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Abstract

Answer set programming is a declarative logic programming paradigm geared towards solving
difficult combinatorial search problems. While different logic programs can encode the same
problem, their performance may vary significantly. It is not always easy to identify which ver-
sion of the program performs the best. We present the system predictor (and its algorithmic
backend) for estimating the grounding size of programs, a metric that can influence a perfor-
mance of a system processing a program. We evaluate the impact of predictor when used as
a guide for rewritings produced by the answer set programming rewriting tools projector and
lpopt. The results demonstrate potential to this approach.

KEYWORDS: answer set programming, encoding optimizations

1 Introduction

Answer set programming (ASP) (Brewka et al. 2011) is a declarative (constraint) pro-

gramming paradigm geared towards solving difficult combinatorial search problems. ASP

programs model problem specifications/constraints as a set of logic rules. These logic

rules define a problem instance to be solved. An ASP system is then used to compute

solutions (answer sets) to the program. Answer set programming has been successfully

used in scientific and industrial applications. Examples include, but are not limited to

a decision support systems for space shuttle flight controllers (Balduccini et al. 2006),

team building and scheduling (Ricca et al. 2012), and healthcare realm (Dodaro et al.

2021).

Intuitive ASP encodings are not always the most optimal/performant, making this

programming paradigm less attractive to novice users as their first attempts to problem

solving may not scale. ASP programs often require careful design and expert knowledge in

order to achieve performant results (Gebser et al. 2011a). Figure 1 depicts a typical ASP

system architecture. The first step performed by systems called grounders transforms a

non-ground logic program (with variables) into a ground/propositional program (without
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Fig. 1. Typical ASP system architecture.

variables). Expert ASP programmers often modify their ASP solution targeting the

reduction of grounding size of a resulting program. Size of a ground program has been

shown to be a predictive factor of a program’s performance, enabling it to be used as

an “optimization metric” (Gebser et al. 2011a). Intelligent grounding techniques (Faber

et al. 2012) utilized by grounders such as gringo (Gebser et al. 2011b) or idlv (Calimeri

et al. 2017) also keep such a reduction in mind. Intelligent grounding procedures ana-

lyze a given (non-ground) program to produce a smaller propositional program without

altering the solutions. In addition, researchers looked into automatic program rewrit-

ing procedures. Systems such as simplify (Eiter et al. (2006a); Eiter et al. (2006b)),

lpopt (Bichler (2015); Bichler et al. (2020)), and projector (Hippen and Lierler 2019)

rewrite non-ground programs (preserving their semantics) targeting the reduction of the

grounding size. These systems are meant to be prepossessing tools agnostic to the later

choice of ASP solving technology. Tools such as simplify, lpopt, and projector, de-

spite illustrating promising results, often hinder their objective. Sometimes, the original

set of rules is better than the rewritten set, when their size of grounding and/or run-

time is taken as a metric. Research has been performed to mitigate the negative impact

of these rewritings. For example, Mastria et al. (2020) demonstrated a novel approach

to guide automatic rewriting techniques performed in idlv using machine learning with

a set of features built from structural properties of a considered program and domain

information. Thus, a machine learning model guides idlv on whether to perform built-

in rewritings or not. Another example of incorporating automatic rewriting techniques

with the use of information about specifics of a considered program and a considered

grounder is work by Calimeri et al. (2019). In that work, the authors incorporated pro-

gram rewriting technique stemming from lpopt into the intelligent grounding algorithm

of grounder idlv. Such tight coupling of the rewriting and grounding procedures allows

idlv to make a decision on whether to apply or not an lpopt rewriting based on the

current state of grounding. Grounder idlv accurately estimates the impact of rewriting

on grounding and based on this information decides whether to perform a rewriting. This

synergy of intelligent grounding and a rewriting technique demonstrates the best perfor-

mant results. Yet, it makes the transfer of rewriting techniques laborious assuming the

need of tight integration of any rewriting within a grounder of choice. Here, we propose

an algorithm for estimating the size of grounding a program based on (i) mimicking an

intelligent grounding procedure documented by Faber et al. (2012) and (ii) techniques

used in query optimization in relational databases, see, for instance, Chapter 13 by Sil-

berschatz et al. (1997). We then implement this algorithm in a system called predictor.

This tool is meant to be used as a decision support mechanism for ASP program rewrit-

ing systems so that they perform a possible rewriting based on estimates produced by

predictor. This work culminates in the integration of predictor within the rewriting

tools projector and lpopt, which then are used prior to the invocation of a typical
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Fig. 2. An ASP system with projector using predictor.

grounder-solver pair of ASP. For example, Figure 2 depicts the use of predictor within

the rewriting system projector as a preprocessing step before the invocation of an

ASP system. To depict the use of predictor within the rewriting system lpopt as a

preprocessing step it is sufficient to replace the box named projector by a box named

lpopt in Figure 2. We illustrate the success of this synergy by an experimental analysis.

It is due to note that predictor is a stand-alone tool and can be used as part of any

ASP inspired technology where its functionality is of interest.

We underline that the important contribution of this work is in the design of a building

block – in the shape of the system predictor – towards making ASP a truly declarative

framework. Answer set programming is frequently portrayed as a powerful declarative

programming formalism. Yet, we can argue that such a claim is somewhat misleading.

At present, to achieve scalable ASP solutions to problems of interest, it is typical that an

expert ASP programmer – with strong insights into underlying grounding/solving tech-

nology – constructs logic programs/encodings for problems that are efficient rather than

intuitive. The ASP experts must rely on their extensive knowledge of the ASP technol-

ogy to deliver efficient solutions. Yet, in truly declarative formalism we would expect the

possibility of constructing intuitive encodings and rely on underlying systems to process

these efficiently. This way programmers may focus on coding specifications of problems

at hand rather than the specifics of the shape of these specifications and the details of

the underlying technology. This paper targets the development of infrastructure, which

one day will allow us to achieve the ultimate goal of truly declarative ASP. Ultimately,

an expert ASP programmer capable of devising efficient encodings will be replaced by

an ASP user capable of devising intuitive specifications that are then turned into effec-

tive specification by a portfolio of automatic tools such as, for example, projector and

predictor, or lpopt and predictor pairs showcased and evaluated here in the final

section of the paper. This work makes a step towards achieving the described ultimate

goal: it provides us with insights and possible directions for the developments on that

pass.

Related work. It is due to remark on another body of research that targets a simi-

lar goal namely portfolio-like approaches, where researchers use machine learning based

methods in navigating the space of distinct ASP grounders and/or solvers – claspfo-

lio (Hoos et al. 2014); me-asp (Maratea et al. 2014); or encodings – esp (Liu et al.

2022) to decide on the best possibility in tackling considered problem by means of ASP

technology. All and all, to the best of our knowledge this work is one of the very few

approaches for the stated/similar purpose. Already mentioned work by Mastria et al.

(2020) presents an alternative machine learning based method for a similar purpose. In

https://doi.org/10.1017/S1471068423000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000078


Predictor: Grounding Size Estimator 135

that work properties of a program are considered to predict whether rewriting will help

an ASP solver down the road or not. Also, the work by Calimeri et al. (2019) can be

seen as the most related one to this paper. The greatest difference of the championed

approach is its detachment from any specific grounding system. It produces its estimates

looking at a program alone. Calimeri et al. incorporate computation of estimates within

a grounder. The benefit of such approach that at any point in time their estimates are

reflective of de facto grounding that happened so far.

Outline of the paper. We start by introducing the subject matter terminology.

The key contribution of the work lies in the development of formulas for estimating

the grounding size of a logic program based on its structural analysis and insights on

intelligent grounding procedures. First, we present the simplified version of these formulas

for the case of tight programs. We trust that this helps the reader to build intuitions

for the work. Second, the formulas for non-tight programs are given. We then describe

the implementation details of system predictor. The main part of the presentation

concerns most typical logic rules (stemming from Prolog). The section that follows the

presentation of the key concepts discusses other kinds of rules and their treatment by the

predictor system. We conclude by experimental evaluation that includes incorporation

of predictor within rewriting systems projector and lpopt.

Parts of this paper appeared in the proceedings of the 17th Edition of the European

Conference on Logics in Artificial Intelligence (Hippen and Lierler 2021).

2 Preliminaries

An atom is an expression p(t1, ..., tk), where p is a predicate symbol of arity k ≥ 0

and t1, ..., tk are terms – either object constants or variables. As customary in logic

programming, variables are marked by an identifier starting with a capital letter. We

assume object constants to be numbers. This is an inessential restriction as we can map

strings to numbers using, for instance, the lexicographic order. For example, within our

implementation described in this paper: we consider all alphanumeric object constants

occurring in a program; sort these object constants using the lexicographic order; and

map each string in this sorted list to a natural number that corresponds to its position

in the list added to the greatest natural number occurring in the program.

For an atom p(t1, ..., tk) and position i (1 ≤ i ≤ k), we define an argument denoted

by p[i]. By p(t1, ..., tk)
0 and p(t1, ..., tk)

i we refer to predicate symbol p and the term ti,

respectively. A rule is an expression of the form

a0 ← a1, ..., am, not am+1, ..., not an. (1)

where n ≥ m ≥ 0, a0 is either an atom or symbol ⊥, and a1, ..., an are atoms. We refer

to a0 as the head of the rule and an expression to the right hand side of an arrow symbol

in (1) as the body. An atom a and its negation not a is a literal. To literals a1, ..., am in

the body of rule (1) we refer as positive, whereas to literals not am+1, ..., not an we refer

as negative. For a rule r, by H(r) we denote the head atom of r. By B
+(r) we denote

the set of positive literals in the body of r. We obtain the set of variables present in an

atom a and a rule r by vars(a) and vars(r), respectively. For a variable X occurring in

rule r, by args(r,X) we denote the set
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{p[i] | a ∈ B
+(r), a0 = p, and ai = X}.

In other words, args(r,X) denotes the set of arguments in the positive literals of rule r,

where variable X appears. A rule r is safe if each variable in r appears in B
+(r). Let r

be a safe rule

p(A)← q(A,B), r(1, A), not s(B). (2)

Then vars(r) = {A,B}, args(r,A) = {q[1], r[2]}, and args(r,B) = {q[2]}. A (logic)

program is a finite set of safe rules. We call programs containing variables non-ground.

For a program Π, oc(p[i]) denotes the set of all object constants occurring within

{H(r)i | r ∈ Π and H(r)0 = p},
whereas oc(Π) denotes the set of all object constants occurring in the head atoms of the

rules in Π.

Example 2.1

Let Π1 denote a program

p(1). p(2). r(3). (3)

q(X, 1)← p(X). (4)

Then, oc(p[1]) = {1, 2}, oc(q[1]) = ∅, oc(q[2]) = {1} and oc(Π1) = {1, 2, 3}. The grounding
of a program Π, denoted gr(Π), is a ground program obtained by instantiating variables

in Π with all object constants of the program. For example, gr(Π1) consists of rules in (3)

and rules

q(1, 1)← p(1). q(2, 1)← p(2). (5)

q(3, 1)← p(3). (6)

Given a program Π, ASP grounders utilizing intelligent grounding are often able to

produce a program smaller than its grounding gr(Π), but that has the same answer sets as

gr(Π). Recall program Π1 introduces in Example 2.1. For instance, the program obtained

from gr(Π1) by dropping rule (6) may be a result of intelligent grounding. The ground

extensions of a predicate within a grounded program Π are the set of terms associated

with the predicate in the program. For instance, in gr(Π1), the ground extensions of

predicate q is the set of tuples {〈1, 1〉, 〈2, 1〉, 〈3, 1〉}. For an argument p[i] and a ground

program Π, we call the number of distinct object constants occurring in the ground

extensions of p in Π at position i the argument size of p[i]. For instance, for program

gr(Π1) argument sizes of p[1], q[1], and q[2] are 3, 3, and 1, respectively.

The dependency graph of a program Π is a directed graph GΠ = 〈N,E〉 such that N

is the set of predicates appearing in Π and E contains the edge (p, q) if there is a rule r

in Π in which p occurs in B
+(r) and q occurs in the head of r. A program Π is tight if

GΠ is acyclic, otherwise the program is non-tight (Fages 1994).

Example 2.2

Let Π2 denote a program constructed from Π1 (introduced in Example 2.1) by extending

it with rules:

r(2). r(4). (7)

s(X,Y, Z)← r(X), p(X), p(Y ), q(Y, Z). (8)
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Fig. 3. Left: Graph GΠ2 ; Center: Graph GΠ3 ; Right: Graph Gsc
Π3

.

Program Π3 is the program Π2 extended with the rule:

q(Y,X)← s(X,Y, Z). (9)

Figure 3 shows the dependency graphs GΠ2
(left) and GΠ3

(center). Program Π2 is tight,

while program Π3 is not.

3 System predictor

The key contribution of this work is the development of the system predictor (its

algorithmic and software base), whose goal is to provide estimates for the size of an

“intelligently” grounded program. In other words, its goal is to assess the impact of

grounding without grounding itself. predictor is based on the intelligent grounding

procedures implemented by the grounder dlv, described in Faber et al. (2012). The key

difference is that, instead of building the ground instances of each rule in the program,

predictor constructs statistics about the predicates, their arguments, and rules of the

program. This section provides formulas we developed in order to produce the estimates

backing up the computed statistics. We conclude with details on the implementation.

It is due to make couple remarks. First, in a way we parallel the work on query optimiza-

tion techniques within relational databases, for example, see Chapter 13 in Silberschatz

et al. (1997). Indeed, when a particular query is considered within a relational database

there are often numerous ways to its execution/implementation. Relational databases

maintain statistics about its tables to produce estimates for intermediate results of vari-

ous execution scenarios of potential queries. These estimates help database management

systems decide which of the possible execution plans of the query at hand to select. In

this work, we develop methods to collect and maintain statistics/estimates about entities

of answer set programs. We then show how these estimates may help a rewriting (pre-

possessing) system for ASP to decide whether to rewrite some rules of a program or not.

Second, the intelligent grounding procedure implemented by grounder dlv (Faber et al.

2012) is based on database evaluation techniques (Ullman 1988; Abiteboul et al. 1995).

The same statement is the case for another modern grounder gringo (Gebser et al.

2011b; Kaminski and Schaub 2022). It also shares a lot in common with grounder dlv.

This fact makes the estimates of system predictor rooting in the algorithm of dlv

applicable also within the framework of gringo. In a nutshell, both dlv and gringo

instantiate a program via an iterative bottom-up process starting from the program’s

facts targeting the accumulation of ground atoms and ground rules derivable from the

rules seen so far. As this process continues, a new ground rule is produced when its
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positive body atoms belong to the already computed atoms. Then, the head atom of this

rule is added to the set of already accumulated ground atoms. This process continues

until no new ground atoms/rules are produced by this process.

Argument size estimation. Tight program case: The estimation formulas are based

on predicting argument sizes. To understand these it is essential to describe an order in

which we produce estimates for predicate symbols/arguments. Given a program Π, we

obtain such an ordering by performing a topological sorting on its dependency graph.

We associate each node in this ordering with its position and call it a strata rank of

a predicate. For example, p, q, r, s is one possible ordering for program Π2 (introduced

in Example 2.2). This ordering associates strata ranks 1, 2, 3, 4 with predicates p, q, r, s,

respectively.

We now introduce some intermediate formulas for constraining our estimates. These

intermediate formulas are inspired by query optimization techniques within relational

databases, for example, see Chapter 13 in Silberschatz et al. (1997). These formulas keep

track of information that helps us to estimate which actual values may occur in the

grounded program without storing these values themselves. Let p[i] be an argument. We

track the range of values that may occur at this argument. To provide intuitions for an

introduced process, consider an intelligent grounding of Π2 consisting of rules (3), (5),

(7), and rules

s(2, 1, 1)← r(2), p(2), p(1), q(1, 1). (10)

s(2, 1, 1)← r(2), p(2), p(2), q(2, 1). (11)

This intelligent grounding produces rules (10), (11) in place of rule (8). Variable X

from rule (8) is only ever replaced with object constant 2. Intuitively, this is due to

the intersection oc(p[1]) ∩ oc(r[1]) = {2}. We model such a restriction by considering

what minimum and maximum values are possible for each argument in an intelligently

grounded program (compliant with described principle; all modern intelligent grounders

respect such a restriction). We then use these values to define an “upper restriction” of

the argument size for each argument.

For a tight program Π, let p[i] be an argument in Π; R be the following set of rules

{r | r ∈ Π, H(r)0 = p, and H(r)i is a variable}. (12)

By ↓t-test(p[i]) we denote an estimate of a minimum value that may appear in argument

p[i] in Π:

↓t-test(p[i]) = min
(
oc(p[i]) ∪

{max
(
{↓t-test(p

′[i′]) | p′[i′] ∈ args(r,H(r)i)}
)
| r ∈ R}).

The superscript t-t stands for “tight.” Note how H(r)i in args(r,H(r)i) is conditioned to

be a variable due to the choice of set R of rules. The function ↓t-test is total because the

rank of the predicate occurring on the left hand side of the definition above is strictly

greater than the ranks of all of the predicate symbols p′ on the right hand side, where

rank is understood as a strata rank defined before (multiple strata rankings are possible;

any can be considered here). By ↑t-test(p[i]) we denote an estimate of a maximum value

that may appear in argument p[i] in tight program Π. It is computed using formula for

↓t-test(p[i]) with min, max, and ↓t-test replaced by max, min, and ↑t-test, respectively.
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Now that we have estimates for minimum and maximum values, we estimate the size of

the range of possible values. We understand the range of an argument to be the number

of values we anticipate to see in the argument within an intelligently grounded program if

the values were all integers between the minimum and maximum estimates. It is possible

that our minimum estimate for a given argument is greater than its maximum estimate.

Intuitively, this indicates that no ground rule will contain this argument in its head. The

number of values between the minimum and maximum estimates may also be greater

than the number of object constants in a considered program. In this case, we restrict

the range to the number of object constants occurring in the program. We compute the

range, ranget-test(p[i]), as follows:

min
({max(

{
0, ↑t-test(p[i])− ↓t-test(p[i]) + 1

}
), |oc(Π)|}).

Example 3.1

Recall program Π2 introduced in Example 2.2. The operations required to compute the

minimum estimate for argument s[1] in Π2 follow:

↓t-test(r[1]) = min
(
oc(r[1])

)
= 2

↓t-test(p[1]) = min
(
oc(p[1])

)
= 1

↓t-test(s[1]) = min(oc(s[1])∪
{max

({↓t-test(r[1]), ↓t-test(p[1])
})}) = min(∅ ∪ {2}) = 2.

We compute ↑t-test(s[1]) to be 2. Then, ranget-test(s[1]) is

min({max
({

0, ↑t-test(s[1])− ↓t-test(s[1]) + 1
})

, |oc(Π2)|})
= min({max

({
0, 2− 2 + 1

})
, 4}) = 1.

We presented formulas for estimating the range of values in program’s arguments. We

now show how these estimates are used to assess the size of an argument understood as

the number of distinct values occurring in this argument upon an intelligent grounding.

We now outline intuitions behind a recursive process that we capture in formulas. Let p[i]

be an argument. If p[i] is such that predicate p has no incoming edges in the program’s

dependency graph, then we estimate the size of p[i] as |oc(p[i])|. Otherwise, consider

rule r such that H(r)0 = p and H(r)i is a variable. Our goal is to estimate the number

of values variable H(r)i may be replaced with during intelligent grounding. To do so,

we consider the argument size estimates for arguments in the positive body of the rule

that contain variable H(r)i. Based on typical intelligent grounding procedures, variable

H(r)i may not take more values than the minimum of those argument size estimations.

This gives us an estimate of the argument size relative to a single rule r. The argument

size estimate of p[i] with respect to the entire program may be then computed as the

sum of such estimates for all rules such as r (recall that rule r satisfies the requirements

H(r)0 = p and H(r)i is a variable). Yet, the sum over all rules may heavily overestimate

the argument size. To lessen the effect of overestimation we incorporate range estimates

discussed before into the described computations.

For a tight program Π, let p[i] be an argument in Π; R be the set (12) of rules. By

St-t
est(p[i]) we denote an estimate of the argument size p[i] in Π. This estimate is computed
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as follows:

St-t
est(p[i]) = min

({
ranget-test(p[i]), |oc(p[i])|+∑

r∈R

min
({St-t

est(p
′[i′]) | p′[i′] ∈ args(r,H(r)i)})}).

We can argue that the function St-t
est is total in the same way as we argued that the

function ↓t-test is total.

Example 3.2

Let us illustrate the computation of the argument size estimates for argument s[2] in

program Π2 (introduced in Example 2.2). Given that ranget-test(s[2]) = 2 and oc(s[2]) = ∅:
St-t
est(p[1]) = |oc(p[1])| = 2

St-t
est(q[1]) = min(ranget-test(q[1]), {|oc(q[1])|+
min

({St-t
est(p[1])}

)}) = min({2, 0 +min({2})}) = 2

St-t
est(s[2]) = min

(
ranget-test(s[2]),{|oc(s[2])|+min
({St-t

est(p[1]), S
t-t
est(q[1])}

)})
= 2.

Arbitrary (non-tight) program case: To process arbitrary programs (tight and non-

tight), we must manage the circular dependencies such as present in sample program Π3

defined in Example 2.2 in the section on preliminaries. We borrow and simplify a concept

of the component graph by Faber et al. (2012). The component graph of a program Π

is an acyclic directed graph Gsc
Π = 〈N,E〉 such that N is the set of strongly connected

components in the dependency graph GΠ of Π and E contains the arc (P,Q) if there is an

arc (p, q) in GΠ where p ∈ P and q ∈ Q. For tight programs, we identify its component

graph with the dependency graph itself by associating a singleton set annotating a node

with its member. Figure 3 (right) shows the component graph for program Π3. For a

program Π, we obtain an ordering on its predicates by performing a topological sorting on

its component graph. We associate each node in this ordering with its position and call it

a strong strata rank of each predicate that belongs to a node. For example, {p}, {r}, {q, s}
is one possible topological sorting of Gsc

Π3
. This ordering associates the following strong

strata ranks 1, 2, 3, 3 with predicates p, r, q, s, respectively.

Let C be a node/component in graph Gsc
Π . By PC we denote the set

{r | p ∈ C, r ∈ Π, and H(r)0 = p}.
We call this set a module. A rule r in module PC is a recursive rule if there exists an

atom a in the positive body of r so that a0 = p and predicate p occurs in C. Otherwise,

rule r is an exit rule. For tight programs, all rules are exit rules. It is also possible to

have modules with only recursive rules.

Example 3.3

The modules in program Π3 introduced in Example 2.2 contain

P{p} = {p(1). p(2).}; P{r} = {r(2). r(3). r(4).};
and P{q,s} composed of rules (4), (8), and (9). The rules (8) and (9) are recursive.
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In the sequel we consider components whose module contains an exit rule. For a com-

ponent C and its module PC , M1, ...,Mn (n ≥ 1) in the following way: Every exit rule

of PC is a member of M1. A recursive rule r in PC is a member of Mk (k > 1) if

• for every predicate p ∈ C occurring in B
+(r), there is a rule r′ in M1 ∪ ... ∪Mk−1,

where H(r′)0 = p and

• there is a predicate q occurring in B
+(r) such that there is a rule r′′ in Mk−1, where

H(r′′)0 = q.

We refer to the unique partition created in this manner as the component partition of

C; integer n is called its cardinality. We call elements of a component partition groups

(the component partition is undefined for components whose module does not contain

an exit rule). Prior to illustrating these concepts by an example we introduce one more

notation. For a component partition M1, . . . ,Mk, . . . ,Mn, by M
p[i]
k we denote the set

{r | r ∈Mk, H(r)0 = p, and H(r)i is a variable};
and by M

p[i]
1...k we denote the union

⋃k
j=1 M

p[i]
j .

Example 3.4

Recall program Π3 from Example 2.2. The component partition of node {q, s} in Gsc
Π3

follows:

M1 = {q(X, 1)← p(X).}
M2 = {s(X,Y, Z)← r(X), p(X), p(Y ), q(Y, Z).}
M3 = {q(Y,X)← s(X,Y, Z).}.

For program Π3 and its argument q[1]:

M
q[1]
1...3 = {q(X, 1)← p(X). q(Y,X)← s(X,Y, Z).}

We now generalize range and argument size estimation formulas for tight programs

to the case of arbitrary programs. These formulas are more complex than their “tight

versions,” yet they perform similar operations at their core. Intuitively, formulas for tight

programs rely on argument ordering provided by the program’s dependency graph. Now,

in addition to an order provided by the component dependency graph, we rely on the

orders given to us by the component partitions of the program.

In the remainder of this section, let Π be a program; p[i] be an argument in Π; C be the

node in the component graph of Π so that p ∈ C; n be the cardinality of the component

partition of C; and j be an integer such that 1 ≤ j ≤ n.

If the module of C does not contain an exit rule, then the estimate of the range of

an argument p[i], denoted rangeest(p[i]), is assumed 0 and the estimate of the size of an

argument p[i], denoted Sest(p[i]), is assumed 0.

We now consider the case when the module of C contains an exit rule. By ↓est(p[i]) we
denote an estimate of a minimum value that may appear in argument p[i] in program Π:

↓est(p[i]) = ↓grest(p[i], n)
↓grest(p[i], j) = min(oc(p[i]) ∪ {↓ruleest (p[i], j, r) | r ∈M

p[i]
1...j})

↓ruleest (p[i], j, r) = max
({↓splitest (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)

})
↓splitest (p[i], p′[i′], j) =

{
↓grest(p′[i′], j − 1), if p′ in the same component as p

↓est(p′[i′]), otherwise
.
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We note the strong similarity between the combined definitions of ↓grest(p[i], j) and

↓ruleest (p[i], j, r) compared to the corresponding “tight” formula ↓t-test(p[i]). Formula for

↓splitest (p[i], p′[i′], j) serves two purposes. If the predicate p′ is in the same component

as predicate p, we decrement the counter j (intuitively bringing us to preceding groups

in component partition). Otherwise, we simply use the minimum estimate for p′[i′] that
is due to the computation relevant to another component.

We now show that defined functions ↓est , ↓grest , ↓ruleest and ↓splitest are total. Consider

any strong strata ranking of program’s predicates. Then, by rank(p) we refer to the

corresponding strong strata rank of a predicate p. The following table provides ranks

associated with expressions used to define functions in question:

Expression Rank

↓est(p[i]) ω · (rank(p) + 1)

↓grest(p[i], j) ω · rank(p) + j

↓ruleest (p[i], j, r) ω · rank(p) + j

↓splitest (p[i], p′[i′], j) ω · rank(p) + j

,

where ω is the smallest infinite ordinal number. It is easy to see that in definitions

of functions ↓est , ↓grest , and ↓ruleest the ranks associated with their expressions do not

increase. In definition of ↓splitest in terms of ↓est, the rank decreases. Thus, the defined

functions are total.

By ↑est(p[i]) we denote an estimate of a maximum value that may appear in argument

p[i] in program Π. It is computed using formula for ↓est(p[i]) with min, max, ↓est , ↓grest ,
↓ruleest , and ↓splitest replaced with max, min, ↑est , ↑grest , ↑ruleest , and ↑splitest , respectively.

The range of an argument p[i], denoted rangeest(p[i]), is computed by the formula of

ranget-test(p[i]), where we replace ↓t-test and ↑t-test with ↓est and ↑est , respectively.
We define the formula for finding the argument size estimates, Sest(p[i]), as follows:

Sest(p[i]) = Sgr
est(p[i], n)

Sgr
est(p[i], j) = min

({
rangeest(p[i]), |oc(p[i])|+

∑
r∈M

p[i]
1...j

Srule
est (p[i], j, r)

})

Srule
est (p[i], j, r) = min

({
Ssplit
est (p[i], p′[i′], j) | p′[i′] ∈ args(r,H(r)i)

})
Ssplit
est (p[i], p′[i′], j) =

{
Sgr
est(p

′[i′], j − 1), if p′ is in the same component as p

Sest(p
′[i′]), otherwise

.

We can argue that the function Sest is total in the same way as we argued that the

function ↓est is total.

Program size estimation. Keys We borrow the concept of a key from relational

databases. This concept allows us to produce more accurate final estimates as it carries

important structural information about predicates and the kinds of instantiations possible

for them. (Table 1 presented in the section on experimental analysis illustrates the impact

of information on the keys within the implemented system.) For some predicate p, we

refer to any set of arguments of p that can uniquely identify all ground extensions of p

as a superkey of p. We call a minimal superkey a candidate key. For instance, let the

following be the ground extensions of some predicate q:
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{〈1, 1, a〉, 〈1, 2, b〉, 〈1, 3, b〉, 〈2, 1, c〉, 〈2, 2, c〉, 〈2, 3, a〉}.
It is easy to see that both {q[1], q[2]} and {q[1], q[2], q[3]} are superkeys of q, while {q[1]}
is not a superkey. Only superkey {q[1], q[2]} is a candidate key. A primary key of a

predicate p is a single chosen candidate key. A predicate may have at most one primary

key. For the purposes of this work, we allow the users of predictor to manually specify

the primary key. It is possible that some predicates do not have primary keys specified.

To handle such predicates, we define key(p) to mean the following:

key(p) =

{
the primary key of p, if p has a primary key specified

{p[1], ..., p[n]}, otherwise
,

where n is the arity of p. We call an argument p[i] a key argument if it is in key(p).

For a rule r, by kvars(r) we denote the set of its variables that occur in its key

arguments.

Rule size estimation We now have all the ingredients to provide an estimate for ground-

ing size of each rule in a program. We understand a grounding size of a rule as the number

of rules produced as a result of intelligently grounding this rule. For a rule r in a program

Π, the estimated grounding size, denoted Sest(r), is computed as follows:

Sest(r) =
∏

X∈kvars(r)

min
({Sest(p[i]) | p[i] ∈ args(r,X)}).

Implementation details. System predictor
1 is developed using the Python 3 pro-

gramming language. predictor utilizes pyclingo version 5, a Python API sub-system

of answer set solving toolkit clingo (Gebser et al. 2015). The pyclingo API enables

users to easily access and enhance ASP processing steps within Python code, including

access to some data in the processing chain. In particular, predictor uses pyclingo

to parse a logic program into an abstract syntax tree (AST) representation. After ob-

taining the AST, predictor has an immediate access to internal rule structure of the

program and computes estimates for the program using the presented formulas. System

predictor is designed for integration with other systems processing ASP programs. It

is distributed as a package that can be imported into other systems developed in Python

3, or it can be accessed through a command line interface. In order to ensure that system

predictor is applicable to real world problems, it supports ASP-Core-2 logic programs.

For instance, the estimation formulas presented here generalize well to programs with

choice rules and disjunction. Rules with aggregates are also supported. Yet, for such

rules more sophisticated approaches are required to be more precise at estimations. Next

section covers key details on the ASP-Core-2 support by the predictor system. We

then conclude by integrating the predictor system into two rewriting tools, namely,

projector and lpopt. We present a thorough experimental analysis for these systems

and the enhancement that predictor offers to them.

1 https://www.unomaha.edu/college-of-information-science-and-technology/
natural-language-processing-and-knowledge-representation-lab/software/
predictor.php

https://doi.org/10.1017/S1471068423000078 Published online by Cambridge University Press

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/predictor.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/predictor.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/predictor.php
https://doi.org/10.1017/S1471068423000078


144 D. Bresnahan et al.

4 Language extensions: ASP-Core-2 Support

In order to ensure that system predictor is applicable to real world problems, it has

been designed to operate on many common features of ASP-Core-2 logic programs. In

the following we extend the definition of logic rules to include these features and discuss

how these features are handled by predictor.

Pools and intervals. In ASP-Core-2 logic programs, an atom may have the form

p(t1; ...; tn), where p is a predicate of arity 1, and t1; ...; tn is a semicolon separated list of

terms. Here, t1; ...; tn is a pool term. A predicate with a pool term is “syntactic sugar”

that indicates there is a copy of that rule for every object constant in the pool.

Example 4.1

The following rule containing pool terms:

p(a; b)← q(c; d).

can be expanded to the following rules:

p(a)← q(c).

p(a)← q(d).

p(b)← q(c).

p(b)← q(d).

Similarly, ASP-Core-2 programs may contain atoms of the form p(l..r), where p is a

predicate of arity 1, and l, r are terms. Here, l..r is an interval term. A predicate with

an interval term is “syntactic sugar” indicating that there is a copy of this rule for every

integer between the range of l to r, inclusive.

Example 4.2

The following rule containing interval terms:

p(1..3, a)← q(1..2).

can be expanded to the following rules:

p(1, a)← q(1).

p(1, a)← q(2).

p(2, a)← q(1).

p(2, a)← q(2).

p(3, a)← q(1).

p(3, a)← q(2).

For both pool and interval terms, system predictor handles the program as though

it were in its expanded form.

Aggregates. An aggregate element has the form

t0, ..., tk : a0, ..., am, not am+1, ..., not an.

where k ≥ 0, n ≥ m ≥ 0, t0, ..., tk are terms and a0, ..., an are atoms. An aggregate atom

has the form
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#aggr{e0, ..., en} ≺ t,

where n ≥ 0 and e0, ..., en are aggregate elements. Symbol #aggr is either #count,

#sum, #max, or #min. Symbol projectorec is either <, ≤, =, �=, >, or ≥. Symbol t is

a term.

System predictor supports rules containing aggregates to a limited extent. In par-

ticular, predictor will simplify such a rule as if it had no aggregate atoms.

Example 4.3

The rule containing an aggregate atom:

p(X)← q(X),#count{Y : r(X,Y )} < 3.

is seen by predictor as the following rule:

p(X)← q(X).

while the only variable seen in this rule will be X.

It is important to note that if an aggregate contains variables, it is possible that

the length of a rule expands during grounding processes, where it is understood that

the length of a rule is the number of atoms in a rule. We do not consider this length

expansion when computing the grounding size of a rule.

Disjunctive and choice rules. A disjunctive rule is an extended form of ASP logic

rule that allows disjunctions in its head. They are of the form

a0 ∨ ... ∨ ak ← ak+1, ..., am, not am+1, ..., not an.

where n ≥ m ≥ k ≥ 0, and a0, ..., an are atoms.

System predictor handles a disjunctive rule by replacing it with the set of rules

created in the following way. For each atom a in the head of a disjunctive rule r, pre-

dictor creates a new rule of the form a ← B(r). For computing range and argument

size estimates, all of these newly created rules are used. However, when estimating the

grounding size of the original rule, only one of the rules is used.

Example 4.4

The disjunctive rule r:

p(1) ∨ p(2)← q(1).

is replaced by the following two rules:

p(1)← q(1).

p(2)← q(1).

Yet, only one of those rules is used for estimating the grounding size of the original rule.

Using these rules is sufficient for estimating grounding information, even though they are

not semantically equivalent to the original disjunctive rule.

A condition is of the form

a0 : a1, ..., am, not am + 1, ..., not an,

where n ≥ m ≥ 0, and a0, ..., an are atoms. We refer to a0 as the head of the condition.

A choice atom is of the form l{c1; ...; cn}r, where l is an integer, r is an integer such
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that r ≥ l, and c1; ...; cn is a semicolon separated list of conditions. We now extend the

definition of a rule given by (1) to allow the head to be a choice atom. We refer to rules

whose head contains a choice atom as choice rules.

System predictor handles a choice rule similarly to the case of a disjunctive rule,

replacing it with the set of rules created in the following way. For each atom a in the

head of a condition in the choice atom in rule r, create a new rule of the form a← B(r).

For computing range and argument size estimates, all of these newly created rules are

used. However, when estimating the grounding size of the original rule, only one of the

rules will be used. Note that, as with aggregates, choice rules can increase the length of

a rule.

Example 4.5

The choice rule:

1{p(X) : q(1); p(Y )}1← r(X,Y ), s(Y ).

is replaced by the following two rules:

p(X)← r(X,Y ), s(Y ).

p(Y )← r(X,Y ), s(Y ).

Yet, only one of those rules is used for estimating the grounding size of the original rule.

Functions. In ASP-Core-2, a term may also be of the form f(t1, ..., tn), where f

is a function symbol and t1, ..., tn (n > 0) are term. We call terms of this form func-

tion terms. In order to be more compliant with ASP-Core-2 features, predictor is

capable of running on programs containing function terms, however when a function

term is encountered by predictor, it simply sees the function term as an object

constant.

Binary operations. The ASP-Core-2 standard also allows binary operation terms.

A binary operation term is of the form t1 op t2, where t1 and t2 are either an integer

object constant, a variable, or a binary operation and op is a valid binary operator2. If

an atom contains a binary operation term, system predictor handles it in one of three

ways. If the binary operation has no variables, it treats the term as an object constant.

If the binary operation contains exactly one variable, it treats the term as that variable.

Otherwise, the atom is treated as if it were part of the negative body (and therefore not

used in estimations).

Example 4.6

In the following rule containing binary operation terms:

← p(1 + 1), q(2 ∗X + 1), r(2 ∗X + Y ), s(Y ).

the atoms are viewed as follows. Atom p(1 + 1) is seen as containing an object constant

term. Atom q(2 ∗X + 1) is seen as the atom q(X). Atom r(2 ∗X + Y ) is seen as being

part of the negative body.

2 http://potassco.sourceforge.net/doc/pyclingo/clingo.ast.html#BinaryOperator
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5 Experimental analysis

We investigated the utility of system predictor by integrating it as a decision support

mechanism into the ASP rewriting tool projector to create tool prd-projector,

as well as the ASP rewriting tool lpopt, to create tool prd-lpopt. These tools are

discussed in following subsections.

5.1 System prd-projector

Figure 2 (presented in the Introduction section) demonstrates how predictor is inte-

grated with system projector resulting in what we call prd-projector. Note how

predictor runs entirely independent of and prior to the grounding step of a considered

ASP grounder-solver pair.

The rewriting tool projector is documented by Hippen and Lierler (2019). This tool

focuses on so called projection technique. In its default settings, it studies each rule

of a given program and when a projection rewriting is applicable to considered rules

projector rewrites these accordingly. Thus, whenever the rewriting is established to be

possible it is also performed. The prd-projector tool extends the projector system

by the decision-making mechanism supported by predictor on whether to perform

rewriting or not. When projector establishes that a rewriting is possible the system

predictor evaluates an original rule against its rewritten counterpart as far as their

predicted grounding sizes. The projection rewriting will only be applied if the rewritten

rule is predicted to produce smaller grounding footprint. In particular, for each rule r in

program Π, projector will create a set R of rules, which represents one of the possible

“projected”-versions of r. This set R of rules is then substituted into Π to create program

Π′. If the predicted grounding size for this new program is smaller than, or equal to the

original, the set R of rules is kept and Π′ becomes a considered program in the future

evaluations. However, if the new predicted grounding size is larger than the original, set

R is discarded, and prd-projector will move on to the next rule in Π. To summarize,

tool predictor is used by projector in two ways:

1. When prd-projector encounters a tie through its default heuristics of projec-

tor for selecting variables to project, prd-projector generates the resulting pro-

jections for each of the variables and use the projection that is predicted to have

the smallest grounding size.

2. prd-projector only performs a projection if the prediction for the projection is

smaller than the predicted grounding size for the original rule.

We note that it is possible for projections to occur inside of aggregate expressions.

System predictor is not used to decide if these projections should be performed, so

that these projections always occur in prd-projector.

5.2 System prd-lpopt

Figure 2 with the box representing projector replaced by the box representing lpopt

demonstrates how predictor is integrated with system lpopt. We refer to the version of
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lpopt integrated with predictor as prd-lpopt. Once again, predictor runs entirely

independent of and prior to the grounding step.

The rewriting tool lpopt is documented by Bichler (2015); Bichler et al. (2020). This

tool focuses on so called rule decomposition technique. This technique is strongly related

to a rewriting championed by system projector. In fact, projector and lpopt can

be characterized as the tools performing the same kind of rewriting, while using different

heuristics on how and when to apply this rewriting. Both systems attempt reducing the

number of variables occurring in a rule by (a) introducing an auxiliary predicate and (b)

replacing an original rule by new rules. In other words, there are often multiple ways

available for rewriting the same rule and these systems may champion different ways.

In its default settings, lpopt studies each rule of a given program and when a rule de-

composition rewriting is applicable to considered rules lpopt rewrites these accordingly.

Thus, it behaves just as the projector system when used with its default settings:

whenever the rewriting at hand is established to be possible it is also performed. The

prd-lpopt tool extends the lpopt system by the decision-making mechanism of pre-

dictor on whether to perform rewriting or not in the same manner as prd-projector

tool extends the projector system by the decision-making mechanism of predictor.

We refer the reader to the previous subsection for the details.

5.3 Evaluation

To evaluate the usefulness of predictor, two sets of experiments are performed. First,

an “intrinsic” evaluation over accuracy of the predicted grounding size compared to the

actual grounding size is examined. Second, an “extrinsic” evaluation of systems prd-

projector and prd-lpopt is conducted to examine whether the system predictor

is indeed of use as a decision support mechanism on whether to perform or not the

rewritings of projector and lpopt, respectively. We note that the later evaluation

is of a special value illustrating the value and the potential of system predictor and

technology of the kind. It assesses predictor’s impact when it is used in practice for

its intended purpose as a decision-making assistant. The intrinsic evaluation has its

value in identifying potential future work directions and pitfalls in estimations. Overall,

we will observe intrinsically that our estimates differ frequently in order of magnitude

from the reality. Yet, extrinsic evaluation clearly states that predictor performs as a

solid decision-making assistant for the purpose of improving rewriting tools when their

performance depends on a decision when rewriting should take place versus not.

Benchmarks were gathered from two different sources. First, programs from the Fifth

Answer Set Programming Competition (Calimeri et al. 2016) were used. Of the 26 pro-

grams in the competition, 13 were selected (these that system projector, in its default

settings, has preformed rewritings on). For each program, the 20 instances (originally

selected for the competition) were used. One interesting thing to note about these encod-

ings is that they are generally already well optimized. As such, performing projections

often leads to an increase in grounding size. Second, benchmarks were gathered from an

application called aspccg implementing a natural language parser (Lierler and Schüller

2012). This domain has been extensively studied in Buddenhagen and Lierler (2015)

and was used to evaluate system projector by Hippen and Lierler (2019). In that

evaluation, the authors considered 3 encodings from aspccg: enc1, enc7, enc19. We
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Table 1. Key information for benchmark programs

Program Keys

Bottle filling –
Hanoi tower –
Incremental scheduling precedes/2[1], importance/2[1], job device/2[1],

job len/2[1], deadline/2[1], curr job start/2[1],
curr on instance/2[1], instances/2[1]

Knight tour with holes –
Labyrinth –
Minimal diagnosis obs elabel/3[1, 2]
Nomystery at/2[1], fuel/2[1], goal/2[1]
Permutation pattern matching t/2[1], p/2[1]
Ricochet robots amo/2[1], d1/2[1], dir/2[1]
Solitaire –
Stable marriage manAssignsScore/3[1, 2], womanAssignsScore/3[1, 2]
Valves location dem/3[1, 2]
Weighted sequence leafWeightCardinality/3[1]
aspccg enc1; enc7; enc19 word at/2[2], category tag nofeatures/3[1],

category tag/3[1], adjacent/2[1]

introduced changes to the encodings enc1, enc7, and enc19 to make these in ASP-Core-

2 standard Calimeri et al. (2020) compatible with the lpopt system. We utilize the same

60 instances as in the mentioned evaluation of projector. In our experiments, system

projector was provided with the key information for some root predicate arguments

within several of the benchmarks. Non-default keys used for all benchmarks can be found

in Table 1. The sign “-” within the table denotes benchmarks where no key information

was provided by the user.

Table 2 details interesting features in the programs from both domains. The second

column provides information about some features present in the programs. These features

are abbreviated with the meanings as follows (abbreviation letters bolded): non-tight

program, aggregates, binary operation terms, choice rules, and function terms. The

competition benchmarks also consisted of two encodings: a newer 2014 encoding and a

2013 encoding from the previous year. The third column specifies which encoding was

used (in case the newer encoding consisted of no projections).

All tests were conducted on Ubuntu 18.04.3 with an Intel R© Xeon R© CPU E5-1620

v3 @ 3.50GHz and 32 GB of RAM. Furthermore, Python version 3.7.3 and pyclingo

version 5.4.0 are used to run predictor. Grounding and solving was done by clingo

version 5.4.0. For all benchmarks execution was limited to 5 min.

5.3.1 Intrinsic evaluation

Let S be the true grounding size of an instance of a program computed by gringo – that

is, the number of rules in a ground program produced by gringo. Let S′ be the grounding
size predicted by predictor for the same instance. We define a notion of an error factor

on a program instance as S′/S. The average error factor of a program/benchmark is the

average of all error factors across the instances of a program. Table 3 shows the average
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Table 2. Feature and version details for benchmark programs

Program Features 2013

Bottle filling a,b Yes
Hanoi tower b No
Incremental scheduling a,b,c No
Knight tour with holes n,b No
Labyrinth n No
Minimal diagnosis n No
Nomystery a,b,c,f No
Permutation pattern matching c,b No
Ricochet robots n,a,b,c No
Solitaire a,b,c No
Stable marriage – Yes
Valves location n,a,c,f No
Weighted sequence n,c,b Yes
aspccg enc1; enc7; enc19 n,a,b,c,f N/A

Table 3. Average error factor for benchmark programs, with and without keys

Average Error Average Error
Program Factor Factor (Keyless)

Hanoi tower – 1.5
Nomystery 1.5 1.5
Permutation pattern matching∗ 3.8 5.0
Solitaire – 4.3
Stable marriage 3.7 7.5 ∗ 105

Bottle filling – 4.9 ∗ 109
Incremental scheduling∗ 1.1 ∗ 105 1.1 ∗ 105
Labyrinth∗ – 1.3 ∗ 101
Minimal diagnosis 8.2 ∗ 103 8.2 ∗ 103
Valves location∗ 1.3 ∗ 101 1.6 ∗ 101
aspccg enc1 2.9 ∗ 101 3.1 ∗ 101
aspccg enc7 1.3 ∗ 101 1.4 ∗ 101
aspccg enc19 2.2 ∗ 101 2.2 ∗ 101

Knight tour with holes – 1.9 ∗ 10−4

Ricochet robots 2.0 ∗ 10−1 2.2 ∗ 10−1

Weighted sequence 6.0 ∗ 10−3 1.1 ∗ 10−2

error factor using prd-projector for all programs 3. The third column presents the

case for programs when no key information is provided. Sign “–” indicates that for this

3 The numbers presented for the aspccg enc1, enc7, enc19 are due to the original encoding of these
benchmarks non-compatible with the ASP-Core-2 standard and utilized in the experiments by Hippen
and Lierler (2021).

https://doi.org/10.1017/S1471068423000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000078


Predictor: Grounding Size Estimator 151

benchmark no key information was provided within the main encoding. The average

error factor shown was rounded to make comparisons easier. An asterisk (∗) next to a

benchmark name indicates that not all 20 instances of this benchmark were grounded

within the allotted time limit. For instance, 19 instances of the Incremental Scheduling

benchmark were successfully grounded, while the remaining instance timed out. For the

benchmarks annotated by ∗ we only report the average error factor assuming the instances

grounded successfully.

We partition the results into three groups using the average error factor. The partition

is indicated by the horizontal lines on Table 3. First, there are five programs where the

estimates computed by predictor are, on average, less than one order of magnitude

over. Second, there are eight programs that are, on average, greater than one order of

magnitude over. Finally, three programs are predicted to have lower grounding sizes than

in reality.

We also note the impact that keys have on certain programs. We especially emphasize

the difference in error between Stable Marriage with and without keys, where the average

error factor is different by 5 orders of magnitude. The numbers in bold mark instances

in which information on keys change the prediction.

It is obvious that the accuracy of system predictor could still use improvements.

In many cases the accuracy is drastically erroneous. These results are not necessarily

surprising. We identify five main reasons for observed data on predictor:

1. Insufficient data modeling is one weak point of predictor. Since we do not keep

track what actual constants could be present in the ground extensions of a predi-

cate, it is often the case that we overestimate argument size due to our inability to

identify repetitive values.

2. Since we only identified keys for root predicate arguments, many keys were likely

missed; automatic key detection is the direction of future work.

3. System predictor has limited support for such common language extensions as

aggregates.

4. System predictor is vulnerable to what is known as error propagation (Ioannidis

and Christodoulakis 1991).

5. While one might typically expect predictor to overestimate due to its limited

capabilities in detecting repeated data, the underestimation on Knight Tour with

Holes, Ricochet Robots, and Weighted Sequence programs is not surprising due to

the fact that these programs are non-tight and utilize binary operations in terms.

5.3.2 Extrinsic evaluation

Here, we examine the relative accuracy of system predictor alongside projector and

lpopt. In other words, we measure the quality of predictor by analyzing the impact

it has on projector and lpopt performance. We recall that in all experiments we

consider that predictor is provided information on keys as documented in Table 1.

Let S be the grounding size of an instance of a program, where grounding is produced

by gringo. Let S′ be the grounding size of the same instance in a modified (rewritten)

version of the program. In this context, the modified version will either be the logic

program outputted after using projector/lpopt or the logic program outputted after
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Table 4. Average grounding size factors, and execution time factors for proj and

prd-proj

Grounding Size Factor
︷ ︸︸ ︷

Execution Time Factor
︷ ︸︸ ︷ Svd. Svd.

Program proj prd-proj proj prd-proj Svd. proj prd-proj

Hanoi tower 1.41 1.00 1.67 1.00 20 20 20
Inc. scheduling∗ 1.14 1.12 1.06 1.10 13 13 14
Minimal diagnosis 1.06 1.00 1.04 1.00 20 20 20
Solitaire 1.41 1.00 1.32 0.99 19 19 19
Stable marriage 0.13 0.12 0.18 0.17 19 19 19

Bottle filling 1.36 1.36 1.44 1.43 20 20 20
Labyrinth 1.11 1.11 5.26 5.27 18 18 18
Perm. pattern match.∗ † 0.13 0.13 0.14 0.14 16 20 20
Valves location† 1.00 1.00 1.03 0.93 3 3 3
Weighted sequence† 1.00 1.00 3.05 1.59 19 16 17
aspccg enc1 1.01 1.01 1.65 2.28 60 60 60

aspccg enc7 0.90 1.00 1.57 2.20 60 60 60
aspccg enc19 0.70 0.81 1.71 2.59 60 60 60
Knight tour with holes 0.80 0.90 0.50 2.45 1 1 1
Nomystery 0.62 1.00 1.23 1.00 7 8 7
Ricochet robots 0.91 1.00 0.85 1.00 20 20 20

using prd-projector/prd-lpopt. The grounding size factor of a program’s instance

is defined as S′/S. As such, a grounding size factor greater than 1 indicates that the

modification increased the grounding size, whereas a value less than 1 indicates that the

modification improved/decreased the grounding size. The average grounding size factor

of a benchmark is the average of all grounding size factors across the instances of a

benchmark. While we target improving the grounding size of a program, the ultimate

goal is to improve the overall performance of ASP grounding/solving. Thus, we also

compare the execution time of the programs, as that is ultimately what we want to

reduce. Let S be the execution time of an answer set solver clingo (including grounding

and solving) on an instance of a benchmark. Let S′ be the execution time of clingo on

the same instance in a modified version of the benchmark. The execution time factor of a

program’s instance is defined as S′/S. The average execution time factor of a benchmark

is the average of all execution time factors across the instances of a benchmark.

Table 4 displays the average grounding size factor together with the average execution

time factor for projector and prd-projector on all benchmark programs. An asterisk

(∗) following a program name indicates that not all 20 instances were grounded. In these

cases, the average grounding size factor was only computed from instances where all

3 versions of the program (original, projector, prd-projector) completed solving.

The same concerns the computation of the average execution time factor. While we

only consider instances in where all 3 version of the program completed grounding and

then solving, we have included the exact number of instances grounded and solved by

each version of the program, to show that the factors presented may be misleading.
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Table 5. Average grounding size factors, and execution time factors for lpopt and

prd-lpopt

Grounding Size Factor
︷ ︸︸ ︷

Execution Time Factor
︷ ︸︸ ︷ Svd. Svd.

Program lpopt prd-lpopt lpopt prd-lpopt Svd. lpopt prd-lpopt

aspccg enc1 0.92 0.89 0.88 0.87 60 60 60
aspccg enc7 0.80 0.75 0.83 0.79 60 60 60
Hanoi tower 1.41 1.00 1.59 0.99 20 19 20
Minimal diagnosis 1.17 1.00 1.13 1.00 20 20 20
Bottle filling 1.00 0.28 0.98 0.39 20 20 20
Valves location 1.00 1.00 1.00 0.96 3 3 3
Solitaire∗ 1.03 1.01 4.53 0.94 18 18 18
Knight tour with holes 3.36 2.18 1.28 0.90 1 1 1
Labyrinth 1.24 1.12 10.45 9.36 18 18 18
Weighted sequence† 1.07 1.04 1.13 2.11 19 20 20

Stable marriage† 1.01 1.01 1.02 1.02 19 19 19
Perm. pattern match.∗† 0.14 0.14 1.15 0.89 16 19 20

Inc. scheduling 1.78 2.30 1.01 1.24 13 13 13
aspccg enc19 0.78 0.87 0.92 0.93 60 60 60
Nomystery 0.70 0.95 1.06 2.72 7 8 8
Ricochet robots 1.09 1.18 1.01 2.02 20 20 20

For example, consider program Inc. Scheduling, while prd-projector seems to have a

slightly slower execution time than projector alone, prd-projector managed to solve

an additional instance, reflected by the decreased grounding time, therefore it would not

be accurate to say the projector outperformed prd-projector on that encoding. A

dagger (†) following a program name indicates that there was a slight improvement for

prd-projector, however this information was lost for the precision shown.

We partition the results into three sets, indicated by the horizontal lines on Table 4.

The first set denotes programs in which predictor improved the grounding size factor

of the program, the second set denotes programs in predictor did not have a noticeable

effect on the grounding size factor, and the last set denotes programs in which predictor

harmed the grounding size factor of the program as compared to the rewriting without

predictions. We note that there are five programs in which prd-projector reduces the

grounding size when compared to projector, five programs in which prd-projector

does not impact the grounding size, and six programs in which prd-projector in-

creases the grounding size. By gray, highlight we mark the benchmarks where decrease

in grounding size by means of using predictor resulted in the increase of solving time.

Table 5 displays the average grounding size factor together with the average execution

time factor for lpopt and prd-lpopt on all benchmark programs. It is data is organized

in the same style as within Table 4 comparing projector and prd-projector. We

note that there are ten programs in which prd-lpopt reduces the grounding size when

compared to lpopt, two programs in which prd-lpopt does not impact the grounding

size, and four programs in which prd-lpopt increases the grounding size.
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Overall, the results illustrate the validity of predictor approach. The system has

especially positive impact within its integration with lpopt. Also, the presented experi-

mental data illustrates once more the importance of the development rewriting techniques

and the possibility of their positive impact. Together with that decision support systems

exemplified by predictor have to be designed and engineered to achieve the whole

potential of ASP. We trust that system predictor is a solid step in that direction pro-

viding room for numerous improvements to account for nontrivial language features of

ASP dialects.

6 Conclusions and future work

We introduced a method for predicting grounding size of answer set programs. We imple-

ment the described method in stand-alone system predictor that runs agnostic to any

answer set grounder/solver pair. We expect this tool to become a foundation to decision

support systems for rewriting/preprocessing tools in ASP. Indeed, using predictor as

a decision support guide to rewriting system projector and lpopt improves their out-

come overall. The same is observed for the case of the rewriting system called lpopt.

This proves the validity of the proposed approach, especially as further methods for im-

proving estimation accuracy are explored in the future. As such system predictor is

a unique tool unparalleled in earlier research ready for use within preprocessing frame-

works in ASP. As discussed in the introduction: this work provides an important step

towards achieving a goal of truly declarative answer set programming.

The section on intrinsic evaluation indicated a number of potential areas worth of

improving estimations. It is one of the future work directions. Another one is utilizing

predictor within other preprocessing tools of ASP. We trust that both efforts can be

now undertaken as a community effort given the availability and transparency of pre-

dictor. Also, rather sophisticated techniques such as database-inspired optimizations,

back-jumping, rewritings, binder splitting techniques are available in modern implemen-

tations of grounders (Gebser et al. 2011b; Calimeri et al. 2017). As of now these techniques

are not accounted for when estimates are produced. Also at the moment, uniform distri-

bution of values between the maximum and minimum in predicate arguments is assumed.

Looking into different assumptions is also an interesting future direction.
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