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§1 SUMMARY OF PART I 

In order to provide the necessary background for this report,this 
section summarizes the previously published5 "Theory of the Trojan 
Asteroids, Part I". Treating the system as the case of 1:1 resonance 
in the restricted problem of three bodies, the author constructs a 
formal long-periodic solution of 0(m), where m is the mass-parameter 
of the system, assumed to be sufficiently small. 

The variables of the problem are the angular momentum G, the 
conjugate mean synodic longitude X measured from the line of syzygies 
in a rotating coordinate system, and the complex Poincare" eccentric 
variable, 

z « £ + in = f'2r exp i£, 

where I is the mean anomaly and r is defined in terms of the Delaunay 
variables by 

T E L - G. 

The Hamiltonian of the system is written as 

F = ~(l-m)2L-2 + G + mR , (1) 

and the heliocentric disturbing function, 

R = (1 + r2 - 2r cos 0)" 1' 2 - r cos 0, 

is expanded into a Taylor series about the unit circle r=l. This mode 
of expansion assures the solution a wider range than the expansion 
about L^ adopted by Deprit et al2. With the aid of the formulas 

r = G 2 - £ + m + . . , , 0 = X + 2 n + . . . . 
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of elliptic motion, the expression (1) is put into the form 

(2) 
F = h~2 + G - i ( ?

2 + n2) + I P(S2 + n 2)- ha + mf 
2 2 z z o 
4- m[-2f l P + (1 + f ^ S + f2Ti] - m2(fx+ \ + *) + 

where the various symbols are defined below: 

P = G - 1, 

f = i + 2s2- 4 4- m*, o 2s 2 
f = -7- - 2s2, s = sin(X/2) , 

f2 = 4c(s - g- 2)» c = cos(X/2). 
(3) 

Here the function Y(X) is the so-called "regularizing function11 to be 
determined later so as to remove the Poincare singularity in the 
solution. 

The intermediate Hamiltonian F0 is chosen as 

F Q - »G-2+ G + mf0(X) - |<*>2(S2 + n2) - -m, (4) 

where UJ is the frequency associated with the short period. Clearly, 
the system splits into two autonomous subsystems of one degree of 
freedom each. The first subsystem, constituted by the first three 
terms of F0, is identified with the previously formulated^(1976) 
Ideal Resonance Problem; the second subsystem, constituted by the 
last two terms of FQ, is the Simple Harmonic Oscillator. 

As shown in 5), the equations of the intermediate orbit can be 
written down immediately as 

G° = 1 - y»/6m(a2 - f 0 ) + | m(a2- f0) + . . . , 

z ° = / z T exp i (w 9 t + rf), (5) 

J (a2- f 0 ) " 1 / 2 dX = (/6m" [t - tl + | (X - X^] + . . . 

The time-dependence t(X) is furnished by the hyperelliptic integral 
in the last equation of (5), where X, is the lower bound of the 
libration 

^ ^ * ̂  ^2. 

The function X(t) is obtained by inversion. Clearly, X(t) and G(X)are 
periodic in t, of long period Tl given by 

Tx = 2TT/O)1 = ( 6 m ) " 1 / 2 <£(a2 - ^ ( X ) ) " 1 / 2 dX. (6) 
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In contrast, z(t) is short-periodic, inasmuch as a) = 0(1). 

The disturbing Hamiltonian is given by 
SF = F - FQ = Fi + F2 + ... , (7) 

and the perturbations of 0(m), arising from F are calculated by the 
method of Lie-series in the version of Hori8. The result is of the 
form 

(8) 
6G = ~ mfj + OOfT) + ... 

6 z = m ( l + f + g + 0(/F)) + ... 

6X = 0 

Here the complex variable f(X) is defined by 

f = fx + if2, 
while g is the resonant term of the form 

g = c^ exp(ikco1t)/D, 

D = a)2 - ko)1 (9) 

Here k is the integer nearest the ratio û /o). , and D is the critical 
divisor. 

From F of (7), the regularizing function \p is calculated5 as 

* - H + H • do) 
Since the short-periodic terms in (5) and (8) carry tV as a 

factor, such terms can be removed from the solution by a choice of 
initial conditions corresponding to r=0. The result is a one-parameter 
family of long-periodic orbits, 

G = G°(X) + Imf^X), 
z = m[l + f(X) + g(t)], (11) 

t = t(X) 

The family-parameter a2 is related to the Jacobi constant C by5 

C = 2ma2 + 3. 

Instead of a2, it is convenient to use the normalized Jacobi 
constant a2 defined by 
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a 2 = a 2 - imJ;(A0) . o ^ 

Then the range 0 < a2 <. 1 corresponds to the family of the tadpole-
shaped orbits libratSng about L4, while a2 > 1 includes the "horseshoes" 
encircling both L^ and L . 

The problem illustrates double resonance. For, in addition to the 
1:1 resonance between the asteroid and Jupiter, there is also a k:l 
resonance between the long and the short periods of the asteroid. 
Because of the apparently irremovable critical divisor D, the solution 
is local, rather than global. For its domain is restricted by the 
inequality of the form |D| > e, or 

lm - \\ > 6> 
interpreted as avoidance of the set {m^(a)} of the critical mass ratios 
corresponding to the exact commensurability of u^and co2. 

The mean value of the rapidly oscillating resonant term g(t), 
averaged over the "short" period T,/k, is 

g - 0. 

Accordingly, we define the mean orbit by writing 

z = z = m(l + f) 

in the second equation of (11). Clearly, the resonant term imparts to 
the mean orbit an epicyclic character. As m varies, D varies accord­
ingly, and the epicycle develops cusps and loops, in qualitative accord 
with the results of numerical integration by Deprit and Henrard3. 

The presence of the resonant term g also serves to refute the 
Brown conjecture (1911) that the family of tadpoles terminates at L , 
thus confirming the earlier finding of Deprit and Henrard3. However, 
the conjecture is valid for the mean orbits and for the (G,X)-projection. 

§2 CONTRIBUTIONS OF PART II 

The principal contributions of Part II of "Theory of the Trojan 
Asteroids", now in press, are itemized below: 

1) The solution is carried from 0(m) to 0(m3/2), and the feasibility 
of a recursive algorithm to generate a solution to any order is shown. 

2) The expression (6) for the period T. then becomes 
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(12) 
T (a2,m) - (6m)"1/2 $ (1 + mq) (a2 - f Q ) ~ l / 2 dX, 

q =-1 (3s-3 _ 4S-1 + 20a2 + 78 - 160s2) 
3D 

For small oscillations about L., we calculate 
4' 

121 23 
o)1 (09m) = \ — m (1 + — m + . . . ) , 

in agreement with the classical theory9, which provides a further 
check of the regularizing function i|;(A), entering (12) through f of (3), 

3) The regularizing function is extended to higher orders in m, and the 
result is used to prove the periodicity of the solution to any order. 

§3 CONTRIBUTIONS OF PART III 

Part III of the paper, now in progress, deals with the Hagihara 
integral: 

1) The long period x(a2,m), normalized so that x(0,m) = 1, is a weak 
function of m. Thus, it can be approximated by the Hagihara integral7, 

x(a2,0) = ^ §> [z/(l-z2)(z-z1)(z2-z)(z-z3)]1/2dz 

which is a relatively simple hyperelliptic integral of class two. 

2) The latter is expanded into a convergent series, 

x(a2,0) = — 1 c.c1 C , 
O TT o 1 1 

where A, c., and c are known functions of a^, and C. are generated 
recursively in terms of the standard elliptic integral K and E. 

3) Asymptotic approximations to the Hagihara integral for the cases 
aQ^ 0 and aQro 1 are obtained in the form 

T = 1 + \ a2 + ... (a ̂  0) 
6 o o 

= - ~ - log[28(3 - V ' £ ) / ( l - a 2 ) + . . . ( a % 1) Tiym o o 

The behavior of x near a = 0 had been studied by Deprit and Delie1, 
while the logarithmic singularity at aQ= 1 has been noted by 
Hagihara6. Incidentally, this singularity in the period serves to 
confirm the Strbmgren Termination Principle when it is applied to the 
family of the "tadpoles". 
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4) The small correction e to the Hagihara integral has been expanded 
into a Taylor series, 

x(a2, m) = i(a2,0)(l + m e, 4- m2£ 4- . . . ) , o o A 2 
and the functions e.(a) have been calculated. 
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DISCUSSION 

Message: You call the orbits obtained with T=0 "periodic solutions 
of the premiere sorte." However, they still contain long-period 
oscillations, while those solutions of the restricted three-body 
problem to which Poincare gave that designation have short-period 
terms only. 

Garfinkel: It is true that Poincarefs examples, as well as Hill's 
variation orbit, are short-periodic; however, one may define a 
"premiere sorte" orbit as a periodic orbit that reduces to a 
circle for m=0. My long-periodic orbit has this property. 

Hori: The choice of a Keplerian intermediary, followed by an elimin­
ation of short-period terms, leads to simple resonance theories 
constructed by the previous investigators. It is necessary to 
include in the intermediary a part of the disturbing function of 
the same order of magnitude, and this inclusion accounts for the 
double resonance. Is this true? 

Garfinkel: Yes. Indeed, the Ideal Resonance Problem, which I chose 
as my intermediary, incorporates the dominant term of the external 
1:1 resonance. 
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