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THE CONVERGENCE OF SERIES FOR VARIOUS 
CHOICES OF SIGN IN BANACH SPACES 

JAMES SHIREY 

1. Let (xn, Xn) denote a basis for a Banach space (X, || • ||) of measurable 
functions in (0, 1). 

It is shown in [2] and [9] that the equivalence of the norms 
CO 

IKE xn*{-)xn*n 
1 

and || • || is equivalent to the unconditionality of the basis (xn, Xn). In [8] a 
weaker relationship between these norms is exploited to establish the existence 
of an element of LX(E) for each E C (0, 1), |£ | > 0, whose Haar series expan
sion is conditionally convergent in the norm of L\(E). 

In this note, a Lemma of Orlicz [7] is generalized to provide a relationship 
between IKX?^2)*!!» Jn € X, and the changes in sign that are tolerated in 
^Ajn without disruption of norm convergence. Some applications to the Haar 
and Walsh systems are given. 

Given a set if C^ i (0 , l ) of non-negative functions, define for each measurable 
real-valued function x on (0, 1), 

llxll = sup \ I \x{t)h(t)\dt:h £ Il\ , and 

X = {x: | |*|| < o o } . 

The functional || • || is said to have the "Fatou property" whenever it follows 
from 0 ^ U\ S U2 ^ . . . Î u, with all un measurable, that ||wn|| f ||w||. In all 
that follows we assume that || • || has the Fatou property, which guarantees 
the norm-completeness of (X, || • ||) [10, Chapter 15]. This may be ensured 
by less stringent conditions on || • ||, but the Fatou property is easy to verify 
in cases and pertains to most of the important examples. In [5, p. 66] various 
conditions on H are listed whose fulfillment causes || • || to have this property. 

Given a space (X, || • ||) of the type described above and a series x = J2 xu 
xt£ X,denneGO) = ||(ZT*z2)"ll and C(x) = {6: jyrt(0)xtconverges in || • ||} 
where {rf] denotes the Rademacher system. 

If |C(x)| = 0 (= 1), then the series ^?Xi is said to "diverge (respectively 
converge) for almost every choice of sign". The obvious justification for such 
terminology is the possibility of obtaining any desired choice of signs in the 
series £ ï ± xt by a proper selection of 6 in YAri(0)xt-
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2. THEOREM 1. Let x = jy%t be convergent in (X, \\ • \\). If \C(x)\ > 0, then 
G(x) < oo. 

Remarks. This result was given by Orlicz [7] for the "Orlicz spaces" under 
the assumption that C(x) = [0, 1], and in [9] for the Banach function spaces 
of the type defined above under the same assumption. Gelbaum [2] has shown 
that \C(x)\ = 1 through the use of the "0 - 1" law, provided that \C(x)\ > 0. 

Proof of Theorem 1. It is easily verified that C(x) is a Borel set (see, for 
example, the proof of Theorem 6 in [8]) and that there exists a Borel set 
5 C C(x), \S\ > 0, and an M > 0 such that 

(1) HZ rn(0)xn\\ S M for all n, m > 0 and all 6 6 S. 
m 

In reference to Lemma 4 of [8], there exist constants A and N depending 
only on the set S such that 

In \ l / 2 r I n 

A[ E x,2(/) 4(0 ^ I Z *n(t)rn 
\ N I J s IN 

(0)h(f) de 

for any / Ç (0, 1), h <G H, and n > N. 
Integrate this inequality with respect to / and reverse the order of integra

tion on the right-hand side. This yields 

(2) A f (X; x^t)) ' h(t)dt S I J' É xn(t)rn(6)h(t)\dt \dd 

where n > N and h £ H. 
Combine inequalities (1) and (2): 

A i d xl\t)\ h{t)dt S M I dd = M\S\. 
J 0 \ N I J S 

It follows that G(x) = ||(ZT^z2)èll is finite. 

COROLLARY 1. Let (xn, Xn) be a sequence of elements of X and of continuous 
linear functionals, respectively, such that x = ^f\Xn{x)xnfor all x in X. 

If \C(x)\ > 0 for each x in X, there exists a constant A > 0 such that G(x) ^ 
^4||x|| for all x in X. 

Proof. Theorem 1 implies that G(x) < oo for each x in X. It is now not hard 
to verify that (X, \\ • || + G{ • )) is a Banach space (one may employ the 
notions in [10, Chapter 15] in lieu of a direct computation). The natural 
embedding (X, | | , | | + G : ( - ) ) ~ > C^\ 11*11) is thereby a one-one and onto 
map of Banach spaces. By the open mapping theorem, there then exists B > 0 
such that 

IMI + G(x) ^ B\\x\\ for all x in X, 

which proves the corollary. 
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We remark that in Corollary 4 below it is shown that this need not imply 
the equivalence of G( • ) and || • ||. Were this the case, (xn, Xn) would be an 
unconditional basis [9]. 

Example. We construct an element of Za(0, 1) whose Haar series expansion 
diverges in the Li-norm for almost every choice of signs. 

Let {hnp\ be the usual enumeration of the Haar system in which the support 
of hip is adjacent to "0" , and le t / = ]£? 2kk~l hn. To see that this series actually 
converges in Li, estimate 

•/ o 
Z 2**-1M0 it 

by partitioning the unit interval into the subintervals on which the integrand 
is constant and than add up the integrals on each subinterval. This gives 

gm-ii-l J-m-n 2n+s(n + s)'1 

+ Z™=i 2-n-k[2n+k-1(n + k - l ) - 1 - ZU 2n+i(n + i)"1] 

= o(l) + h ZT=o(rc + r ) - i ( l - E^"ir 2~k) 

= o(l) + Z™=o2r-m(n + r ) - 1 = o(l) + n~l £ ? = 0 2~r 

= o(l). 

Hence, the series converges in L\. 
To show t h a t / has the desired property it is sufficient by Theorem 1, to 

show that G (/) = oo . 

G(j) = 2-1 £ T 2-"(2:*4**-2)* 

= 2-lZc?2-nCZrttkn-2)h 

= 2-1 3-* ET2-wn-1(4n-fl - 4)* 

= 3-*£?2^ ,»-1(4B - l ) è 

= oo , 

which completes the example. 

It is not such an easy matter to find an example of an element of Li(E), 
\E\ > 0, having the same property. Nevertheless, the results above entail the 
existence of such functions. 

COROLLARY 2. For any E C (0, 1), |£ | > 0, there exists an f in LX(E) whose 
Haar series expansion diverges in the norm of L\(E) for almost every choice of 
sign. Such functions constitute all of L\(E) with the exception of a set of first 
category. 

Proof. In the proof of Theorem 9 of [8] it is demonstrated that the norm in 
Li(E) defined by 

I 1/2 

dt 
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is not dominated by the norm of Li(E). By Corollary 1 this establishes the 
existence of the desired functions. 

Let X = {f: f is in LX(E) and G(f) < oo }, and let || • || denote the LX(E) 
norm. As noted in the proof of Corollary 1, (X, | | - | | + G ( - ) ) i s a Banach 
space continuously embedded in L\(E). This embedding has just been shown 
to be non-surjective, so the image of X must be of the first category in LX(E). 
Thus, for e a c h / in Li(E)\X, G(f) = co, and the conclusion follows from an 
application of Corollary 1. 

As a partial converse of Theorem 1 : 

THEOREM 2. Given: a formal\ series x = Y^xi°f e^emen^s °fLv(E),E C (0,1), 
\E\ > 0, 1 g p < oo. 

If G(x) < oo , then there is an increasing sequence {nt} of positive integers such 
that the sequence ^2niirk(6)xk converges in the norm of Lp for almost every 6. 

Proof. The Khintchine Inequality [3] implies the existence of a B > 0 for 
which 

/

*l \ m \p / m \ p / 2 

Z rt(0)xt(t)\ dd^B\Z *«*(/)) • 
0 I n I \ n ' 

Integrate this inequality with respect to / and change the order of integra
tion. This gives 

I Z rk(e)xk(t)\ dt) de = o(i). 
J 0 \ v E | n | / 

There is then an element g of Lp([0, 1] X [0, 1]) for which 

I (I Z rk(6)xk(t) - g(d,t)\ dtjdd = o(l) 
J 0 \ •/ E I 1 I / 

It follows that there is an increasing sequence {n^ of positive integers such 
that for almost every 6, 

£ r*(d)xk(t) -g(0,t) 
E I 1 

which proves the theorem. 

dt = o(l) , 

COROLLARY 3. Let {xu x*} be a basis for LP(E), and let x G LP(E). If 
G(x) < oo, then \C(x)\ = 1. 

Proof. Let x(n,m, 6, t) = Yln^k(0)xk*(x)xk(t). By Theorem 2 there is a set S, 
\S\ = 1, such that if 6 Ç S, there is a g(0, • ) in LP(E) for which 

(*) f \x(l,nkf6,t)-g(6j)\pdt = o(l). 
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For each pair of positive integers n and m, n > m, define 

nt = min [nk : nk ^ n], mt = max {nk : nk ^ w}, 

and let X denote the norm of the given basis. Then 

||tf(m, », 0, • ) | |p S K\\x(m, nt, 0, • ) \ \ p 

^ K\\x(mit nu 0, • ) \ \ p + K\\x(mi9 m - 1, 0, • ) \ \ p 

£ (K + K^\\x(mi9ni969')\\p 

for almost every 0. (*) implies that the last term tends to 0 as m and n tend to 
oo, which proves the corollary. 

The following corollary is an immediate consequence of Theorem 1 and 
Corollary 3. 

COROLLARY 4. Let YAJI
 oe a Schauder basis expansion of an element of LP(E)} 

\E\ > 0, 1 ^ p < oo. 
Then the series X) =t ji converges {diverges) in LP(E) for almost every choice of 

sign if and only if | |(Sy<2)| |p < °o (= °°) . 

The orthonormal system of Walsh is known to be a basis for each reflexive 
Lp(0, 1) space [6]. When G( • ) as defined in § 1 is formed with respect to this 
system, G(f) turns out to be the /2-norm of the coefficient sequence in the Walsh 
expansion of/ in Lp(0, 1). This fact is used to establish the following corollary. 

COROLLARY 4. (I) For 2 < p < oo , the Walsh Series expansion of any element 
of Lp(0, 1) is norm convergent for almost every choice of sign. However, the Walsh 
system is a conditional basis for Lp(0, 1). 

(II) For 1 ^ p ^ 2, the Walsh Series expansion of any element of Lp(0, 1) is 
unconditionally convergent iff is also in L2(0, 1). Otherwise, the series diverges 
for almost every choice of sign. 

Proof. For any given / in Lp(0, l),f = ^(Wij, f)Wij where {Wtj} denotes 
the Walsh system. Since WtJ(t) = ± 1 , G ( / ) = ( É ( W W ) 2 ) * . L e t / 6 Lp(0, 1) 
for 2 < p < oo. T h e n / Ç L2(0, 1) as well, and so G(f) < oo. By Theorem 2, 
*51(Wa, f)Wtj converges for almost every choice of sign. 

If p 7* 2, then Lp(0, 1) ^ L2(0, 1) and the norms G( • ) and || • ||„ are not 
equivalent. This implies by [2] or [9] the conditionality of the Walsh system 
as a basis for Lp(0, 1). (A much more general statement can be made. See, for 
example, Corollary 9 of [4]). 

L e t / € Lp(0, 1) for 1 ^ p < 2. Since || • \\p ̂  || • ||2, the Walsh expansion of 
/ is unconditionally convergent of / 6 £2(0, 1). Otherwise, G(f) = oo and an 
application of Theorem 1 establishes (II). 

Finally, we remark that for 2 < p < oo similar considerations would show 
any L^-convergent trigonometric series to be L^-convergent for almost every 
choice of sign. 
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