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Time-varying fields

Until this point, we have only examined magnetic effects due to steady currents or
magnetic materials in stationary configurations. In this chapter, we will partially
relax this constraint by considering phenomena where there are slow variations in
current or magnetic flux. By slow, we mean slow enough that we can ignore all
effects of electromagnetic radiation. We begin with a discussion of Faraday’s law,
which presents another connection between electric and magnetic phenomena.
This is followed by a more detailed discussion of the energy associated with
a magnetic field, including the energy loss from the hysteresis cycle in ferromag-
netic materials. We find that Faraday’s law leads to the production of eddy currents
in some materials, while the skin effect can restrict currents to a layer near the
surface. We introduce the displacement current, which finally allows us to give
a complete set of Maxwell’s equations for stationary media. We conclude the
chapter with a brief discussion of magnetic measurements.

10.1 Faraday’s law

Michael Faraday discovered that a changing magnetic flux through a wire circuit
C induced a voltage in the wire.

V ∝
dΦB

dt
(10.1)

The changing flux could be due to changing the current inC itself, changing the current
in a second, nearby circuit, moving a second circuit or permanent magnet with respect
to C, or changing the shape of C. Here we will mostly consider effects due to explicit
changes in the current, in which case we can replace the total time derivative in
Equation 10.1 with a partial derivative. According to Lenz’s law, the voltage induced
by the changing flux is such as to induce a current that gives rise to an additional flux
that opposes the original change in flux. Thus Faraday’s law can be written as
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ℰ ¼
þ
E
!
·dl
!¼ � ∂

∂t

ð
B
!
·n̂ dS; (10.2)

where E is the electric field intensity and the surface S is bounded by the closed
circuit. The field E acts on a distance element dl in its rest frame. Because of the
tangential boundary condition on E, it follows that C can refer to any closed loop in
space, not just a physical circuit.[1] The line integral1 on the left side of
Equation 10.2 is called the electromotance ε. If the flux links a coil with N turns,
the electromotance must be multiplied by N. Since the contour integral is non-zero,
the induced electric field in this case is nonconservative, i.e., work is done on
a charge going around the contour.

Example 10.1: ε induced in a current loop
Consider a rectangular loop near a wire with increasing current I, shown in
Figure 10.1. The time-dependent field from the wire is

B
!ðtÞ ¼ μ0

2πρ
IðtÞ ϕ̂:

The flux through the square loop is

ΦB ¼ μ0IðtÞ
2π

h
ðRþw

R

dρ
ρ

¼ μ0IðtÞ
2π

h ln
Rþ w
R

� �

Figure 10.1 Electromotance induced in a rectangular loop.

1 Historically, ε has also been referred to as an emf or electromotive force.
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and the electromotance is

ε ¼ � μ0
2π

dI
dt

h ln
Rþ w
R

� �
:

Using Stokes’s theorem in Equation 10.2, we findð
ðr � E

!Þ· dS�! ¼ � ∂
∂t

ð
B
!

· dS
�!

¼ �
ð
∂B
!
∂t

· dS
�!

:

Then since the surface S is arbitrary, we find the differential form of Faraday’s law is

r� E
! ¼ � ∂B

!
∂t

: (10.3)

This equation is valid at any point in space.We can relate this to the vector potential by

r� E
! ¼ � ∂

∂t
ðr � A

!Þ

¼ �r� ∂A
!
∂t

;

so that

r� E
!þ ∂A

!
∂t

 !
¼ 0:

Since its curl vanishes, the quantity in parentheses must be the gradient of a scalar
function, which we denote Ve.

�rVe ¼ E
!þ ∂A

!
∂t

:

Thus the electric field

E
! ¼ �rVe � ∂A

!
∂t

: (10.4)

can arise from static charge distributions or from time-varying magnetic fields.
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From Equation 1.32, the inductance is related to the flux by

L I ¼ N ΦB:

Taking the time derivative of both sides, we find that an alternative definition
of L is

L ¼ � ε
dI=dt

: (10.5)

10.2 Energy in the magnetic field

We return now to the subject of the energy associated with a magnetic field.
Consider a current element in an isolated loop together with an associated power
source. Suppose that we want to increase the current in the loop from 0 up to some
value I. For each step in the process of raising the current, the source must produce
a voltage change

dVe ¼ �rVe·dl
!

across the current element and the source must supply the power

dP ¼ I dVe

¼ J dA ð�rVe·dl
!Þ;

where A is the cross-sectional area of the conductor. Since J and dl are parallel, we
can use Equation 10.4 to write

dP ¼ E
!þ ∂A

!
∂t

 !
· J
!

dτ;

where, to minimize confusion, we use dτ in this section to represent the volume
element. The total power provided by the source for the full loop is then [2]

P ¼
ð

E
!

· J
!þ ∂A

!
∂t

· J
!

 !
dτ:

The first term on the right side is the power used to compensate for energy losses
from heating in the conductor. The second term is the power used to set up the
magnetic field associated with the increasing current, which is the subject of
interest here. If we let W represent the energy stored in the magnetic field, then
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dW
dt

¼
ð
∂A
!
∂t

· J
!

dτ: (10.6)

Consider a small volume element of the conductor where J can be considered
constant.2 Then we can write A as the product of J with a factor that only depends
on the geometry. Thus we can assume that A

! ¼ α J
!

, where α is a constant. Then
substituting

∂
∂t
ðA!· J

!Þ ¼ 2J
!
·
∂A
!
∂t

into Equation 10.6, we find the energy stored in the magnetic field is

W ¼ ½
ð
J
!
·A
!

dτ: (10.7)

If the current distribution is a current loop, we let J
!

dτ→I dl
!

and Equation 10.7
becomes

W ¼ ½ I
ð
A
!

·dl
!
:

This can be expressed in terms of the magnetic flux by

W ¼ ½ I ΦB: (10.8)

Returning again to Equation 10.7, we can use the curlH= J equation to write the
energy as

W ¼ ½
ð
ðr � H

!Þ·A! dτ:

Using the vector identity B.4, we find

W ¼ ½
ð

H
!

·ðr � A
!Þ �r·ðA!� H

!Þ
h i

dτ:

Rewriting the first term in terms of B and using the divergence theorem in
the second, we get

2 J.D. Jackson, Classical Electrodynamics, Wiley, 1962, p. 176.
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W ¼ ½
ð
H
!

·B
!

dτ þ½
ð
H
!� A

!
·n̂ dS:

Looking at the surface integral, we know that the field from a conductor element falls
off like 1=R2 and the vector potential falls off like 1=R, while the surface area only
grows like R2. By evaluating at a sufficiently large distance, the second integral
vanishes. Thus the energy stored in the magnetic field from conduction currents is

W ¼ ½
ð
B
!

·H
!

dτ (10.9)

and the magnetic energy density in the field is

wB ¼ ½ B
!

·H
!

: (10.10)

The energy of a permeable body with magnetization M in an applied magnetic
field Ba can be expressed as [3]

W ¼ ½
ð
M
!
·B
!

dτ: (10.11)

10.3 Energy loss in hysteresis cycles

Consider a Rowland ring containing a ferromagnetic sample, as discussed in
Section 2.5. If we increase the current in a conductor wound around the sample,
we get an induced electromotance that opposes the change in current. The extra
power expended by the source is

dW
dt

¼ NI
dΦB

dt

¼ NIA
dB

dt

¼ NI
l

Al
dB
dt

;

where N is the number of conductor turns, A is the cross-sectional area of the
sample, l is the mean circumference of the ring, and B is the average flux density
inside the sample. Using the Ampère law, this can be written

dW
dt

¼ HV
dB
dt

;

where V is the volume of the sample.
Now consider the hysteresis loop shown in Figure 10.2. The energy supplied by

the source in moving from point a to point b along the loop is
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Wab ¼ V
ðb
a
H dB:

Since dB is the independent variable, the value of this integral is the area projected
on the B (vertical) axis in the figure. Going from point b to point c along the loop,
I is in the same direction, but is decreasing. Thus the electromotance changes sign
and some energy is returned to the source.

Wbc ¼ �V
ðc
b
H dB:

The sum of these two integrals is the area inside the hysteresis loop in the first
quadrant. If we continue this analysis for a complete cycle, we find that the net
energy lost in the ferromagnetic material per cycle is [4]

W ¼ V
þ
H dB: (10.12)

This energy loss can be minimized by choosing ferromagnetic materials with
a narrow hysteresis loop.

10.4 Eddy currents

Faraday’s law shows that time-varying magnetic fields produce a voltage in
materials such as conductors, iron, or mechanical supports. If a closed path
exists inside the material, this voltage can drive currents, known as eddy
currents.[5] The eddy currents can in turn create new magnetic fields that are
superimposed over the original field. Eddy currents can be used for a number of
desirable purposes, including displacement and position measurements, induc-
tion heating, magnetic shielding, levitation, and braking. On the other hand,
undesirable effects from eddy currents include resistive power losses, Lorentz

Figure 10.2 Energy loss in a hysteresis loop.
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forces, multipole errors in a desired field, and a time lag in reaching an
equilibrium field value.
Starting from Faraday’s law

r� E
! ¼ � ∂B

!
∂t

;

multiplying both sides by the electrical conductivity σ and taking the curl, we find

r� ðr� σE
!Þ ¼ �σ

∂
∂t
ðr � B

!Þ:

We can write Ohm’s law in the form

J
! ¼ σ E

!
: (10.13)

The range of current densities over which this linear relation holds depends on the
material. Thus we have

r� ðr� J
!

eÞ ¼ �σ μ
∂
∂t
ðr � H

!Þ;

where Je is the eddy current density. We can use the vector identity B.7 on the left
side of this equation and the curl H = J equation on the right side to get

rðr· J
!

eÞ � r2 J
!

e ¼ �σ μ
∂ J
!

e

∂t
:

Since the divergence term on the left side vanishes, we find that [6]

r2 J
!

e ¼ σ μ
∂ J
!

e

∂t
: (10.14)

This is a form of the diffusion equation. The rate of build-up of the eddy currents is
controlled by the factor σμ.
If instead, we begin by taking the curl of the Ampère law, we find

r� ðr� H
!Þ ¼ r� J

!
e

¼ σ r� E
!

:

Applying Equation B.7 on the left-hand side and Faraday’s law on the right, we
obtain the equation

r2H
! ¼ σ μ

∂H
!
∂t

: (10.15)
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Thus the magnetic field associated with the eddy currents also satisfies a diffusion
equation with the same characteristic constant. If one specifies the time depen-
dence for H and the geometry of the configuration, the diffusion equation can be
solved for the spatial and time dependence of the magnetic field due to eddy
currents.[5] This may lead to a series of terms, each with its own characteristic
time dependences.

Example 10.2: time constant for eddy currents in a solid iron core
Consider a long H-dipole with a solid iron yoke, as shown in Figure 10.3. For slow
time changes, eddy currents can flow throughout the volume of the iron yoke
surrounding the coil.[7] The magnetic flux from the eddy currents is not symmetric
with the flux from the coils, which causes the iron saturation to vary with transverse
position.
Consider a path through the iron yoke at the midplane in the region 0 ≤ x ≤ d.

Assuming there is no leakage flux, all of the return flux from the conductor has to
pass across this path. Assume the current in the conductor is changing with time.
Then the magnetic field in the vicinity of the path is in the y direction, the induced
electric field is in the z direction, and on the midplane both fields are only functions
of x and t.

B
! ¼ Byðx; tÞ ŷ
E
! ¼ Ezðx; tÞ ẑ:

The eddy currents flow parallel to the z axis until they reach the magnet end,
where they reverse direction and flow back at the symmetric (x, y) position on
the other side of the magnet. From the Ampère and Ohm’s laws, we have

∂Byðx; tÞ
∂x

¼ σ μ Ezðx; tÞ;

Figure 10.3 One-quarter of a symmetric H-dipole.
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while from Faraday’s law

∂Byðx; tÞ
∂t

¼ ∂Ezðx; tÞ
∂x

:

Applying the Laplace transform to the time variable for these two equations,[8]
we get

∂xByðx; pÞ ¼ σ μ εzðx; pÞ (10.16)

and

pByðx; pÞ ¼ ∂x εzðx; pÞ; (10.17)

where p is the variable conjugate to t in the Laplace transform. Taking the derivative
of Equation 10.16 with respect to x and substituting Equation 10.17, we get

∂2xByðx; pÞ ¼ σ μ p Byðx; pÞ:
Defining k2 ¼ σμp, the solution for the magnetic field consistent with the boundary
conditions is [7]

Byðx; pÞ ¼ B0 cosh kx:

The field across the return yoke is asymmetric and is larger on the side nearer the coil.
At the edge of the path closest to the conductor, we have

k d ¼ d
ffiffiffiffiffiffiffiffiffiffi
σ μ p

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ μ p d2

p
¼ ffiffiffiffiffiffi

p τ
p

;

where [7]

τ ¼ σμd2: (10.18)

The variable τ has the dimensions of time. It gives a characteristic time for eddy
current effects in this configuration. Note that it depends quadratically on the width
d of the return yoke.

Eddy currents can be suppressed by restricting the rate of change of the desired
field or by constructing the magnet in such a way that potential eddy current loops
are minimized. Magnet yokes are frequently constructed by assembling thin iron
laminations for this reason.
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10.5 Skin effect

Consider a current density with the periodic time variation

J
! ¼ J

!
0 e

iωt;

where ω is the angular frequency and J0 only depends on the spatial dimensions.
The diffusion equation for the current density, analogous to Equation 10.14, is

r2 J
! ¼ σ μ

∂ J
!
∂t

¼ i ωσ μ J
!

:

Defining ζ2 ¼ iωσμ, we obtain

r2 J
!� ζ2 J

! ¼ 0: (10.19)

Now assume that the current is flowing along a conducting slab that occupies the
space y ≤ 0. Then the component of J flowing in the z direction, for example, is

Jz ¼ Jz0 e
iωt:

Applying Equation 10.19 to this, we find

d2Jz0
dy2

¼ ζ2Jz0:

This differential equation has the solution

Jz0 ¼ JS e
�ζ j y j;

where JS is the spatial dependence of the current density on the surface of the slab.
Using the relation

i ¼ ½ ð1þ 2 i� 1Þ ¼ ½ ð1þ iÞ2;

we can write

ζ ¼ � 1ffiffiffi
2

p ð1þ iÞ ffiffiffiffiffiffiffiffiffi
ωσμ

p
:

The boundary condition for large | y | eliminates the negative solution for ζ. Thus

ζ ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffiffi
ωσμ
2

r
:
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Defining the skin depth as

δ ¼
ffiffiffiffiffiffiffiffiffi
2

ωσμ

s
; (10.20)

the solution for the current density is [9]

Jz ¼ JS exp � jyj
δ

� �
exp i ωt� jyj

δ

� �� �
: (10.21)

We see that the current density decreases exponentially with distance into the
surface. In addition, there is a phase shift of the current flowing inside the material
with respect to the current flowing on the surface. These effects scale with the skin
depth parameter δ. For a copper conductor with current varying at 1 kHz, the skin
depth is ~2.1 mm.

10.6 Displacement current

We have seen in Chapter 1 that r· J
! ¼ 0 in magnetostatic problems. However,

once we allow for time variations, the conservation of charge requires

r· J
!þ ∂ρ

∂t
¼ 0; (10.22)

where ρ is the electric charge density of free (i.e., unbound) charges. Therefore,
when time variation is allowed, the divergence of the conduction current density no
longer needs to vanish. From electrostatics, we know that [10]

r·D
! ¼ ρ; (10.23)

The vector D is called the electric flux density3 and is related to the electric field
intensity by

D
! ¼ ε E

!
(10.24)

for linear materials, where ε is the permittivity. Taking the time derivative of
Equation 10.23, we get

∂ρ
∂t

¼ r·
∂D
!
∂t

: (10.25)

3 Historically, the vector D is also known as the electric displacement.
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Comparing Equations 10.22 and 10.25, we see that the quantity ∂D
!
=∂t acts

like an additional kind of current. Thus we define the displacement current
density as

J
!

d ¼ ∂D
!
∂t

: (10.26)

Taking this into account, the Ampère law must then be modified as [11]

r� H
! ¼ J

!þ ∂D
!
∂t

: (10.27)

This shows that a magnetic field can also be produced by a time-varying electric
field.
At this point, we can summarize the complete set of Maxwell’s equations for

stationary media in Table 10.1. It is important to keep in mind that writing the
equations in this form assumes the validity of the constitutive relations

B
! ¼ μ H

!

J
! ¼ σ E

!

D
! ¼ ε E

!
:

10.7 Rotating coil measurements

Magnetic fields can be measured using a number of techniques. Nuclear magnetic
resonance (NMR) probes are used for high-precision measurements.[12] Hall
effect probes are simple to use and are commercially available.[13] Other common
methods of measuring the magnetic field are based on electromagnetic induction.

Table 10.1 Maxwell’s equations

Differential form Integral form

r·D
! ¼ ρ

ð
D
!

· dS
�! ¼

ð
ρ dV

r� E
! ¼ � ∂B

!
∂t

þ
E
!

·dl
!¼ �

ð
∂B
!
∂t

· dS
�!

r·B
! ¼ 0

ð
B
!

· dS
�! ¼ 0

r� H
! ¼ J

!þ ∂D
!
∂t

þ
H
!

·dl
!¼

ð
J
!þ ∂D

!
∂t

 !
· dS
�!
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One technique, which relates directly with our previous discussions of the multi-
pole content of fields, involves measurements in long magnets with large aperture
using a rotating coil.[14] The azimuthal component of the field can be measured
using a radial coil, the principle of which is shown in Figure 10.4. The flux through
the wire loop with N turns is

ΦBðθÞ ¼ N L
ðr2
r1

Bθðr; θÞ dr

¼ N L
X∞
n¼1

ðAn sin nθþ Bn cos nθÞ
ðr2
r1

rn�1 dr

¼ N L
X∞
n¼1

ðAn sin nθþ Bn cos nθÞ rn2 � rn1
n

� �
;

where we have used Equation 4.8 to express the azimuthal field in terms
of multipole field components. If the coil rotates at a constant rate, we have θ ¼
ω t and

dΦB

dt
¼ dΦB

dθ
dθ
dt

¼ ω
dΦB

dθ
:

The induced voltage in the coil from Faraday’s law is then

VðθÞ ¼ �ωN L
X∞
n¼1

ðAn cos nθ� Bn sin nθÞ ðrn2 � rn1Þ: (10.28)

Performing a Fourier analysis on the voltage signal allows the multipole coeffi-
cients to be determined.

Figure 10.4 Field measurement with a radial coil.
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ð2π
0
VðθÞ sin mθ dθ ¼ �ωNL

X∞
n¼1

ðrn2 � rn1Þ An

ð2π
0
cos nθ sin mθ dθ

�

�Bn

ð2π
0
sin nθ sin mθ dθ

�
¼ ωNLðrn2 � rn1Þ Bn π δmn:

Thus

Bm ¼ 1

π ωN L ðrm2 � rm1 Þ
ð2π
0
VðθÞ sin mθ dθ: (10.29)

Similarly we find that

Am ¼ �1

π ωN L ðrm2 � rm1 Þ
ð2π
0
VðθÞ cos mθ dθ: (10.30)

It is possible to do a similar analysis on the radial component of the field Br using
the rotating tangential coil illustrated in Figure 10.5. Using Equation 4.7, we have

ΦBðθÞ ¼ NL
ðθþδ

θ�δ
BrðR; θÞ R dθ

¼ 2NL
X∞
n¼1

Rn

n
sin nδ ð�An cos nθþ Bn sin nθÞ:

The induced voltage in this case is

VðθÞ ¼ �2ωN L
X∞
n¼1

Rn sin nδ ðAn sin nθþ Bn cos nθÞ: (10.31)

Figure 10.5 Field measurement with a tangential coil.
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Performing a Fourier analysis, we find that

Bm ¼ �1

2πωNLRmsin mδ

ð2π
0
VðθÞ cos mθ dθ (10.32)

and

Am ¼ �1

2πωNLRmsin mδ

ð2π
0
VðθÞ sin mθ dθ: (10.33)
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