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Abstract

A Boolean-like ring R is a commutative ring with unity in which 2x = 0 and xy(\ + x)(\ + y) = 0
hold for all elements x, y of the ring R. It is shown in this paper that in the category of Boolean-like
rings, R is injective if and only if R is a complete Boolean ring and R is projective if and only if
K = {0,l}.
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Introduction

The determination of the injective and projective members of a category is usually
a challenging problem and adds to the knowledge of the category. Many success-
ful attempts have been made in this direction. For example, R. Sikorski (1948)
has shown that in the category of all Boolean rings the injective objects are the
complete Boolean rings. Projective and injective distributive lattices, and projec-
tive and injective Hey ting Algebras were determined respectively by R. Balbes
(1966) and R. Balbes and A. Horn (1970). Recently R. Cignoli (1975) has
characterized injective DeMorgan and Kleene Algebras and David C. Haines
(1974) has determined injectives in the category of p-hngs. The purpose of this
paper is to find out projective and injective Boolean-like rings. A. L. Foster (1946)
introduced the concept of Boolean-like rings as a generalisation of Boolean rings.
A Boolean-like ring is a commutative ring with unity in which 2x — 0 and
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[21 Boolean-like rings 41

xy(\ + x)(l + y) = 0 hold for all elements x, y of the ring. In this paper, we

show that the injective objects in the category of Boolean-Uke rings are complete

Boolean rings and the projective objects are the 2 element Boolean ring. Thus we

see that in the categories of distributive lattices, bounded distributive lattices,

relatively complemented distributive lattices, Boolean algebras, Heyting algebras

and Boolean-like rings, the injective objects are precisely complete Boolean rings

even though the projective objects differ in the different categories. Throughout

this paper, & stands for the equational category with objects Boolean-like rings

and with morphisms the usual ring homomorphisms and <$ stands for the

equational category of all Boolean rings with morphisms as ring homomorphisms.

We follow for the various definitions of terms in the categories those given in the

book 'Distributive Lattices' by R. Balbes and P. Dwinger (1974). Also, if r

belongs to a Boolean-like ring R, then rB denotes the idempotent part of r and rN

denotes the nilpotent part of r in R as in A. L. Foster (1946).

1

LEMMA 1.1. ® is a reflective full subcategory of & and the reflector F: & -> %
defined by F(A) = AB (the Boolean subring of A) and F(f) = f\AB, where f:
A -» A' is a morphism in &, preserves monomorphisms.

PROOF. Routine.

REMARK 1.1.1. F does not in general reflect monomorphisms.

COROLLARY 1.1.2. By Theorem 1.18.6 of R. Balbes and P. Dwinger (1974), we get
that the injectives in %, (which are complete Boolean rings) are also injectives in &.

THEOREM 1.2. The injective objects in & are the complete Boolean rings.

PROOF. Let R be an injective object in &. Let Bx, B2 G Ob % and Bx C B2. Let

g: Bx -* RB be any homomorphism. Then g can be considered as a homomor-
phism from 5 , into R. As 2?,, B2 G Ob & and as R is injective in &, there exists a
homomorphism h: B2 -» R such that h\Bl = g. But B2 G Ob % implies that
h(B2) C RB. Hence, h: B2 -> RB and h\Bx = g. This shows that RB is injective in
6$>. Since injective objects in 9> are complete Boolean rings, we get that RB is a
complete Boolean ring. Suppose there exists a nonzero nilpotent element n in R.
Let i?, be the Boolean-like ring {0, a,, a2,1} © {0, «,, n2, «, + n2) with a,n, =
n,, a2n2 = n2 and M its subring (0,1, «,, n2, n, + n2,1 + «,, 1 + n2,1 + n, +
n2} (see example 4.5 of V. Swaminathan (1980)). Let / : M -» R be the map
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42 V. Swaminathan [3]

defined by/(O) = 0,/(l) = l,/(n,) = n,f(n2) = «,/(«, + n2) = 0,/(l + «,) =
1 + n,f(\ + n2) = 1 + n,/(n, + n2 + 1) = 1. Then/is a homomorphism of M
into R. As /I is injective, there exists a homomorphism /,: /?,->/? such that
/, | A/ = / . Now,/,(«,(«, + «2)) =/,(«,)/,(«! + «2) =/,(«,)/(«, + n2) =/,(«,)
•0 = 0 and /,(«,(«, + «2)) = /,(«,) =/(«]) = n ^ 0, which gives a contradic-
tion. Therefore, the nilradical of i? is {0}. This implies R is a complete Boolean
ring. Combining with Corollary 1.1.2, we get that the injective objects in & are the
complete Boolean rings.

REMARK 1.2.1. 6E does not have enough injectives. In fact, if R is any Boolean-like
ring with nonzero nilradical, then there exists no injective object in & containing
R.

In this section, we determine the projective objects in &. We first prove that
there are no proper epic subrings in 6E which ensures that every epimorphism in (£
is onto. For this, we require the following lemmas on extension of homomor-
phisms.

LEMMA 2.1. Let R, Rv R2eOb& with R a subring ofR2, a G R2 - R,b G « ,
and a, b are idempotents. Suppose f: R -* R{ is a homomorphism. Then a necessary
and sufficient condition in order that f can be extended to a homomorphism g:
(R U {a})R -» Ri with the property that g(a) — b is that

(i) ra — 0 implies f{r)b — 0 for all r G R and

(ii) ra = r implies f(r)b — f{r) for all r EL R.

NOTE. If S is a subset of a Boolean-like ring R, then (S)R denotes the subring
generated by 5 in R.

PROOF. If/can be extended to a homomorphism g: (R U {a})Ri -> Rt with the
property that g(a) = b, then obviously (i) and (ii) hold. Conversely, let (i) and (ii)
hold. We observe that (R U {a})«2 = {/-, + r2a\rx, r2 G R). Define g: (R U
(a})« ~*- î by g{rx + r2a) =/(/",) + f(r2)b. g is well-defined for, suppose
/-,, r2, r3, r4 G R, r, + r2a = r3 + r4a. Then r, + r3 = (r2 + r4)a. As a is an
idempotent, (/-, + r3)(l + a) — 0 which gives r, + r3 = (r, + r3)a. Hence by
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condition (ii) we get/(/-, + r3) = / ( r , + r3)b. This implies/(/",) + f(r3) = (f(r{)
+ /(r3))ft. Also, (r, + r2 + r3 + r4)a = 0 and hence by (i) (/(/",+ r2 + r3 + /-4))6
= 0. Therefore, (/(/-,) +/(r 2 ) + /(r3) + /(/•„))& = 0. That is (/(#-,) +/(r3))fc =
( M ) +/(/-4))ft. Hence we get /(/-,) +/(r 3 ) = (/(r2) +/(/•„))&. That is,/(/-,) +
f(r2)b=f(r3) +f(r4)b. This gives g(rl + r2a) - g(r3 + r4a). Hence g is well-
d e f i n e d . T h a t g i s a h o m o m o r p h i s m c a n b e e a s i l y c h e c k e d . A l s o g \ R — f a n d

COROLLARY 2.1.1. By restricting the above result to <$, we get Corollary V.2.2 of
Balbes and Dwinger (1974).

LEMMA 2.2. Let R, /?,, R2GOb& with R a subring of ring R2, n E R2- R,
«, E # , and n,nx are nilpotent elements. Suppose f: R -> JR, is a homomorphism.
Then a necessary and sufficient condition in order that f can be extended to a
homomorphism g: (R U {n})R -» /?, with the property that g{n) = n, is that
b, n0 E R,b being idempotent and n0 nilpotent and bn — n0 implies f(b)n, = f(n0).

PROOF. If / can be extended to a homomorphism g: (R U {n})R -> i?, with
g(n) = «,, then obviously the condition holds. Conversely let the condition hold.
We observe that (R U {«})R2 = {r, + r2n \ r,, r2 £ /?}. Define g: (R U {«})/?2 -^
^i by g(r, + r2n) — f(rx) + f{r2)nv g is well-defined for, let r, + r2n = r3

+ r4n with r,, r2, r3, r4 £ /?. This implies r, + r3 — (r2 + r4)n.That is (/-, + r3)B

= 0. Hence (r,)fl = (r3)B. Therefore, (f{rx))B = (f(r3))B. Also, (r,)^ + (rj)^ =
((^z)* "*" (r4)fl)M- Now, (/2)B + (/ 4 )B G ^ a n d is an idempotent in R and ((r2)B +
(r4)B)n E R. Hence, by the conditon of the theorem, f((r2)B + (r4)B)«, =/((r,)Ar

+ (r3)w). This gives (/(r2) +/(r4))JI«1 = ( / ( r , ) ^ + ( / ( r 3 )V That is, (/(/-,))„
+ (f(h))Bn\ = {Kr3))N + (f(r4))Bnv Adding both sides (/(r,))B which is the
same as (f(r3))B we get that /(/-,) +( / ( r 2 )B)n, =/ ( r 3 ) + (/(r4))B«,. Hence
/('"i) +/( '2)"i =/('-3) +/(r4)"i- Therefore g(r, + r2«) = g(r3 + r4n). Thus g is
well-defined. It can be easily verified that g is a homomorphism, g(«) = «, and

Combining Lemmas 2.1 and 2.2 we get the following

LEMMA 2.3. Let R, R]y R2EOb& with R a subring of R2, x £ R2 - Ru

y £ i?| and yB — 0 if and only if xB = 0. Suppose f: / ? -» /? , « a homomorphism.
Then a necessary and sufficient condition that f can be extended to a homomorphism
g: (R U {x})Ri -> /?, with the property that g(x) = y is that

(i) rxB = 0 implies f(r)yB — 0 for all r £ /?,
(ii) rxB = r implies f(r)yB = f{r) for all r E /?, and
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(iii) b, n0 G (R U {xB})R2, b being idempotent, n0 being nilpotent and bxN = n0

implies [/(r,) + (f(r2))yB]yN - f(r3) + f(r4)yB where b = r, + r2xB, n0 - r3 +
r4xBandrx, r2, r3, r4 G /?.

LEMMA 2.4. Le? /?,, 7? G Ob &, with Rx a subring of R. Let I be a maximal ideal
in Rx. Then, there exists a maximal ideal J in R such that J C\ Rx — I. (J is called
an extension of I.)

PROOF. The proof easily follows from the fact that 1 £ (7)^ (Note. If 7 is a
subset of a Boolean-like ring 7? then (7)^ denotes the ideal generated by 7 in R.).

COROLLARY 2.4.1. Let 7?,, R G Ob(£ with 7?, a subring of R. Then every
homomorphism f: R{ -> {0,1} can be extended to a homomorphism g: R -> {0,1}.

PROOF. The proof follows from Lemma 2.4 and the fact tha t / i s determined by
the maximal ideal /" ' (0) .

LEMMA 2.5. Let Ru R G Ob & with 7?, a subring of R. Every maximal ideal I of
Rx has a unique extension if and only if Rf C RB in which case (I U N)R is the
unique extension of I where N is the nilradical of R.

PROOF. Let 7?, D RB. Let 7 be a maximal ideal of Rv Let / , , J2 be two maximal
ideals of 7? containing 7. Then Jx n RB and J2 n RB are maximal ideals in RB

containing 7 D RB. But 7 D RB is maximal in RB since 7?, D RB. Hence / , D RB

= J2 D RB = 7 n RB. As / , , / 2 are maximal, we get that 7, = 72. Conversely, let
every maximal ideal of /?, have a unique extension. Let 7 be a maximal ideal in
(7?,)B. We claim that 7 has unique extension in RB. For if not, let / , , J2 be two
distinct maximal ideals in RB which are extensions of 7. Then Jx (1 (Ri)B = J2D
(R^B — I. If TV, is the nilradical of 7?,, we can easily verify that (7 U /V,)S| is a
maximal ideal of 7?, and ( / , U N)R, (J2 U N)R are distinct maximal ideals of R
containing ( / U TV,)̂  which contradicts the hypothesis that every maximal ideal
of /?, has a unique extension. Hence every maximal ideal in (7^,)^ can be
uniquely extended to RB. From K. P. S. Bhaskara Rao and M. Baskara Rao
(1979), Lemma 7.3, we get that (Rt)B = RB. Hence 7*, D RB.

LEMMA 2.6. Let Rx, R G Ob & with 7?, a subring of R. Let I be a submaximal
ideal of Rx (an ideal I of Rx is called submaximal provided it is covered by a
maximal ideal of R\).

(i) If I contains the nilradical of Rx then there exists a submaximal ideal J of R
such thatJ n R{ = I.
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(ii) / / / does not contain the nilradical of Rx, then there exists a submaximal ideal
7 of R such that J D Rx — I if and only if n £ nilradical of Rx, n & I implies
n <£ (1)R.

(iii) / / / does not contain the nilradical of Rx, and if (RX)B = RB then there exists
a submaximal idealJ of R such that J D Rx = I.

PROOF, (i) Let / contain the nilradical of Rx. Since / is submaximal, it can be
easily proved that / = 7, n 72 where 7,, 72 are distinct maximal ideals of R,. By
Lemma 2.4, there exists maximal ideals J[, J2 of R such that J'XC\ Rx— Jx,
J2 D Rx~ 72. Consider 7[ n 72. This is a submaximal ideal of R. Further,
j[ ny2' n R1=J[DJ2 = i.

(ii) / is a submaximal ideal of Rx and / does not contain the nilradical of /?,.
Let n £ nilradical of Rx, n £ / imply that n & (7) f i . Then as 7 does not contain
the nilradical of /?,, there exists n in the nilradical of Rx such that n & I. Hence
n £ (/>/}. Considering 2 = {J C R\J is an ideal of R containing (I)R and
n $ J} and using Zorn's lemma, we get a submaximal primary ideal J of R such
that n £ / . Now / n ^ D </>R n i), D / . As n <£ J D Rv J n Rx is not a
maximal ideal of .R, and hence / C / n /?, £ a maximal ideal of /?,. As / is
submaximal not containing the nilradical of /?,, we get that / is covered by a
unique maximal ideal and hence I = J D Rv Conversely, if J is a submaximal
ideal of R such that J n /?, = /, then n G nilradical of /?,, « $ I implies
n ? y n i i | which gives n $. J. As J D / we get that 7 D (7>R and hence
n <2 </>„.

(iii) Let 7 be a submaximal ideal of Rx not containing the nilradical of Rx. Let
( ^ I ) B ~ RB- ^ e claim that if n G nilradical of /?, and n & I, then « ^ (I)R-
For, if not, let n G ( / ) R . Then n = 2^ = , /}-/y- where ry G i? and /'7 £ 7. That is,

"=2(^(0),+ 2(^(0)^
j=\ 7=1

As (/?,)B = RB we get that «, = S^^r^^^Ojv G ^ Hence « = n, +

2)= i( 0 )w( 'y )B w h e r e « i 6 / '

»( v («,),) =(»,)( L
\7=1 / \7=1 / 7=1

As V*=1(/y.)B G / and n £ « , we get that n(V *=1(/y)B) £ /. Therefore
2* = I ( / ) ) JV( / / ) B G / , which implies n G /, a contradiction. Hence n £ nilradical of
R, n (£ I implies n & (I)R . Therefore there exists a submaximal ideal of 7 of R
such that 7 n /?, = /.

COROLLARY 2.6.1. 7/ /?,,/? £ Ob® a«rf /?, « a subring of R, then every
submaximal ideal of Rx can be extended to a submaximal ideal of R.
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COROLLARY 2.6.2. Let Rx, R EObffi with Rx a subring of R. Then every
epimorphism f: 7?, -> {0, a,, a2,1} can be extended to an epimorphism g: R -»
{0, a,, a2,1} w/iere (0, a,, a2, 1} ' J the four element Boolean ring.

COROLLARY 2.6.3. Let R{, R e Ob 6E w/?n /?, a subring of R. Let (Ri)B = RB.
Then every epimorphism / : 7?, -> {0,1, n, 1 + n} can fee extended to an epimor-
phism g: R-> {0,1, n, 1 + n).

REMARK 2.6.4. The submaximal primary ideal 7 = {0, n, + n2} in the subring
7?, = {0, 1, n,, n2, n, + n2, 1 + «,, 1 + n2, 1 + n, + n2} °f t n e r m S ^ =

{0, a,, a2,1} © {0, n,, n2, n, + n2} w i t n a i w i = "i- a iw2 ~ 0, a2nl = 0, a2«2 =
n2 has no extension to a submaximal ideal. Hence the homomorphism / : R{ ->
{0,1, n, 1 + «} defined by /(0) = 0, / ( I ) = 1, / (« , ) = / ( « 2 ) = n, / (I + «,) =
/(I + n2) = 1 + n, / ( « , + n2) = 0, / ( I + n, + n2) = 1 has no extension to an
epimorphism from R to {0,1, n, 1 + n}.

LEMMA 2.7. & does not have the congruence extension property (see definition
1.7.2 of R. Balbes and P. Dwinger (1974)). But the full subcategory <£,, of all
Boolean-like rings whose nonzero nilpotent elements are all atoms has the congruence
extension property.

(Note. If R is a Boolean-like ring and if n is a nonzero nilpotent element of R,
then n is called an atom if fen = 0 or n for any b G RB.)

PROOF. Consider the subring /?, = {0,1, n,, n2, n, + n2,1 + n,, 1 + n2,1 +

n, + n2) of the Boolean-like ring R = {0, ax, a2,1} © {0, n,, n2, n, + n2} with
a,n, = /i,, a,n2 = 0. Then {0, n, + n2} is an ideal in Rt and there exists no ideal
/ in R such that / D i?, = (0, n, + n2}.

Let R be a Boolean-like ring such that every nonzero nilpotent of R is an atom.
Let /?, be a subring of /? and / an ideal of /?,. Then / n ( i ? ^ is an ideal of RB.
Let / , = / n (* , )B . Then ( 7 , ) ^ n (R,)B = /, . If / = </,)«fl, then it can be
easily verified that (J U IN)R C\ Rx — I where IN is the set of all nilpotent
elements of / . Thus, there exists an ideal J of R such that / n /?, = 7.

Suppose 7? contains a nonzero nilpotent n which is not an atom. Then, there
exists an idempotent b E R such that bn — nx and n, =5̂ 0, n, ^ « . Let 7?, =
(0,1, n, «,, n + n,, 1 + n, 1 + n,, 1 + n + n,}. 7?, is a subring of /?. Let 7 =
(0, «}. 7 is an ideal of 7?, but any ideal of 7? containing 7 will also contain n, and
hence R does not have congruence extension property.
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REMARK 2.7.1. 6E, is not an equational category even though it is closed under
formation of subrings and homomorphic images.

We recall the following definition from R. Balbes and P. Dwinger (1974).

DEFINITION 2.7. Let & be an equational category and A G Ob &. A subalgebra
B of A is called epic in A if the inclusion map lB A is an epimorphism. Notice
that, B is epic in A if and only if f\B = g\B implies f=g for each pair
f,gE[A,C]. Also every epimorphism is onto if and only if there are no proper
epic subalgebras.

THEOREM 2.8. There are no proper epic subrings in Ob &.

PROOF. Suppose /?,, R G Ob 6E and /?, is a proper subring of R.

Case 1. (R^s ¥= RB. In this case there exists an idempotent a G R such that
a £ /?,. Let 5 = {x G RB | x > a}. Then 5 is a multiplicatively closed subset of
RB and 1 G 5. Hence S is a multiplicatively closed subset of R. Let S} = S n Rt.
Then S, is a multiplicatively closed subset of Rt and 1 G S,. (a)R D /?, is a
proper ideal of Rt and (a)R D /?, n 5, = 0 . Hence there exists a maximal ideal
/ in « , such that / D <a) s D R] and / n 5, = 0 . Define /,: # 7 -> {0,1} by
//(x) = 0 if x G / and/ / (x) = 1 if x (£ I. Then/, is a homomorphism of /?, onto
(0,1}. Setting b — 0 and using Lemma 2.1, we see that the conditions of the
Lemma 2.1, are satisfied and hence there exists a homomorphism g,: ( f i , U
{a})^-> {0,1} such that gt(a) = 0 and £ , 1 / ? , = / , . Setting fe = 1, suppose
r G /?, and ra = 0. Then rBa = 0. That is, (1 + rB)a = a. Therefore 1 + rB s* a
and 1 + rB G /?,. So 1 + rB G /?, D S = Sx. If 1 + rB G /, then 1 + rB G / n S,.
But / D S, = 0 . Thus 1 + rfl £ /. Hence rB G /. As / is maximal in /?,, r^ G /
and r el. Therefore /,(/•) = 0. This gives f,{r)b = 0.1 = 0. Also, if r G /?,,
ra — r then f,(r)b = //(/•). 1 — fr(r). Hence, by Lemma 2.1, there exists a homo-
morphism g2: (/?, U {a})/} -» {0,1} such that g2{a) — 1 and g21 ^ , — fr. Obvi-
ously g, 7̂= g2. By Corollary 2.4.1, there exist epimorphisms gj: /? -» {0,1}, g'2:
/? — {0,1} such that gj | (/?, U {a})« = g, and g21 (/?, U {a})R = g2. Thus g( |
Rl — g'2\R] = f, and g\ ¥" g2. Hence /?, is not an epic subring of R.

Case 2. Let (R\)B
 = RB- In this case, there exists a nonzero nilpotent element

n E R such that n $ i?,. Let # , = {b G /?B | bn G /?,}. Then 5 , is a proper ideal
of RB. As i ? s is a subring of /?,, there exists a maximal ideal 7 in i?, such that
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I D RBD Bt. Consider f,\ fl, -> {0,1, «,, 1 + «,} such that / , (*) = 0 if x G /
and / / (x ) = 1 if x $. I. Then/ , is a homomorphism of Rx into {0,1, «,, 1 + «,}.
Suppose ft, nQ G i?,, ft being idempotent and nQ nilpotent and bn — n0. Then
b G 5 , C I D RB. Hence ft G / and therefore //(ft) = 0. Also, as / is maximal
ideal in /?,, n0 E I and hence f,(n0) = 0. Thus, using Lemma 2.2, we get
homomorphisms g,, g2: (/?, U {n})R -> {0,1, «,, 1 + «} such that g,(rc) = 0,
g2(n) = «,, g, | /?, = g 2 1« , = /,. Obviously g, # g2. Since g,""'(0) is maximal
ideal in (i?, U {n})R we get that there exists a homomorphism g[: R -> {0,1, «, 1
+ n} such that g[ | (/?, U {«})« = g,. As (/J,)B = ( (* , U («})^)s = /?B and g2:
(i?, U {«})/; -» {0,1, «,, 1 + «,} is an epimorphism, from Corollary 2.6.3 we get
that there exists a homomorphism g2: R -> {0, 1, n,, 1 + «,} such that g21 (/?, U

{"})« = ^2- T h u s ^i ^ ^2 a n d gi I ^ i = Si | ^ i = //• Hence R] is not an epic
subring of R.

COROLLARY 2.8.1. Every epimorphism in & is onto.

THEOREM 2.9. The only projective in <S, is the two element Boolean ring.

PROOF. We recall from Balbes and Dwinger (1974) 1.20.14, that if & is a
nontrivial equational category in which every epimorphism is onto, then A G Ob <S
is projective if and only if A is a retract of an tE-free algebra. In <3L, {0,1} is the
only free object and hence the only projective in & is (0,1}.

In conclusion, I wish to express my sincere gratitude to Dr. K. L. N. Swamy for
his constant encouragement and valuable guidance throughout the preparation of
this paper.
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