a)–(3.4c) and (NERI) hold. Set � := (
g
η

)
. Then

there exists a family of polynomial functions {Rμ,k, μ ∈ M, 1 ≤ k ≤ �}, with coefficients
depending only on μ and on the transition probabilities P(i, j), such that the following
assertions hold for any μ ∈ M.

(a) Let λ ∈ � be an eigenvalue of P on B γ̂ such that, for some s ∈ {1, . . . , η}, the set E−
λ

is composed of s roots of Eλ(·) with multiplicity m1, . . . , ms, respectively. Then

Rμ,1(λ) = 0, . . . ,Rμ,�(λ) = 0. (4.2)

(b) Conversely, let λ ∈ � satisfy (4.2) such that, for some s ∈ {1, . . . , η}, the set E−
λ is

composed of s roots ofEλ(·)with multiplicitym1, . . . , ms, respectively. Then a necessary
and sufficient condition forλ to be an eigenvalue ofP onB γ̂ is thatλ satisfies condition (b)
of Proposition 3.3.

Proof. Assertion (b) follows from Proposition 3.3. To prove (a), first assume for convenience
that η = g and that λ ∈ � is an eigenvalue of P on B γ̂ such that the associated set E−

λ contains
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η distinct roots z1, . . . , zη of Eλ(·) with multiplicity 1. We know from Proposition 3.3 that
there exists f := {f (n)}n∈N 	= 0 of the form

f =
η∑
i=1

αiz
(1)
i ,

which satisfies the g = η boundary equations: λf (i) = (Pf )(i) for all i = 0, . . . , η − 1. In
other words, the linear system provided by these η equations has a nonzero solution (αi)1≤i≤η ∈
C
η. Therefore, the associated determinant is 0; this leads to a polynomial equation of the form

P0,1(λ, z1, . . . , zη) = 0. (4.3)

Since this polynomial is divisible by
∏
i 	=j (zi − zj ), (4.3) is equivalent to

P0(λ, z1, . . . , zη) = 0 with P0(λ, z1, . . . , zη) = P0,1(λ, z1, . . . , zη)∏
i 	=j (zi − zj )

. (4.4)

Note that the coefficients of P0 depend only on the P(i, j).
Next, zη is a common root of the polynomials P0(λ, z1, . . . , zη−1, z) andEλ(z)with respect

to the variable z; this leads to the necessary condition

P1(λ, z1, . . . , zη−1) := Reszη (P0, Eλ) = 0,

where Reszη (P0, Eλ) denotes the resultant of the two polynomials P0 and Eλ corresponding
to the elimination of the variable zη. Again, the coefficients of P1 depend only on the P(i, j).
Next, considering the common root zη−1 of the polynomials P1(λ, z1, . . . , zη−2, z) and Eλ(z)
leads to the elimination of the variable zη−1:

P2(λ, z1, . . . , zη−2) := Reszη−1(P1, Eλ) = 0.

Repeating this method, we find that a necessary condition for λ to be an eigenvalue of P is
R(λ) = 0, where R is some polynomial with coefficients depending only on the P(i, j).

Now let us consider the case when η < g, s ∈ {1, . . . , η}, and λ ∈ � is assumed to be
an eigenvalue of P on B γ̂ such that the associated set E−

λ contains s distinct roots of Eλ(·)
with respective multiplicity m1, . . . , ms satisfying

∑s
i=1mi = η. Then the elimination (by

using determinants) of (αλ,z,�) ∈ C
η provided by the linear system of Proposition 3.3 leads to

� := (
g
η

)
polynomial equations

P0,μ,1(λ, z1, . . . , zη) = 0, . . . , P0,μ,�(λ, z1, . . . , zη) = 0. (4.5)

As in the case η = g, these polynomials are replaced in the sequel by the polynomials obtained
by division of the P0,μ,k by

∏
i 	=j (zi − zj )

ni,j , where ni,j := min(mi,mj ).
The successive polynomial eliminations of zη, . . . , z1 can be derived as above from each

polynomial equation P0,μ,k(λ, z1, . . . , zη) = 0. This gives � polynomial equations

Rμ,1(λ) = 0 , . . . , Rμ,�(λ) = 0.

Satisfying this set of polynomial equations is a necessary condition for λ to be an eigenvalue of
P on B γ̂ . Finally, the polynomial functions Rμ,1, . . . ,Rμ,� depend on the P(i, j) and also on
(m1, . . . , ms), since the linear system used to eliminate (αλ,k,�) ∈ C

η involves the coefficients
i(i − 1) · · · (i − k + 1) for some finitely many integers i and k = 1, . . . , mi (i = 1, . . . , s).
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To compute ρ̂(P ), we define the following (finite and possibly empty) sets:

�μ := {λ ∈ � : Rμ,1(λ) = 0, . . . ,Rμ,�(λ) = 0} for all μ ∈ M.

Let us denote by Z the (finite and possibly empty) set composed of all the complex numbers
λ ∈ ⋃

μ∈M �μ such that condition (b) of Proposition 3.3 holds.

Corollary 4.2. Assume that assumptions (3.4a)–(3.4c) and (NERI) hold, and that P is irre-
ducible and aperiodic. Then

ρ̂(P ) = max(̂δ,max{|λ|, λ ∈ Z}), where δ̂ := φ(γ̂ ).

Proof. Under the assumptions on P , we know from Proposition 2.1 that the RW is Vγ̂ -
geometrically ergodic. Since r̂ess(P ) = δ̂ from Proposition 3.2, the corollary follows from
Corollary 4.1 and from Proposition 2.1 applied either with any r0 such that δ̂ < r0 < min{|λ|,
λ ∈ Z} if Z 	= ∅, or with any r0 such that δ̂ < r0 < 1 if Z = ∅.

Remark 4.1. When η ≥ 2 andμ := (m1, . . . , ms)with s < η, the set�μ used in Corollary 4.2
may be reduced. For the sake of simplicity, this fact has been omitted in Corollary 4.2, but
it is relevant in practice. Actually, when s < η, Corollary 4.1(b) can be specified since it
requires that Eλ(·) admits roots of multiplicity greater than or equal to 2. This involves some
additional necessary conditions on λ derived from some polynomial eliminations with respect
to the derivatives of Eλ(·).

For instance, in the case g = 2, η = 2, and s = 1 (thus, μ := (2)), a necessary condition on
λ for Eλ(·) to have a double root is that Eλ(·) and E′

λ(·) admit a common root. This leads to

Q(λ) := Resz(Eλ,E
′
λ) = 0.

Consequently, if g = 2 and η = 2 (thus, � := 1), then condition (b) of Proposition 3.3 can be
tested in the case s = 1 by using the following finite set:

�′
μ := �μ ∩ {λ ∈ � : Q(λ) = 0}.

In general, �′
μ is strictly contained in �μ. Even �′

μ may be empty while �μ is not (see
Subsection 4.2).

Proposition 3.3 and the above elimination procedure obviously extend to any γ ∈ (1, γ0) in
place of γ̂ , where γ0 is given in Lemma 3.1. Of course, δ̂ = φ(γ̂ ) is then replaced by δ = φ(γ ).

4.1. RWs with g = d := 1: birth-and-death Markov chains

Let p, q, r ∈ [0, 1] be such that p + r + q = 1, and let P be defined by

P(0, 0) ∈ (0, 1), P (0, 1) = 1 − P(0, 0)

P (n, n− 1) := p, P (n, n) := r, P (n, n+ 1) := q, for n ≥ 1 with 0 < q < p.
(4.6)

Note that a−1 := p, a1 := q > 0 and (NERI) holds. We have γ0 = p/q ∈ (1,+∞)

and γ̂ := √
p/q ∈ (1,+∞) such that δ̂ := minγ>1 φ(γ ) = φ(γ̂ ) < 1 (see Lemma 3.1). Let

Vγ̂ := {γ̂ n}n∈N and let Bγ̂ be the associated weighted-supremum space (as defined in Section
3). Here we have

r̂ess(P ) = δ̂ = r + 2
√
pq.
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Proposition 4.1. Let P be defined by conditions (4.6). The boundary transition probabilities
are denoted by P(0, 0) := a and P(0, 1) := 1 − a for some a ∈ (0, 1). Then P is Vγ̂ -
geometrically ergodic. Furthermore, defining a0 := 1 − q − √

pq, the convergence rate ρ̂(P )
of P with respect to B γ̂ is as follows.

• When a ∈ (a0, 1),
ρ̂(P ) = r + 2

√
pq. (4.7)

• When a ∈ (0, a0],
(a) in the 2p ≤ (1 − q + √

pq)2 case

ρ̂(P ) = r + 2
√
pq, (4.8)

(b) in the 2p > (1 − q + √
pq)2 case, setting a1 := p − √

pq − √
r(r + 2

√
pq),

ρ̂(P ) =
∣∣∣∣a + p(1 − a)

a − 1 + q

∣∣∣∣ when a ∈ (0, a1], (4.9a)

ρ̂(P ) = r + 2
√
pq when a ∈ [a1, a0). (4.9b)

When r := 0, such results have been obtained in [1], [10], and [14] using various methods
involving conditions on a (see the end of the introduction). Let us specify the above formulae
in the case r := 0. We have a0 = a1 = p − √

pq = (p − q)/(1 + √
q/p), and it can be easily

checked that 2p > (1 − q + √
pq)2. Then properties (4.7), (4.9a), and (4.9b) can be rewritten

as ρ̂(P ) = (pq + (a − p)2)/|a − p| when a ∈ (0, a0], and ρ̂(P ) = 2
√
pq when a ∈ (a0, 1).

Proof of Proposition 4.1. We apply the elimination procedure of Section 4. Then� := {λ ∈
C : δ̂ < |λ| < 1} with δ̂ := r + 2

√
pq. The characteristic polynomial Eλ(·) is

Eλ(z) := qz2 + (r − λ)z+ p.

A simple study of the graph of φ(t) := p/t+r+qt on R\{0} shows that, for any λ ∈ (̂δ, 1), the
equation φ(z) = λ (i.e.Eλ(z) = 0) admits a solution in (1, γ̂ ) and another solution in (γ̂ ,+∞),
so N(λ) = 1. It follows from Proposition 3.3 that η = 1. Thus, the linear elimination used
in Corollary 4.1 is here trivial. Indeed, a necessary condition for f := {zn}n∈N to satisfy
Pf = λf is obtained by eliminating the variable z with respect to the boundary equation
(Pf )(0) = λf (0), namely, P0(λ, z) := a + (1 − a)z = λ, and the equation Eλ(z) = 0. This
leads to

P1(λ, z) := Resz(P0, Eλ) = (1 − λ)[(λ− a)(1 − a − q)+ p(1 − a)]. (4.10)

In the special case a = 1 − q, the only solution of (4.10) is λ = 1. Corollary 4.2 then gives
ρ̂(P ) = r + 2

√
pq.

Now assume that a 	= 1 − q. Then λ = 1 is a solution of (4.10) and the other solution
of (4.10), say λ(a), and the associated complex number, say z(a), are given by the following
formulae (use a + (1 − a)z = λ to obtain z(a)):

λ(a) := a + p(1 − a)

a − 1 + q
∈ R and z(a) := p

a + q − 1
∈ R.

To apply Corollary 4.2, we must find the values a ∈ (0, 1) for which both conditions δ̂ <
|λ(a)| < 1 and |z(a)| ≤ γ̂ hold. Observe that

|z(a)| ≤ γ̂ ⇐⇒ |a − 1 + q| ≥ √
pq.

Hence, if a ∈ (a0, 1) (recall that a0 := 1 − q − √
pq) then |z(a)| > γ̂ . This gives (4.7).
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Now let a ∈ (0, a0]. Then |z(a)| ≤ γ̂ . Let us study λ(a). We have λ′(a) = 1 − pq/(a −
1 + q)2, so a �→ λ(a) is increasing on (−∞, a0] from −∞ to λ(a0) = r − 2

√
pq. Thus,

λ(a) ≤ r − 2
√
pq < r + 2

√
pq for all a ∈ (0, a0],

and the equation λ(a) = −(r + 2
√
pq) has a unique solution a1 ∈ (−∞, a0). Note that

a1 < a0 and λ(a1) = −(r + 2
√
pq), that λ(0) = p/(q − 1) ∈ [−1, 0), and finally that

λ(0)− λ(a1) = p

q − 1
+ r + 2

√
pq = (q − √

pq − 1)2 − 2p

1 − q
.

When 2p ≤ (1 − q + √
pq)2, we obtain (4.8). Indeed, |λ(a)| < r + 2

√
pq since

−(r + 2
√
pq) = λ(a1) ≤ λ(0) < λ(a) < r + 2

√
pq for all a ∈ (0, a0].

When 2p > (1 − q + √
pq)2, we have a1 ∈ (0, a0] and the following statements hold.

• If a ∈ (0, a1) then (4.9a) holds. Indeed, r + 2
√
pq < |λ(a)| < 1 since

−1 ≤ λ(0) < λ(a) < λ(a1) = −(r + 2
√
pq) for all a ∈ (0, a1].

• If a ∈ [a1, a0] then (4.9b) holds. Indeed, |λ(a)| < r + 2
√
pq since

−(r + 2
√
pq) = λ(a1) ≤ λ(a) < r + 2

√
pq.

Remark 4.2. (Discussion on the �2(π)-spectral gap and the decay parameter.) As mentioned
in the introduction, we are not concerned with the usual �2(π)-spectral gap ρ2(P ) for birth-
and-death Markov chains (BDMCs). In particular, we cannot compare our results with those
of [16]. To give a comprehensive discussion on [16], let P be a kernel of a BDMC defined by
(4.6) with invariant probability measure π . Here P is reversible with respect to π . It can be
proved that the decay parameter of P , denoted by γ in [16] but by γDS here to avoid confusion
with our parameter γ , is also the rate of convergence ρ2(P ):

γDS = ρ2(P ) := lim
n

‖Pn −�‖2
1/n
.

Here �f := π(f ) 1X and ‖ · ‖2 denotes the operator norm on �2(π). When P is assumed to
be Vγ̂ -geometrically ergodic with V := {γ̂ n}n∈N, it follows from [1, Theorem 6.1] that

γSD ≤ ρ̂(P ).

Consequently, the bounds of the decay parameter γDS given in [16] cannot provide bounds for
ρ̂(P ) since the converse inequality ρ̂(P ) ≤ γDS is not known to the best of our knowledge.
Moreover, even if the equality γDS = ρ̂(P )was true, the bounds obtained in our Proposition 4.1
could be derived from [16] only for some specific values of P(0, 0). Indeed, the difficulty in
[16, pp. 139–140] with covering all the values P(0, 0) ∈ (0, 1) is that the spectral measure
associated with Karlin and McGregor polynomials cannot be easily computed, except for some
specific values of P(0, 0) (see [9] for a recent contribution).
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4.2. A nonreversible case: RWs with g = 2 and d = 1

Let P := (P (i, j))(i,j)∈N2 be defined by

P(0, 0) = a ∈ (0, 1), P (0, 1) = 1 − a,

P (1, 0) = b ∈ (0, 1), P (1, 2) = 1 − b,
(4.11)

and for all n ≥ 2 by
P(n, n− 2) = a−2 > 0, P (n, n− 1) = a−1,

P (n, n) = a0, P (n, n+ 1) = a1 > 0.

The form of boundary probabilities in (4.11) is chosen for convenience. Other (finitely many)
boundary probabilities could be considered provided that P is irreducible and aperiodic. To
illustrate the procedure proposed in Section 4 for this class of RWs, we also specify the numerical
values

a−2 := 1
2 , a−1 := 1

3 , a0 = 0, a1 := 1
6 .

The procedure could be developed in the same way for any other values of (a−2, a−1, a0, a1)

satisfying a−2, a1 > 0 and condition (NERI) i.e. a1 < 2a−2 + a−1. Here we have

φ(t) := 1

2t2
+ 1

3t
+ t

6
= 1 + 1

6t2
(t − 1)(t2 − 5t − 3).

The function φ(·) has a minimum over (1,+∞) at γ̂ ≈ 2.18, with δ̂ := φ(γ̂ ) ≈ 0.621. Let
Vγ̂ := {γ̂ n}n∈N, and let B γ̂ be the associated weighted space. We know from Proposition 3.2
and from irreducibility and aperiodicity properties that r̂ess(P ) = δ̂ and P is Vγ̂ -geometrically
ergodic (see Proposition 2.1). The polynomial Eλ(·) is given by

Eλ(z) := z3

6
− λz2 + z

3
+ 1

2
for all z ∈ C.

A simple examination of the graph of φ(·) shows that η = 2. Thus, the set M of Corollary 4.2
is M := {(1, 1), (2)}. Next, the constructive proof of Corollary 4.1 provides the following
procedure to compute ρ̂(P ) (see also Remark 4.1 in the second case). Recall that � := {λ ∈
C : δ̂ < |λ| < 1}.

First case: μ = (1, 1). (a) When λ ∈ � is such that E−
λ is composed of two simple roots of

Eλ(·), a necessary condition for λ to be an eigenvalue of P on B γ̂ is that

R1(λ) := Resz1(P1, Eλ) = 0,

where

P1(λ, z1) := Resz2(P0, Eλ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
6 0 A(λ, z1) 0 0

−λ 1
6 B(λ, z1) A(λ, z1) 0

1
3 −λ C(λ, z1) B(λ, z1) A(λ, z1)
1
2

1
3 0 C(λ, z1) B(λ, z1)

0 1
2 0 0 C(λ, z1)

∣∣∣∣∣∣∣∣∣∣∣∣
and P0(λ, z1, z2) := A(λ, z1)z2

2 + B(λ, z1)z2 + C(λ, z1) is given by

P0(λ, z1, z2) :=
∣∣∣∣ (1 − a) a + (1 − a)z2 − λ

(1 − b)(z1 + z2)− λ b + (1 − b)z2
2 − λz2

∣∣∣∣ . (4.12)
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We derive P0(λ, z1, z2) from (4.4) with

P0,1(λ, z1, z2) :=
∣∣∣∣ a + (1 − a)z1 − λ a + (1 − a)z2 − λ

b + (1 − b)z2
1 − λz1 b + (1 − b)z2

2 − λz2

∣∣∣∣
= (z1 − z2)P0(λ, z1, z2).

(b) Sufficient part. Consider

�(1,1) = Root(R1) ∩� = Root(R1) ∩ {λ ∈ C : 0.621 ≈ δ̂ < |λ| < 1}.
For every λ ∈ �(1,1),

(i) check that Eλ(z) = 0 has two simple roots z1 and z2 such that |zi | < γ̂ ≈ 2.18,

(ii) if (i) is satisfied, then test if P0(λ, z1, z2) = 0 with P0 given in (4.12).

If (i) and (ii) are satisfied, then λ is an eigenvalue of P on B γ̂ .
Second case: μ = (2). (a) When λ ∈ � is such that E−

λ is composed of a double root of
Eλ(·), a necessary condition for λ to be an eigenvalue of P on B γ̂ is that (see Remark 4.1)

Q(λ) = 0 and R2(λ) := Resz1(P1, Eλ) = 0,

where

Q(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣

1
6 0 1

2 0 0

−λ 1
6 −2λ 1

2 0
1
3 −λ 1

3 −2λ 1
2

1
2

1
3 0 1

3 −2λ

0 1
2 0 0 1

3

∣∣∣∣∣∣∣∣∣∣∣∣
and

P1(λ) := Resz1(P0, Eλ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
6 0 A(λ) 0 0

−λ 1
6 B(λ) A(λ) 0

1
3 −λ C(λ) B(λ) A(λ)
1
2

1
3 0 C(λ) B(λ)

0 1
2 0 0 C(λ)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where P0(λ, z1) := A(λ)z2
1 + B(λ)z1 + C(λ) is given by

P0(λ, z1) :=
∣∣∣∣ a + (1 − a)z1 − λ 1 − a

b + (1 − b)z2
1 − λz1 2(1 − b)z1 − λ

∣∣∣∣ . (4.13)

(b) Sufficient part. Consider

�′
(2) = Root(Q) ∩�(2) = Root(Q) ∩ Root(R2) ∩ {λ ∈ C : 0.621 ≈ δ̂ < |λ| < 1}.

For every λ ∈ �′
(2),

(i) check that equation Eλ(z) = 0 has a double root z1 such that |z1| < γ̂ ≈ 2.18,

(ii) if (i) is satisfied, then test if P0(λ, z1) = 0 with P0 given in (4.13).

If (i) and (ii) are satisfied, then λ is an eigenvalue of P on B γ̂ .
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Table 1: Convergence rates with different values of the boundary transition probabilities (a, b).

(a, b) �(1,1) Z(1,1) �′
(2) Z(2) δ̂ ρ̂(P )

( 1
2 ,

1
2 ) −0.625 ± 0.466i ∅ ∅ ∅ 0.621 0.621

−0.798, 0.804 ∅ ∅ ∅ 0.621 0.621

( 1
10 ,

1
10 ) −0.681 ± 0.610i −0.466 ± −0.506i ∅ ∅ 0.621 0.688

−0.466 ± 0.506i −0.466 ± −0.506i ∅ ∅ 0.621 0.688
−0.384 ± 0.555i −0.466 ± −0.506i ∅ ∅ 0.621 0.688

( 1
50 ,

1
50 ) −0.598 ± 0.614i −0.493 ± 0.574i ∅ ∅ 0.621 0.757

−0.383 ± 0.542i −0.493 ± 0.574i ∅ ∅ 0.621 0.757
−0.493 ± 0.574i −0.493 ± 0.574i ∅ ∅ 0.621 0.757
−0.477 ± 0.584i −0.493 ± 0.574i ∅ ∅ 0.621 0.757

0.994 −0.493 ± 0.574i ∅ ∅ 0.621 0.757

Final results. Define Z(1,1) as the set of all the λ ∈ �(1,1) satisfying (i)–(ii) in the first case,
and define Z(2) as the set of all the λ ∈ �′

(2) satisfying (i)–(ii) in the second case. Finally, set
Z := Z(1,1) ∪ Z(2). Then

ρ̂(P ) = max(̂δ,max{|λ|, λ ∈ Z}).
The results (obtained using MAPLE®) for different values of the boundary transition probabil-
ities are reported in Table 1. In these specific examples, note that�′

(2) is always the empty set.
As expected, we obtain ργ̂ (P ) ↗ 1 when (a, b)→(0, 0).

5. Convergence rate for RWs with unbounded increments

In this subsection we propose two instances of RWs on X := N with unbounded increments
for which estimates of the convergence rate with respect to some weighted-supremum space
BV can be obtained using Proposition 3.1 and Proposition 2.1. The first example is from [11].
The second example is a reversible transition kernel P inspired from the ‘infinite star’ example
in [15]. Note that, using a result of [1] (see Remark 4.2), estimates of ρV (P ) with respect
to BV may be useful to obtain estimates on the usual spectral gap ρ2(P ) with respect to the
Lebesgue space �2(π). Recall that the converse is not true in general.

5.1. A nonreversible RW with unbounded increments [11]

Let P be defined for n ≥ 1 by

P(0, n) := qn, P (n, 0) := p, P (n, n+ 1) := q = 1 − p,

with p ∈ (0, 1) and qn ∈ [0, 1] such that
∑
n≥1 qn = 1.

Proposition 5.1. Assume that γ ∈ (1, 1/q) such that
∑
n≥1 qnγ

n < ∞. Then ress(P ) ≤ qγ .
Moreover, P is Vγ -geometrically ergodic with convergence rate ρVγ (P ) ≤ max(qγ, p).

Proof. We have
(PVγ )(n) = qγ n+1 + p

for all n ≥ 1. Thus, if γ ∈ (1, 1/q) and∑
n≥1

qnγ
n < ∞,
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then condition (WD) holds with Vγ , and we have δVγ (P ) ≤ qγ . Therefore, it follows from
Proposition 3.1 that ress(P ) ≤ qγ . Now Proposition 2.1 is applied with any r0 > max(qγ, p).
Let λ ∈ C be such that max(qγ, p) < |λ| ≤ 1, and let f ∈ Bγ , f 	= 0, be such that Pf = λf .
We obtain

f (n) = (λ/q)f (n− 1)− pf (0)/q

for any n ≥ 2, so that

f (n) =
(
λ

q

)n−1(
f (1)− pf (0)

λ− q

)
+ pf (0)

λ− q
for all n ≥ 2.

Since f ∈ BVγ and |λ|/q > γ , we obtain

f (1) = pf (0)/(λ− q),

and, consequently,
f (n) = pf (0)/(λ− q)

for all n ≥ 1. Next the equality

λf (0) = (Pf )(0) =
∑

n≥1qnf (n)

gives:
λf (0) = pf (0)/(λ− q)

since ∑
n≥1

qn = 1.

We have f (0) 	= 0 since we look for f 	= 0. Thus, λ satisfies λ2 − qλ− p = 0, that is, λ = 1
or λ = −p. The case λ = −p has not to be considered since |λ| > max(qγ, p). If λ = 1
then f (n) = f (0) for any n ∈ N, so λ = 1 is a simple eigenvalue of P on Bγ and is the only
eigenvalue such that max(qγ, p) < |λ| ≤ 1. Then Proposition 2.1 gives the second conclusion
of Proposition 5.1.

Note that p cannot be dropped in the inequality ρVγ (P ) ≤ max(qγ, p) since λ = −p is an
eigenvalue of P on Bγ with corresponding eigenvector fp := (1,−p,−p, . . . ).
5.2. A reversible RW inspired from [15]

Let {πn}n∈N be a probability distribution (with πn > 0 for every n ∈ N), and letP be defined
by

P(0, n) = πn for all n ∈ N and P(n, 0) = π0, P (n, n) = 1 − π0, for all n ≥ 1.

It is easily checked that P is reversible with respect to {πn}n∈N, so {πn}n∈N is an invariant
probability distribution of P .

Proposition 5.2. Assume that there exists V ∈ [1,+∞)N such that V (0) = 1, V (n)→ + ∞
as n→ + ∞, and π(V ) := ∑

n≥0 πnV (n) < ∞. Then P is V -geometrically ergodic with
ρV (P ) ≤ 1 − π0.
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It can be checked that P is not stochastically monotone, so the estimate ρV ≤ 1−π0 cannot
be directly deduced from [10].

Proof of Proposition 5.2. From (PV )(0) = π(V ) and (PV )(n) = π0V (0)+ (1−π0)V (n)

for all n ≥ 1, it follows that

PV ≤ (1 − π0)V + (π(V )+ π0) 1X .

That is, condition (WD) holds with N := 1, δ := 1 −π0, and d := π(V )+π0. The inequality
ress(P ) ≤ 1 − π0 is deduced from Proposition 3.1.

Let λ ∈ C be an eigenvalue of P, and let f := {f (n)}n∈N be a nontrivial associated
eigenvector. Then

λf (0) =
+∞∑
n=0

πnf (n) and λf (n) = π0f (0)+ (1 − π0)f (n) for all n ≥ 1. (5.1)

This gives f (n) = f (0)π0/(λ− 1 + π0) for all n ≥ 1. Since f 	= 0, it follows from the first
equality in (5.1) that

λ = π0 + π0

λ− 1 + π0
(1 − π0),

which is equivalent to λ2 − λ = 0. Thus, λ = 1 or 0. That 1 is a simple eigenvalue is standard
from the irreducibility of P . The result follows from Proposition 2.1.

A specific instance of this model is considered in [15, p. 68]. Let {wn}n≥1 be a sequence of
positive scalars such that

∑
n≥1wn = 1

2 . Then P is given by

P(n, n) = 1
2 for all n ∈ N and P(0, n) = wn, P (n, 0) = 1

2 , for all n ≥ 1,

which is reversible with respect to its invariant probability distribution π defined by π0 := 1
2

and πn := wn for n ≥ 1. It has been proved in [15, p. 68] that, for any X0 ∼ α ∈ �2(1/π),
there exists a constant Cα,π > 0 such that

‖αPn − π‖TV ≤ Cα,π
( 3

4

)n
, (5.2)

where ‖ · ‖TV is the total variation distance. Since we know that ρ2(P ) ≤ ρV (P ) from [1] and
ρV (P ) ≤ 1

2 from Proposition 5.2, the rate of convergence in (5.2) is improved.

Acknowledgement

The authors thank Denis Guibourg for stimulating discussions about this work.

References

[1] Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov
chains. Ann. Appl. Prob. 15, 700–738.

[2] Guibourg, D., Hervé, L. and Ledoux, J. (2011). Quasi-compactness of Markov kernels on weighted-
supremum spaces and geometrical ergodicity. Preprint. Available at http://uk.arxiv.org/abs/1110.3240.

[3] Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math.
Soc. 118, 627–634.

[4] Hervé, L. and Ledoux, J. (2014). Approximating Markov chains and V -geometric ergodicity via weak
perturbation theory. Stoch. Process. Appl. 124, 613–638.

[5] Hordijk, A. and Spieksma, F. (1992). On ergodicity and recurrence properties of a Markov chain with an
application to an open Jackson network. Adv. Appl. Prob. 24, 343–376.

https://doi.org/10.1239/aap/1418396242 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396242


1058 L. HERVÉ AND J. LEDOUX

[6] Klimenok, V. and Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and
their application in queueing theory. Queueing Systems. 54, 245–259.

[7] Kontoyiannis, I. and Meyn, S. P. (2003). Spectral theory and limit theorems for geometrically ergodic Markov
processes. Ann. Appl. Prob. 13, 304–362.

[8] Kontoyiannis, I. and Meyn, S. P. (2012). Geometric ergodicity and the spectral gap of non-reversible Markov
chains. Prob. Theory Relat. Fields 154, 327–339.

[9] Kovchegov, Y. (2009). Orthogonality and probability: beyond nearest neighbor transitions. Electron. Commun.
Prob. 14, 90–103.

[10] Lund, R. B. and Tweedie, R. L. (1996). Geometric convergence rates for stochastically ordered Markov chains.
Math. Operat. Res. 21, 182–194.

[11] Malyshev, V. A. and Spieksma, F. M. (1995). Intrinsic convergence rate of countable Markov chains. Markov
Process. Relat. Fields 1, 203–266.

[12] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
[13] Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains.

Ann. Appl. Prob. 4, 981–1011.
[14] Roberts, G. O. and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov

chains. Stoch. Process. Appl. 80, 211–229. (Corrigendum: 91 (2001), 337–338.)
[15] Rosenthal, J. S. (1996). Markov chain convergence: from finite to infinite. Stoch. Process. Appl. 62, 55–72.
[16] Van Doorn, E. A. and Schrijner, P. (1995). Geometric ergodicity and quasi-stationarity in discrete-time

birth–death processes. J. Austral. Math. Soc. B 37, 121–144.
[17] Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. Prob. Theory Relat. Fields

128, 255–321.

https://doi.org/10.1239/aap/1418396242 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396242

	1 Introduction
	2 Quasicompactness on BV and V-geometric ergodicity
	2.1 From quasicompactness on BV to V-geometric ergodicity
	2.2 Bound on generalized eigenfunctions of P

	3 Spectral properties of discrete RWs
	3.1 Quasicompactness of RWs with bounded state-dependent increments
	3.2 Spectral analysis of RW with i.d. bounded increments

	4 Convergence rate for RWs with i.d. bounded increments
	4.1 RWs with g=d:=1: birth-and-death Markov chains
	4.2 A nonreversible case: RWs with g=2 and d=1 

	5 Convergence rate for RWs with unbounded increments
	5.1 A nonreversible RW with unbounded increments MalSpi95
	5.2 A reversible RW inspired from Ros96

	Acknowledgement
	References

