THE CONVERGENCE OF SERIES FOR VARIOUS CHOICES OF SIGN IN BANACH SPACES

JAMES SHIREY

1. Let (x_n, X_n) denote a basis for a Banach space $(X, || \cdot ||)$ of measurable functions in (0, 1).

It is shown in [2] and [9] that the equivalence of the norms

$$\left|\left|\left(\sum_{1}^{\infty} X_{n^{2}}(\cdot) x_{n^{2}}\right)^{\frac{1}{2}}\right|\right|$$

and $|| \cdot ||$ is equivalent to the unconditionality of the basis (x_n, X_n) . In [8] a weaker relationship between these norms is exploited to establish the existence of an element of $L_1(E)$ for each $E \subset (0, 1)$, |E| > 0, whose Haar series expansion is conditionally convergent in the norm of $L_1(E)$.

In this note, a Lemma of Orlicz [7] is generalized to provide a relationship between $||(\sum_{1}^{\infty} y_n^2)^{\frac{1}{2}}||$, $y_n \in X$, and the changes in sign that are tolerated in $\sum_{1}^{\infty} y_n$ without disruption of norm convergence. Some applications to the Haar and Walsh systems are given.

Given a set $H \subset L_1(0,1)$ of non-negative functions, define for each measurable real-valued function x on (0, 1),

$$||x|| = \sup \left\{ \int_{0}^{1} |x(t)h(t)| dt : h \in H \right\}, \text{ and} X = \{x : ||x|| < \infty \}.$$

The functional $|| \cdot ||$ is said to have the "Fatou property" whenever it follows from $0 \leq u_1 \leq u_2 \leq ... \uparrow u$, with all u_n measurable, that $||u_n|| \uparrow ||u||$. In all that follows we assume that $|| \cdot ||$ has the Fatou property, which guarantees the norm-completeness of $(X, || \cdot ||)$ [10, Chapter 15]. This may be ensured by less stringent conditions on $|| \cdot ||$, but the Fatou property is easy to verify in cases and pertains to most of the important examples. In [5, p. 66] various conditions on H are listed whose fulfillment causes $|| \cdot ||$ to have this property.

Given a space $(X, || \cdot ||)$ of the type described above and a series $x = \sum x_i$, $x_i \in X$, define $G(x) = ||(\sum_{i=1}^{\infty} x_i^2)^{\frac{1}{2}}||$ and $C(x) = \{\theta: \sum_{i=1}^{\infty} r_i(\theta) x_i \text{ converges in } || \cdot || \}$ where $\{r_i\}$ denotes the Rademacher system.

If |C(x)| = 0 (= 1), then the series $\sum_{i=1}^{\infty} x_i$ is said to "diverge (respectively converge) for almost every choice of sign". The obvious justification for such terminology is the possibility of obtaining any desired choice of signs in the series $\sum_{i=1}^{\infty} \pm x_i$ by a proper selection of θ in $\sum_{i=1}^{\infty} r_i(\theta)x_i$.

Received November 6, 1973 and in revised form, March 26, 1974.

JAMES SHIREY

2. THEOREM 1. Let $x \equiv \sum_{i=1}^{\infty} x_i$ be convergent in $(X, || \cdot ||)$. If |C(x)| > 0, then $G(x) < \infty$.

Remarks. This result was given by Orlicz [7] for the "Orlicz spaces" under the assumption that C(x) = [0, 1], and in [9] for the Banach function spaces of the type defined above under the same assumption. Gelbaum [2] has shown that |C(x)| = 1 through the use of the "0 - 1" law, provided that |C(x)| > 0.

Proof of Theorem 1. It is easily verified that C(x) is a Borel set (see, for example, the proof of Theorem 6 in [8]) and that there exists a Borel set $S \subset C(x)$, |S| > 0, and an M > 0 such that

(1)
$$||\sum_{m}^{n} r_{n}(\theta)x_{n}|| \leq M$$
 for all $n, m > 0$ and all $\theta \in S$.

In reference to Lemma 4 of [8], there exist constants A and N depending only on the set S such that

$$A\left(\sum_{N=1}^{n} x_{i}^{2}(t)\right)^{1/2} h(t) \leq \int_{S} \left|\sum_{N=1}^{n} x_{n}(t)r_{n}(\theta)h(t)\right| d\theta$$

for any $t \in (0, 1)$, $h \in H$, and n > N.

Integrate this inequality with respect to t and reverse the order of integration on the right-hand side. This yields

(2)
$$A \int_0^1 \left(\sum_{N=N}^n x_i^2(t)\right)^{1/2} h(t) dt \leq \int_S \left[\int_0^1 \left|\sum_{N=N}^n x_n(t) r_n(\theta) h(t)\right| dt\right] d\theta$$

where n > N and $h \in H$.

Combine inequalities (1) and (2):

$$A \int_{0}^{1} \left(\sum_{N=1}^{n} x_{l}^{2}(t) \right)^{1/2} h(t) dt \leq M \int_{S} d\theta = M|S|.$$

It follows that $G(x) = ||(\sum_{1}^{\infty} x_i^2)^{\frac{1}{2}}||$ is finite.

COROLLARY 1. Let (x_n, X_n) be a sequence of elements of X and of continuous linear functionals, respectively, such that $x = \sum_{i=1}^{\infty} X_n(x) x_n$ for all x in X.

If |C(x)| > 0 for each x in X, there exists a constant A > 0 such that $G(x) \leq A||x||$ for all x in X.

Proof. Theorem 1 implies that $G(x) < \infty$ for each x in X. It is now not hard to verify that $(X, || \cdot || + G(\cdot))$ is a Banach space (one may employ the notions in [10, Chapter 15] in lieu of a direct computation). The natural embedding $(X, || \cdot || + G(\cdot)) \rightarrow (X, || \cdot ||)$ is thereby a one-one and onto map of Banach spaces. By the open mapping theorem, there then exists B > 0 such that

 $||\mathbf{x}|| + G(\mathbf{x}) \leq B||\mathbf{x}||$ for all \mathbf{x} in X,

which proves the corollary.

476

We remark that in Corollary 4 below it is shown that this need not imply the equivalence of $G(\cdot)$ and $||\cdot||$. Were this the case, (x_n, X_n) would be an unconditional basis [9].

Example. We construct an element of $L_1(0, 1)$ whose Haar series expansion diverges in the L_1 -norm for almost every choice of signs.

Let $\{h_{np}\}$ be the usual enumeration of the Haar system in which the support of h_{1p} is adjacent to "0", and let $f = \sum_{1}^{\infty} 2^k k^{-1} h_{1k}$. To see that this series actually converges in L_1 , estimate

$$\int_{0}^{1} \left| \sum_{n}^{m} 2^{k} k^{-1} h_{1k}(t) \right| dt$$

by partitioning the unit interval into the subintervals on which the integrand is constant and than add up the integrals on each subinterval. This gives

$$2^{m-n-1} \sum_{s=0}^{m-n} 2^{n+s} (n+s)^{-1} + \sum_{k=1}^{m-1} 2^{-n-k} [2^{n+k-1} (n+k-1)^{-1} - \sum_{i=0}^{k-2} 2^{n+i} (n+i)^{-1}] = o(1) + \frac{1}{2} \sum_{r=0}^{m} (n+r)^{-1} (1 - \sum_{r=1}^{m-r} 2^{-k}) = o(1) + \sum_{r=0}^{m} 2^{r-m} (n+r)^{-1} \le o(1) + n^{-1} \sum_{r=0}^{\infty} 2^{-r} = o(1).$$

Hence, the series converges in L_1 .

To show that f has the desired property it is sufficient by Theorem 1, to show that $G(f) = \infty$.

$$\begin{split} G(f) &= 2^{-1} \sum_{1}^{\infty} 2^{-n} (\sum_{1}^{n} 4^{k} k^{-2})^{\frac{1}{2}} \\ &\geqq 2^{-1} \sum_{1}^{\infty} 2^{-n} (\sum_{1}^{n} 4^{k} n^{-2})^{\frac{1}{2}} \\ &= 2^{-1} 3^{-\frac{1}{2}} \sum_{1}^{\infty} 2^{-n} n^{-1} (4^{n+1} - 4)^{\frac{1}{2}} \\ &= 3^{-\frac{1}{2}} \sum_{1}^{\infty} 2^{-n} n^{-1} (4^{n} - 1)^{\frac{1}{2}} \\ &= \infty , \end{split}$$

which completes the example.

It is not such an easy matter to find an example of an element of $L_1(E)$, |E| > 0, having the same property. Nevertheless, the results above entail the existence of such functions.

COROLLARY 2. For any $E \subset (0, 1)$, |E| > 0, there exists an f in $L_1(E)$ whose Haar series expansion diverges in the norm of $L_1(E)$ for almost every choice of sign. Such functions constitute all of $L_1(E)$ with the exception of a set of first category.

Proof. In the proof of Theorem 9 of [8] it is demonstrated that the norm in $L_1(E)$ defined by

$$G(\cdot) = \int_{E} \left| \sum (h_{np}, \cdot)^{2} h_{np}^{2}(t) \right|^{1/2} dt$$

is not dominated by the norm of $L_1(E)$. By Corollary 1 this establishes the existence of the desired functions.

Let $X = \{f: f \text{ is in } L_1(E) \text{ and } G(f) < \infty\}$, and let $||\cdot||$ denote the $L_1(E)$ norm. As noted in the proof of Corollary 1, $(X, ||\cdot|| + G(\cdot))$ is a Banach space continuously embedded in $L_1(E)$. This embedding has just been shown to be non-surjective, so the image of X must be of the first category in $L_1(E)$. Thus, for each f in $L_1(E) \setminus X$, $G(f) = \infty$, and the conclusion follows from an application of Corollary 1.

As a partial converse of Theorem 1:

THEOREM 2. Given: a formal series $x = \sum_{i=1}^{\infty} x_i$ of elements of $L_{\mathfrak{p}}(E), E \subset (0, 1), |E| > 0, 1 \leq p < \infty$.

If $G(x) < \infty$, then there is an increasing sequence $\{n_i\}$ of positive integers such that the sequence $\sum_{i=1}^{n} ir_k(\theta) x_k$ converges in the norm of L_p for almost every θ .

Proof. The Khintchine Inequality [3] implies the existence of a B > 0 for which

$$\int_0^1 \left| \sum_n^m r_k(\theta) x_k(t) \right|^p d\theta \leq B\left(\sum_n^m x_k^2(t) \right)^{p/2}.$$

Integrate this inequality with respect to t and change the order of integration. This gives

$$\int_0^1 \left(\int_E \left| \sum_n^m r_k(\theta) x_k(t) \right|^p dt \right) d\theta = o(1).$$

There is then an element g of $L_p([0, 1] \times [0, 1])$ for which

$$\int_0^1 \left(\int_E \left| \sum_{1}^n r_k(\theta) x_k(t) - g(\theta, t) \right|^p dt \right) d\theta = o(1).$$

It follows that there is an increasing sequence $\{n_i\}$ of positive integers such that for almost every θ ,

$$\int_{E} \left| \sum_{1}^{n_{i}} r_{k}(\theta) x_{k}(t) - g(\theta, t) \right|^{p} dt = o(1),$$

which proves the theorem.

COROLLARY 3. Let $\{x_i, x_i^*\}$ be a basis for $L_p(E)$, and let $x \in L_p(E)$. If $G(x) < \infty$, then |C(x)| = 1.

Proof. Let $x(n, m, \theta, t) = \sum_{k=1}^{m} r_k(\theta) x_k^*(x) x_k(t)$. By Theorem 2 there is a set S, |S| = 1, such that if $\theta \in S$, there is a $g(\theta, \cdot)$ in $L_p(E)$ for which

(*)
$$\int_{E} |x(1, n_k, \theta, t) - g(\theta, t)|^p dt = o(1).$$

For each pair of positive integers n and m, n > m, define

$$n_i = \min \{n_k : n_k \geq n\}, \quad m_i = \max \{n_k : n_k \leq m\},$$

and let K denote the norm of the given basis. Then

$$\begin{aligned} ||x(m, n, \theta, \cdot)||_p &\leq K ||x(m, n_i, \theta, \cdot)||_p \\ &\leq K ||x(m_i, n_i, \theta, \cdot)||_p + K ||x(m_i, m - 1, \theta, \cdot)||_p \\ &\leq (K + K^2) ||x(m_i, n_i, \theta, \cdot)||_p \end{aligned}$$

for almost every θ . (*) implies that the last term tends to 0 as *m* and *n* tend to ∞ , which proves the corollary.

The following corollary is an immediate consequence of Theorem 1 and Corollary 3.

COROLLARY 4. Let $\sum_{i=1}^{\infty} y_i$ be a Schauder basis expansion of an element of $L_p(E)$, $|E| > 0, 1 \leq p < \infty$.

Then the series $\sum \pm y_i$ converges (diverges) in $L_p(E)$ for almost every choice of sign if and only if $||(\sum y_i^2)||_p < \infty \ (=\infty)$.

The orthonormal system of Walsh is known to be a basis for each reflexive $L_p(0, 1)$ space [6]. When $G(\cdot)$ as defined in § 1 is formed with respect to this system, G(f) turns out to be the l_2 -norm of the coefficient sequence in the Walsh expansion of f in $L_p(0, 1)$. This fact is used to establish the following corollary.

COROLLARY 4. (I) For 2 , the Walsh Series expansion of any element $of <math>L_p(0, 1)$ is norm convergent for almost every choice of sign. However, the Walsh system is a conditional basis for $L_p(0, 1)$.

(II) For $1 \leq p \leq 2$, the Walsh Series expansion of any element of $L_p(0, 1)$ is unconditionally convergent if f is also in $L_2(0, 1)$. Otherwise, the series diverges for almost every choice of sign.

Proof. For any given f in $L_p(0, 1)$, $f = \sum (W_{ij}, f) W_{ij}$ where $\{W_{ij}\}$ denotes the Walsh system. Since $W_{ij}(t) = \pm 1$, $G(f) = (\sum (W_{ij}, f)^2)^{\frac{1}{2}}$. Let $f \in L_p(0, 1)$ for $2 . Then <math>f \in L_2(0, 1)$ as well, and so $G(f) < \infty$. By Theorem 2, $\sum (W_{ij}, f) W_{ij}$ converges for almost every choice of sign.

If $p \neq 2$, then $L_p(0, 1) \neq L_2(0, 1)$ and the norms $G(\cdot)$ and $||\cdot||_p$ are not equivalent. This implies by [2] or [9] the conditionality of the Walsh system as a basis for $L_p(0, 1)$. (A much more general statement can be made. See, for example, Corollary 9 of [4]).

Let $f \in L_p(0, 1)$ for $1 \leq p < 2$. Since $|| \cdot ||_p \leq || \cdot ||_2$, the Walsh expansion of f is unconditionally convergent of $f \in L_2(0, 1)$. Otherwise, $G(f) = \infty$ and an application of Theorem 1 establishes (II).

Finally, we remark that for 2 similar considerations would show $any <math>L_p$ -convergent trigonometric series to be L_p -convergent for almost every choice of sign.

JAMES SHIREY

References

- 1. V. F. Gaposhkin, On unconditional bases in the space $L_p \ p > 1$, Uspehi. Mat. Nauk. 13 (1958), 179-184.
- 2. B. R. Gelbaum, Conditional and unconditional convergence in Banach spaces, An. Acad. Brasil. Ci. 30 (1958), 21-27.
- 3. S. Kacmarz and H. Steinhaus, Theorie der Orthogonalreihen (Chelsea, New York, 1951).
- 4. M. J. Kadec and A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces L_p , Studia Math. 21 (1962), 161–176.
- 5. G. G. Lorentz, Bernstein polynomials (Univ. of Toronto Press, Toronto, 1953).
- 6. J. Marcinkiewicz, Quelques théorèmes sur les series orthogonals, Ann. Polon. Math. 16 (1938), 84–95.
- 7. W. Orlicz, Uber unbedingte Konvergenz in Funktionraumen, I, Studia Math. 4 (1933), 33-37.
- 8. J. Shirey, Restricting a Schauder basis to a set of positive measure, Trans. Amer. Math. Soc. 184 (1973), 61-71.
- J. Shirey and R. Zink, On unconditional bases in certain Banach function spaces, Studia Math. 36 (1970), 169-175.
- 10. A. C. Zaanen, Integration (John Wiley and Sons Inc., New York, 1967).

Ohio University, Athens, Ohio