INJECTIVE AND PROJECTIVE BOOLEAN-LIKE RINGS

V. SWAMINATHAN
(Received 4 March 1981)
Communicated by R. Lidl

Abstract

A Boolean-like ring R is a commutative ring with unity in which $2 x=0$ and $x y(1+x)(1+y)=0$ hold for all elements x, y of the ring R. It is shown in this paper that in the category of Boolean-like rings, R is injective if and only if R is a complete Boolean ring and R is projective if and only if $R=\{0, \mathrm{l}\}$.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 13 A 99; secondary 18 G 05 .
Keywords and phrases: Category of Boolean-like rings, Boolean-like rings, injective and projective objects, complete Boolean rings.

Introduction

The determination of the injective and projective members of a category is usually a challenging problem and adds to the knowledge of the category. Many successful attempts have been made in this direction. For example, R. Sikorski (1948) has shown that in the category of all Boolean rings the injective objects are the complete Boolean rings. Projective and injective distributive lattices, and projective and injective Heyting Algebras were determined respectively by R. Balbes (1966) and R. Balbes and A. Horn (1970). Recently R. Cignoli (1975) has characterized injective DeMorgan and Kleene Algebras and David C. Haines (1974) has determined injectives in the category of p-rings. The purpose of this paper is to find out projective and injective Boolean-like rings. A. L. Foster (1946) introduced the concept of Boolean-like rings as a generalisation of Boolean rings. A Boolean-like ring is a commutative ring with unity in which $2 x=0$ and

[^0]$x y(1+x)(1+y)=0$ hold for all elements x, y of the ring. In this paper, we show that the injective objects in the category of Boolean-like rings are complete Boolean rings and the projective objects are the 2 element Boolean ring. Thus we see that in the categories of distributive lattices, bounded distributive lattices, relatively complemented distributive lattices, Boolean algebras, Heyting algebras and Boolean-like rings, the injective objects are precisely complete Boolean rings even though the projective objects differ in the different categories. Throughout this paper, \mathbb{Q} stands for the equational category with objects Boolean-like rings and with morphisms the usual ring homomorphisms and \mathscr{B} stands for the equational category of all Boolean rings with morphisms as ring homomorphisms. We follow for the various definitions of terms in the categories those given in the book 'Distributive Lattices' by R. Balbes and P. Dwinger (1974). Also, if r belongs to a Boolean-like ring R, then r_{B} denotes the idempotent part of r and r_{N} denotes the nilpotent part of r in R as in A. L. Foster (1946).

1

Lemma 1.1. \mathscr{B} is a reflective full subcategory of \mathbb{Q} and the reflector $F: \mathbb{Q} \rightarrow \mathscr{B}$ defined by $F(A)=A_{B}$ (the Boolean subring of A) and $F(f)=f \mid A_{B}$, where f : $A \rightarrow A^{\prime}$ is a morphism in Q, preserves monomorphisms.

Proof. Routine.

Remark 1.1.1. F does not in general reflect monomorphisms.

Corollary 1.1.2. By Theorem I.18.6 of R. Balbes and P. Dwinger (1974), we get that the injectives in \mathscr{B}, (which are complete Boolean rings) are also injectives in \mathcal{A}.

Theorem 1.2. The injective objects in \mathbb{Q} are the complete Boolean rings.
Proof. Let R be an injective object in \mathcal{Q}. Let $B_{1}, B_{2} \in \mathrm{Ob} \mathscr{B}$ and $B_{1} \subset B_{2}$. Let $g: B_{1} \rightarrow R_{B}$ be any homomorphism. Then g can be considered as a homomorphism from B_{1} into R. As $B_{1}, B_{2} \in \mathrm{Ob} \mathbb{Q}$ and as R is injective in \mathcal{Q}, there exists a homomorphism $h: B_{2} \rightarrow R$ such that $h \mid B_{1}=g$. But $B_{2} \in \mathrm{Ob} \mathscr{B}$ implies that $h\left(B_{2}\right) \subset R_{B}$. Hence, $h: B_{2} \rightarrow R_{B}$ and $h \mid B_{1}=g$. This shows that R_{B} is injective in G月. Since injective objects in \mathscr{B} are complete Boolean rings, we get that R_{B} is a complete Boolean ring. Suppose there exists a nonzero nilpotent element n in R. Let R_{1} be the Boolean-like ring $\left\{0, a_{1}, a_{2}, 1\right\} \oplus\left\{0, n_{1}, n_{2}, n_{1}+n_{2}\right\}$ with $a_{1} n_{1}=$ $n_{1}, a_{2} n_{2}=n_{2}$ and M its subring $\left\{0,1, n_{1}, n_{2}, n_{1}+n_{2}, 1+n_{1}, 1+n_{2}, 1+n_{1}+\right.$ $\left.n_{2}\right\}$ (see example 4.5 of V. Swaminathan (1980)). Let $f: M \rightarrow R$ be the map
defined by $f(0)=0, f(1)=1, f\left(n_{1}\right)=n, f\left(n_{2}\right)=n, f\left(n_{1}+n_{2}\right)=0, f\left(1+n_{1}\right)=$ $1+n, f\left(1+n_{2}\right)=1+n, f\left(n_{1}+n_{2}+1\right)=1$. Then f is a homomorphism of M into R. As R is injective, there exists a homomorphism $f_{1}: R_{1} \rightarrow R$ such that $f_{1} \mid M=f$. Now, $f_{1}\left(a_{1}\left(n_{1}+n_{2}\right)\right)=f_{1}\left(a_{1}\right) f_{1}\left(n_{1}+n_{2}\right)=f_{1}\left(a_{1}\right) f\left(n_{1}+n_{2}\right)=f_{1}\left(a_{1}\right)$ $\cdot 0=0$ and $f_{1}\left(a_{1}\left(n_{1}+n_{2}\right)\right)=f_{1}\left(n_{1}\right)=f\left(n_{1}\right)=n \neq 0$, which gives a contradiction. Therefore, the nilradical of R is $\{0\}$. This implies R is a complete Boolean ring. Combining with Corollary 1.1.2, we get that the injective objects in \mathcal{Q} are the complete Boolean rings.

Remark 1.2.1. \mathcal{Q} does not have enough injectives. In fact, if R is any Boolean-like ring with nonzero nilradical, then there exists no injective object in \mathcal{Q} containing R.

In this section, we determine the projective objects in \mathcal{Q}. We first prove that there are no proper epic subrings in \mathcal{Q} which ensures that every epimorphism in \mathcal{Q} is onto. For this, we require the following lemmas on extension of homomorphisms.

Lemma 2.1. Let $R, R_{1}, R_{2} \in \mathrm{Ob} \mathcal{Q}$ with R a subring of $R_{2}, a \in R_{2}-R, b \in R_{1}$ and a, b are idempotents. Suppose $f: R \rightarrow R_{1}$ is a homomorphism. Then a necessary and sufficient condition in order that f can be extended to a homomorphism g : $(R \cup\{a\})_{R_{2}} \rightarrow R_{1}$ with the property that $g(a)=b$ is that
(i) $\quad r a=0$ implies $f(r) b=0 \quad$ for all $r \in R \quad$ and
(ii) $r a=r$ implies $f(r) b=f(r)$ for all $r \in R$.

Note. If S is a subset of a Boolean-like ring R, then $(S)_{R}$ denotes the subring generated by S in R.

Proof. If f can be extended to a homomorphism $g:(R \cup\{a\})_{R_{2}} \rightarrow R_{1}$ with the property that $g(a)=b$, then obviously (i) and (ii) hold. Conversely, let (i) and (ii) hold. We observe that $(R \cup\{a\})_{R_{2}}=\left\{r_{1}+r_{2} a \mid r_{1}, r_{2} \in R\right\}$. Define $g:(R \cup$ $\{a\})_{R_{2}} \rightarrow R_{1}$ by $g\left(r_{1}+r_{2} a\right)=f\left(r_{1}\right)+f\left(r_{2}\right) b . g$ is well-defined for, suppose $r_{1}, r_{2}, r_{3}, r_{4} \in R, r_{1}+r_{2} a=r_{3}+r_{4} a$. Then $r_{1}+r_{3}=\left(r_{2}+r_{4}\right) a$. As a is an idempotent, $\left(r_{1}+r_{3}\right)(1+a)=0$ which gives $r_{1}+r_{3}=\left(r_{1}+r_{3}\right) a$. Hence by
condition (ii) we get $f\left(r_{1}+r_{3}\right)=f\left(r_{1}+r_{3}\right) b$. This implies $f\left(r_{1}\right)+f\left(r_{3}\right)=\left(f\left(r_{1}\right)\right.$ $\left.+f\left(r_{3}\right)\right) b$. Also, $\left(r_{1}+r_{2}+r_{3}+r_{4}\right) a=0$ and hence by (i) $\left(f\left(r_{1}+r_{2}+r_{3}+r_{4}\right)\right) b$ $=0$. Therefore, $\left(f\left(r_{1}\right)+f\left(r_{2}\right)+f\left(r_{3}\right)+f\left(r_{4}\right)\right) b=0$. That is $\left(f\left(r_{1}\right)+f\left(r_{3}\right)\right) b=$ $\left(f\left(r_{2}\right)+f\left(r_{4}\right)\right) b$. Hence we get $f\left(r_{1}\right)+f\left(r_{3}\right)=\left(f\left(r_{2}\right)+f\left(r_{4}\right)\right) b$. That is, $f\left(r_{1}\right)+$ $f\left(r_{2}\right) b=f\left(r_{3}\right)+f\left(r_{4}\right) b$. This gives $g\left(r_{1}+r_{2} a\right)=g\left(r_{3}+r_{4} a\right)$. Hence g is welldefined. That g is a homomorphism can be easily checked. Also $g \mid R=f$ and $g(a)=b$.

Corollary 2.1.1. By restricting the above result to 9 , we get Corollary V.2.2 of Balbes and Dwinger (1974).

Lemma 2.2. Let $R, R_{1}, R_{2} \in \mathrm{Ob} \mathcal{Q}$ with R a subring of ring $R_{2}, n \in R_{2}-R$, $n_{1} \in R_{1}$ and n, n_{1} are nilpotent elements. Suppose $f: R \rightarrow R_{1}$ is a homomorphism. Then a necessary and sufficient condition in order that f can be extended to a homomorphism $g:(R \cup\{n\})_{R_{2}} \rightarrow R_{1}$ with the property that $g(n)=n_{1}$ is that $b, n_{0} \in R, b$ being idempotent and n_{0} nilpotent and bn $=n_{0}$ implies $f(b) n_{1}=f\left(n_{0}\right)$.

Proof. If f can be extended to a homomorphism $g:(R \cup\{n\})_{R_{2}} \rightarrow R_{1}$ with $g(n)=n_{1}$, then obviously the condition holds. Conversely let the condition hold. We observe that $(R \cup\{n\})_{R_{2}}=\left\{r_{1}+r_{2} n \mid r_{1}, r_{2} \in R\right\}$. Define $g:(R \cup\{n\})_{R_{2}} \rightarrow$ R_{1} by $g\left(r_{1}+r_{2} n\right)=f\left(r_{1}\right)+f\left(r_{2}\right) n_{1} . g$ is well-defined for, let $r_{1}+r_{2} n=r_{3}$ $+r_{4} n$ with $r_{1}, r_{2}, r_{3}, r_{4} \in R$. This implies $r_{1}+r_{3}=\left(r_{2}+r_{4}\right) n$. That is $\left(r_{1}+r_{3}\right)_{B}$ $=0$. Hence $\left(r_{1}\right)_{B}=\left(r_{3}\right)_{B}$. Therefore, $\left(f\left(r_{1}\right)\right)_{B}=\left(f\left(r_{3}\right)\right)_{B}$. Also, $\left(r_{1}\right)_{N}+\left(r_{3}\right)_{N}=$ $\left(\left(r_{2}\right)_{B}+\left(r_{4}\right)_{B}\right) n$. Now, $\left(r_{2}\right)_{B}+\left(r_{4}\right)_{B} \in R$ and is an idempotent in R and $\left(\left(r_{2}\right)_{B}+\right.$ $\left.\left(r_{4}\right)_{B}\right) n \in R$. Hence, by the conditon of the theorem, $f\left(\left(r_{2}\right)_{B}+\left(r_{4}\right)_{B}\right) n_{1}=f\left(\left(r_{1}\right)_{N}\right.$ $\left.+\left(r_{3}\right)_{N}\right)$. This gives $\left(f\left(r_{2}\right)+f\left(r_{4}\right)\right)_{B} n_{1}=\left(f\left(r_{1}\right)\right)_{N}+\left(f\left(r_{3}\right)\right)_{N}$. That is, $\left(f\left(r_{1}\right)\right)_{N}$ $+\left(f\left(r_{2}\right)\right)_{B} n_{1}=\left(f\left(r_{3}\right)\right)_{N}+\left(f\left(r_{4}\right)\right)_{B} n_{1}$. Adding both sides $\left(f\left(r_{1}\right)\right)_{B}$ which is the same as $\left(f\left(r_{3}\right)\right)_{B}$ we get that $f\left(r_{1}\right)+\left(f\left(r_{2}\right)_{B}\right) n_{1}=f\left(r_{3}\right)+\left(f\left(r_{4}\right)\right)_{B} n_{1}$. Hence $f\left(r_{1}\right)+f\left(r_{2}\right) n_{1}=f\left(r_{3}\right)+f\left(r_{4}\right) n_{1}$. Therefore $g\left(r_{1}+r_{2} n\right)=g\left(r_{3}+r_{4} n\right)$. Thus g is well-defined. It can be easily verified that g is a homomorphism, $g(n)=n_{1}$ and $g \mid R=g$.

Combining Lemmas 2.1 and 2.2 we get the following

Lemma 2.3. Let $R, R_{1}, R_{2} \in \mathrm{Ob} \in$ with R a subring of $R_{2}, x \in R_{2}-R_{1}$, $y \in R_{1}$ and $y_{B}=0$ if and only if $x_{B}=0$. Suppose $f: R \rightarrow R_{1}$ is a homomorphism. Then a necessary and sufficient condition that f can be extended to a homomorphism $g:(R \cup\{x\})_{R_{2}} \rightarrow R_{1}$ with the property that $g(x)=y$ is that
(i) $r x_{B}=0$ implies $f(r) y_{B}=0$ for all $r \in R$,
(ii) $r x_{B}=r$ implies $f(r) y_{B}=f(r)$ for all $r \in R$, and
(iii) $b, n_{0} \in\left(R \cup\left\{x_{B}\right\}\right)_{R_{2}}$, b being idempotent, n_{0} being nilpotent and $b x_{N}=n_{0}$ implies $\left[f\left(r_{1}\right)+\left(f\left(r_{2}\right)\right) y_{B}\right] y_{N}=f\left(r_{3}\right)+f\left(r_{4}\right) y_{B}$ where $b=r_{1}+r_{2} x_{B}, n_{0}=r_{3}+$ $r_{4} x_{B}$ and $r_{1}, r_{2}, r_{3}, r_{4} \in R$.

Lemma 2.4. Let $R_{1}, R \in \mathrm{Ob} \mathcal{Q}$, with R_{1} a subring of R. Let I be a maximal ideal in R_{1}. Then, there exists a maximal ideal J in R such that $J \cap R_{1}=I$. (J is called an extension of 1 .)

Proof. The proof easily follows from the fact that $1 \notin\langle I\rangle_{R}$ (Note. If I is a subset of a Boolean-like ring R then $\langle I\rangle_{R}$ denotes the ideal generated by I in R.).

Corollary 2.4.1. Let $R_{1}, R \in \mathrm{Ob} \mathcal{Q}$ with R_{1} a subring of R. Then every homomorphism $f: R_{1} \rightarrow\{0,1\}$ can be extended to a homomorphism $g: R \rightarrow\{0,1\}$.

Proof. The proof follows from Lemma 2.4 and the fact that f is determined by the maximal ideal $f^{-1}(0)$.

Lemma 2.5. Let $R_{1}, R \in \mathrm{Ob} \mathcal{Q}$ with R_{1} a subring of R. Every maximal ideal I of R_{1} has a unique extension if and only if $R_{1} \subset R_{B}$ in which case $\langle I \cup N\rangle_{R}$ is the unique extension of I where N is the nilradical of R.

Proof. Let $R_{1} \supset R_{B}$. Let I be a maximal ideal of R_{1}. Let J_{1}, J_{2} be two maximal ideals of R containing I. Then $J_{1} \cap R_{B}$ and $J_{2} \cap R_{B}$ are maximal ideals in R_{B} containing $I \cap R_{B}$. But $I \cap R_{B}$ is maximal in R_{B} since $R_{1} \supset R_{B}$. Hence $J_{1} \cap R_{B}$ $=J_{2} \cap R_{B}=I \cap R_{B}$. As J_{1}, J_{2} are maximal, we get that $J_{1}=J_{2}$. Conversely, let every maximal ideal of R_{1} have a unique extension. Let I be a maximal ideal in $\left(R_{1}\right)_{B}$. We claim that I has unique extension in R_{B}. For if not, let J_{1}, J_{2} be two distinct maximal ideals in R_{B} which are extensions of I. Then $J_{1} \cap\left(R_{1}\right)_{B}=J_{2} \cap$ $\left(R_{1}\right)_{B}=I$. If N_{1} is the nilradical of R_{1}, we can easily verify that $\left\langle I \cup N_{1}\right\rangle_{R_{1}}$ is a maximal ideal of R_{1} and $\left\langle J_{1} \cup N\right\rangle_{R},\left\langle J_{2} \cup N\right\rangle_{R}$ are distinct maximal ideals of R containing $\left\langle I \cup N_{\mathrm{t}}\right\rangle_{R_{1}}$ which contradicts the hypothesis that every maximal ideal of R_{1} has a unique extension. Hence every maximal ideal in $\left(R_{1}\right)_{B}$ can be uniquely extended to R_{B}. From K. P. S. Bhaskara Rao and M. Baskara Rao (1979), Lemma 7.3, we get that $\left(R_{1}\right)_{B}=R_{B}$. Hence $R_{1} \supset R_{B}$.

Lemma 2.6. Let $R_{1}, R \in \mathrm{Ob} \mathbb{Q}$ with R_{1} a subring of R. Let I be a submaximal ideal of R_{1} (an ideal I of R_{1} is called submaximal provided it is covered by a maximal ideal of R_{1}).
(i) If I contains the nilradical of R_{1} then there exists a submaximal ideal J of R such that $J \cap R_{1}=I$.
(ii) If I does not contain the nilradical of R_{1}, then there exists a submaximal ideal J of R such that $J \cap R_{1}=I$ if and only if $n \in$ nilradical of $R_{1}, n \notin I$ implies $n \notin\langle I\rangle_{R}$.
(iii) If I does not contain the nilradical of R_{1}, and if $\left(R_{1}\right)_{B}=R_{B}$ then there exists a submaximal ideal J of R such that $J \cap R_{1}=I$.

Proof. (i) Let I contain the nilradical of R_{1}. Since I is submaximal, it can be easily proved that $I=J_{1} \cap J_{2}$ where J_{1}, J_{2} are distinct maximal ideals of R_{1}. By Lemma 2.4, there exists maximal ideals J_{1}^{\prime}, J_{2}^{\prime} of R such that $J_{1}^{\prime} \cap R_{1}=J_{1}$, $J_{2}^{\prime} \cap R_{1}=J_{2}$. Consider $J_{1}^{\prime} \cap J_{2}^{\prime}$. This is a submaximal ideal of R. Further, $J_{1}^{\prime} \cap J_{2}^{\prime} \cap R_{1}=J_{1} \cap J_{2}=I$.
(ii) I is a submaximal ideal of R_{1} and I does not contain the nilradical of R_{1}. Let $n \in$ nilradical of $R_{1}, n \notin I$ imply that $n \notin\langle I\rangle_{R}$. Then as I does not contain the nilradical of R_{1}, there exists n in the nilradical of R_{1} such that $n \notin I$. Hence $n \notin\langle I\rangle_{R}$. Considering $\Sigma=\left\{J \subset R \mid J\right.$ is an ideal of R containing $\langle I\rangle_{R}$ and $n \notin J\}$ and using Zorn's lemma, we get a submaximal primary ideal J of R such that $n \notin J$. Now $J \cap R_{1} \supset\langle I\rangle_{R} \cap R_{1} \supset I$. As $n \notin J \cap R_{1}, J \cap R_{1}$ is not a maximal ideal of R_{1} and hence $I \subset J \cap R_{1} \subsetneq$ a maximal ideal of R_{1}. As I is submaximal not containing the nilradical of R_{1}, we get that I is covered by a unique maximal ideal and hence $I=J \cap R_{1}$. Conversely, if J is a submaximal ideal of R such that $J \cap R_{1}=I$, then $n \in$ nilradical of $R_{1}, n \notin I$ implies $n \notin J \cap R_{1}$ which gives $n \notin J$. As $J \supset I$ we get that $J \supset\langle I\rangle_{R}$ and hence $n \notin\langle I\rangle_{R}$.
(iii) Let I be a submaximal ideal of R_{1} not containing the nilradical of R_{1}. Let $\left(R_{1}\right)_{B}=R_{B}$. We claim that if $n \in$ nilradical of R_{1} and $n \notin I$, then $n \notin\langle I\rangle_{R}$. For, if not, let $n \in\langle I\rangle_{R}$. Then $n=\sum_{j=1}^{k} r_{j} i_{j}$ where $r_{j} \in R$ and $i_{j} \in I$. That is,

$$
n=\sum_{j=1}^{k}\left(r_{j}\right)_{N}\left(i_{j}\right)_{B}+\sum_{j=1}^{k}\left(r_{j}\right)_{B}\left(i_{j}\right)_{N}
$$

As $\left(R_{1}\right)_{B}=R_{B}$ we get that $n_{1}=\sum_{j=1}^{k}\left(r_{j}\right)_{B}\left(i_{j}\right)_{N} \in I$. Hence $n=n_{1}+$ $\sum_{j=1}^{k}\left(r_{j}\right)_{N}\left(i_{j}\right)_{B}$ where $n_{1} \in I$.

$$
n\left(\underset{j=1}{\vee}\left(i_{j}\right)_{B}\right)=\left(n_{1}\right)\left(\underset{j=1}{\vee}\left(i_{j}\right)_{B}\right)+\sum_{j=1}^{k}\left(r_{j}\right)_{B}\left(i_{j}\right)_{B}
$$

As $\vee_{j=1}^{k}\left(i_{j}\right)_{B} \in I$ and $n \in R_{1}$ we get that $n\left(\vee_{j=1}^{k}\left(i_{j}\right)_{B}\right) \in I$. Therefore $\sum_{j=1}^{k}\left(r_{j}\right)_{N}\left(i_{j}\right)_{B} \in I$, which implies $n \in I$, a contradiction. Hence $n \in$ nilradical of $R, n \notin I$ implies $n \notin\langle I\rangle_{R_{1}}$. Therefore there exists a submaximal ideal of J of R such that $J \cap R_{1}=I$.

Corollary 2.6.1. If $R_{1}, R \in \mathrm{Ob} B$ and R_{1} is a subring of R, then every submaximal ideal of R_{1} can be extended to a submaximal ideal of R.

Corollary 2.6.2. Let $R_{1}, R \in \mathrm{Ob} \mathscr{Q}$ with R_{1} a subring of R. Then every epimorphism $f: R_{1} \rightarrow\left\{0, a_{1}, a_{2}, 1\right\}$ can be extended to an epimorphism $g: R \rightarrow$ $\left\{0, a_{1}, a_{2}, 1\right\}$ where $\left\{0, a_{1}, a_{2}, 1\right\}$ is the four element Boolean ring.

Corollary 2.6.3. Let $R_{1}, R \in \mathrm{Ob} \mathcal{Q}$ with R_{1} a subring of R. Let $\left(R_{1}\right)_{B}=R_{B}$. Then every epimorphism $f: R_{1} \rightarrow\{0,1, n, 1+n\}$ can be extended to an epimorphism $g: R \rightarrow\{0,1, n, 1+n\}$.

Remark 2.6.4. The submaximal primary ideal $I=\left\{0, n_{1}+n_{2}\right\}$ in the subring $R_{1}=\left\{0,1, n_{1}, n_{2}, n_{1}+n_{2}, 1+n_{1}, 1+n_{2}, 1+n_{1}+n_{2}\right\}$ of the ring $R=$ $\left\{0, a_{1}, a_{2}, 1\right\} \oplus\left\{0, n_{1}, n_{2}, n_{1}+n_{2}\right\}$ with $a_{1} n_{1}=n_{1}, a_{1} n_{2}=0, a_{2} n_{1}=0, a_{2} n_{2}=$ n_{2} has no extension to a submaximal ideal. Hence the homomorphism $f: R_{1} \rightarrow$ $\{0,1, n, 1+n\}$ defined by $f(0)=0, f(1)=1, f\left(n_{1}\right)=f\left(n_{2}\right)=n, f\left(1+n_{1}\right)=$ $f\left(1+n_{2}\right)=1+n, f\left(n_{1}+n_{2}\right)=0, f\left(1+n_{1}+n_{2}\right)=1$ has no extension to an epimorphism from R to $\{0,1, n, 1+n\}$.

Lemma 2.7. \mathcal{Q} does not have the congruence extension property (see definition I.7.2 of R. Balbes and P. Dwinger (1974)). But the full subcategory \mathbb{Q}_{1}, of all Boolean-like rings whose nonzero nilpotent elements are all atoms has the congruence extension property.
(Note. If R is a Boolean-like ring and if n is a nonzero nilpotent element of R, then n is called an atom if $b n=0$ or n for any $b \in R_{B}$.)

Proof. Consider the subring $R_{1}=\left\{0,1, n_{1}, n_{2}, n_{1}+n_{2}, 1+n_{1}, 1+n_{2}, 1+\right.$ $\left.n_{1}+n_{2}\right\}$ of the Boolean-like ring $R=\left\{0, a_{1}, a_{2}, 1\right\} \oplus\left\{0, n_{1}, n_{2}, n_{1}+n_{2}\right\}$ with $a_{1} n_{1}=n_{1}, a_{1} n_{2}=0$. Then $\left\{0, n_{1}+n_{2}\right\}$ is an ideal in R_{1} and there exists no ideal I in R such that $I \cap R_{1}=\left\{0, n_{1}+n_{2}\right\}$.

Let R be a Boolean-like ring such that every nonzero nilpotent of R is an atom. Let R_{1} be a subring of R and I an ideal of R_{1}. Then $I \cap\left(R_{1}\right)_{B}$ is an ideal of R_{B}. Let $I_{1}=I \cap\left(R_{1}\right)_{B}$. Then $\left\langle I_{1}\right\rangle_{R_{B}} \cap\left(R_{1}\right)_{B}=I_{1}$. If $J=\left\langle I_{1}\right\rangle_{R_{B}}$, then it can be easily verified that $\left\langle J \cup I_{N}\right\rangle_{R} \cap R_{1}=I$ where I_{N} is the set of all nilpotent elements of I. Thus, there exists an ideal J of R such that $J \cap R_{1}=I$.

Suppose R contains a nonzero nilpotent n which is not an atom. Then, there exists an idempotent $b \in R$ such that $b n=n_{1}$ and $n_{1} \neq 0, n_{1} \neq n$. Let $R_{1}=$ $\left\{0,1, n, n_{1}, n+n_{1}, 1+n, 1+n_{1}, 1+n+n_{1}\right\} . R_{1}$ is a subring of R. Let $I=$ $\{0, n\} . I$ is an ideal of R_{1} but any ideal of R containing I will also contain n_{1} and hence R does not have congruence extension property.

Remark 2.7.1. \mathcal{Q}_{1} is not an equational category even though it is closed under formation of subrings and homomorphic images.

We recall the following definition from R. Balbes and P. Dwinger (1974).

Definition 2.7. Let \mathcal{Q} be an equational category and $A \in \mathrm{Ob} \mathcal{Q}$. A subalgebra B of A is called epic in A if the inclusion map $1_{B, A}$ is an epimorphism. Notice that, B is epic in A if and only if $f|B=g| B$ implies $f=g$ for each pair $f, g \in[A, C]$. Also every epimorphism is onto if and only if there are no proper epic subalgebras.

Theorem 2.8. There are no proper epic subrings in $\mathrm{Ob} \mathcal{Q}$.

Proof. Suppose $R_{1}, R \in \mathrm{Ob} Q$ and R_{1} is a proper subring of R.

Case 1. $\left(R_{1}\right)_{B} \neq R_{B}$. In this case there exists an idempotent $a \in R$ such that $a \notin R_{1}$. Let $S=\left\{x \in R_{B} \mid x \geqslant a\right\}$. Then S is a multiplicatively closed subset of R_{B} and $\mathrm{l} \in S$. Hence S is a multiplicatively closed subset of R. Let $S_{1}=S \cap R_{1}$. Then S_{1} is a multiplicatively closed subset of R_{1} and $1 \in S_{1} .\langle a\rangle_{R} \cap R_{1}$ is a proper ideal of R_{1} and $\langle a\rangle_{R} \cap R_{1} \cap S_{1}=\varnothing$. Hence there exists a maximal ideal I in R_{1} such that $I \supset\langle a\rangle_{R} \cap R_{1}$ and $I \cap S_{1}=\varnothing$. Define $f_{I}: R_{I} \rightarrow\{0,1\}$ by $f_{I}(x)=0$ if $x \in I$ and $f_{I}(x)=1$ if $x \notin I$. Then f_{I} is a homomorphism of R_{1} onto $\{0,1\}$. Setting $b=0$ and using Lemma 2.1, we see that the conditions of the Lemma 2.1, are satisfied and hence there exists a homomorphism $g_{1}:\left\langle R_{1} \cup\right.$ $\{a\}\rangle_{R} \rightarrow\{0,1\}$ such that $g_{1}(a)=0$ and $g_{1} \mid R_{1}=f_{I}$. Setting $b=1$, suppose $r \in R_{1}$ and $r a=0$. Then $r_{B} a=0$. That is, $\left(1+r_{B}\right) a=a$. Therefore $1+r_{B} \geqslant a$ and $1+r_{B} \in R_{1}$. So $1+r_{B} \in R_{1} \cap S=S_{1}$. If $1+r_{B} \in I$, then $1+r_{B} \in I \cap S_{1}$. But $I \cap S_{1}=\varnothing$. Thus $1+r_{B} \notin I$. Hence $r_{B} \in I$. As I is maximal in $R_{1}, r_{N} \in I$ and $r \in I$. Therefore $f_{I}(r)=0$. This gives $f_{I}(r) b=0.1=0$. Also, if $r \in R_{1}$, $r a=r$ then $f_{I}(r) b=f_{I}(r) .1=f_{I}(r)$. Hence, by Lemma 2.1, there exists a homomorphism $g_{2}:\left(R_{1} \cup\{a\}\right)_{R} \rightarrow\{0,1\}$ such that $g_{2}(a)=1$ and $g_{2} \mid R_{1}=f_{I}$. Obviously $g_{1} \neq g_{2}$. By Corollary 2.4.1, there exist epimorphisms $g_{1}^{\prime}: R \rightarrow\{0,1\}, g_{2}^{\prime}$: $R \rightarrow\{0,1\}$ such that $g_{1}^{\prime} \mid\left(R_{1} \cup\{a\}\right)_{R}=g_{1}$ and $g_{2}^{\prime} \mid\left(R_{1} \cup\{a\}\right)_{R}=g_{2}$. Thus $g_{1}^{\prime} \mid$ $R_{1}=g_{2}^{\prime} \mid R_{1}=f_{I}$ and $g_{1}^{\prime} \neq g_{2}^{\prime}$. Hence R_{1} is not an epic subring of R.

Case 2. Let $\left(R_{1}\right)_{B}=R_{B}$. In this case, there exists a nonzero nilpotent element $n \in R$ such that $n \notin R_{1}$. Let $B_{1}=\left\{b \in R_{B} \mid b n \in R_{1}\right\}$. Then B_{1} is a proper ideal of R_{B}. As R_{B} is a subring of R_{1}, there exists a maximal ideal I in R_{1} such that
$I \cap R_{B} \supset B_{1}$. Consider $f_{I}: R_{1} \rightarrow\left\{0,1, n_{1}, 1+n_{1}\right\}$ such that $f_{I}(x)=0$ if $x \in I$ and $f_{I}(x)=1$ if $x \notin I$. Then f_{I} is a homomorphism of R_{1} into $\left\{0,1, n_{1}, 1+n_{1}\right\}$. Suppose $b, n_{0} \in R_{1}, b$ being idempotent and n_{0} nilpotent and $b n=n_{0}$. Then $b \in B_{1} \subset I \cap R_{B}$. Hence $b \in I$ and therefore $f_{I}(b)=0$. Also, as I is maximal ideal in $R_{1}, n_{0} \in I$ and hence $f_{I}\left(n_{0}\right)=0$. Thus, using Lemma 2.2, we get homomorphisms $g_{1}, g_{2}:\left(R_{1} \cup\{n\}\right)_{R} \rightarrow\left\{0,1, n_{1}, 1+n\right\}$ such that $g_{1}(n)=0$, $g_{2}(n)=n_{1}, g_{1}\left|R_{1}=g_{2}\right| R_{1}=f_{I}$. Obviously $g_{1} \neq g_{2}$. Since $g_{1}^{-1}(0)$ is maximal ideal in $\left(R_{1} \cup\{n\}\right)_{R}$ we get that there exists a homomorphism $g_{1}^{\prime}: R \rightarrow\{0,1, n, 1$ $+n\}$ such that $g_{1}^{\prime} \mid\left(R_{1} \cup\{n\}\right)_{R}=g_{1}$. As $\left(R_{1}\right)_{B}=\left(\left(R_{1} \cup\{n\}\right)_{R}\right)_{B}=R_{B}$ and g_{2} : $\left(R_{1} \cup\{n\}\right)_{R} \rightarrow\left\{0,1, n_{1}, 1+n_{1}\right\}$ is an epimorphism, from Corollary 2.6.3 we get that there exists a homomorphism $g_{2}^{\prime}: R \rightarrow\left\{0,1, n_{1}, 1+n_{1}\right\}$ such that $g_{2}^{\prime} \mid\left(R_{1} \cup\right.$ $\{n\})_{R}=g_{2}$. Thus $g_{1}^{\prime} \neq g_{2}^{\prime}$ and $g_{1}^{\prime}\left|R_{1}=g_{2}^{\prime}\right| R_{1}=f_{I}$. Hence R_{1} is not an epic subring of R.

Corollary 2.8.1. Every epimorphism in \mathcal{Q} is onto.

Theorem 2.9. The only projective in \mathbb{Q} is the two element Boolean ring.

Proof. We recall from Balbes and Dwinger (1974) I.20.14, that if \mathcal{Q} is a nontrivial equational category in which every epimorphism is onto, then $A \in \mathrm{Ob} \mathbb{Q}$ is projective if and only if A is a retract of an \mathbb{Q}-free algebra. In $\mathcal{Q},\{0,1\}$ is the only free object and hence the only projective in \mathcal{Q} is $\{0,1\}$.

In conclusion, I wish to express my sincere gratitude to Dr. K. L. N. Swamy for his constant encouragement and valuable guidance throughout the preparation of this paper.

References

[^1]R. Sikorski (1948), 'A theorem on extension of homomorphisms', Ann. Polon. Math. 21, 332-335.
V. Swaminathan (1980), 'On Foster's Boolean-like rings', Math. Seminar Notes, Kobe Unic. 8. 347-367.

Department of Mathematics

Andhra University
Waltair - 530003
India

[^0]: (©) Copyright Australian Mathematical Society 1982

[^1]: R. Balbes (1966), 'Projective and injective distributive lattices', Notices Amer. Math. Soc. 13, 740.

 Balbes and A. Horn (1970), 'Injective and projective Heyting algebras', Trans. Amer. Math. Soc. 148. 549-560.
 R. Balbes and P. Dwinger (1974), Distributive lattices (University of Missouri Press. Columbia. Missouri)
 K. P. S. Baskara Rao and M. Baskara Rao (1979), 'The lattice of subalgebras of a Boolean algebra'. Czechoslocak Math. J. 29. 530-545
 R. Cignoli (1975), 'Injective DeMorgan and Kleene algebras', Proc. Amer. Math. Soc. 47, 269-278.
 A. L. Foster (1946), 'Theory of Boolean-like rings', Trans. Amer. Math. Soc. 59, 166-187.
 D. C. Haines (1974), 'Injective objects in the category of p-rings', Proc. Amer. Math. Soc. 42, 57-60.

