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SOME HYPERSURFACES OF SYMMETRIC SPACES 

BY 

Y O S H I O M A T S U Y A M A 

ABSTRACT. In this paper we consider how much we can say 
about an irreducible symmetric space M which admits a hypersur-
face N with at most two distinct principal curvatures. Then we will 
obtain that (1) if N is locally symmetric, then M must be a sphere, a 
real projective space and their noncompact duals (2) if N is Eins
tein, then M must be rank 1. 

Recently, the following problem was proposed: If we assume that an 
irreducible symmetric space M admits a single submanifold with a particular 
property, how much can we say about the ambient space? With respect to this 
problem, Chen and Nagano [1] obtained that the only irreducible symmetric 
spaces which admit totally geodesic hypersurfaces are spheres, real projective 
spaces and their noncompact duals. We remark that Chen & Nagano's result 
remains true in the case where M admits totally umbilical hypersurfaces ([2]). 
Also, Chen and Verstraelen [2] obtained that if M admits a hypersurface N 
with a constant principal curvature of multiplicity >dim N-l, then M must be 
a sphere, a real projective space, a complex projective space or one of their 
noncompact duals. 

In this paper we consider M which admits a hypersurface with at most two 
distinct principal curvatures and will show the following: 

THEOREM A. If M admits a (connected) locally symmetric hypersurface N 
(d imN>3) with at most two distinct principal curvatures, then M must be a 
sphere, a real projective space and their noncompact duals. 

THEOREM B. If M admits an Einstein hypersurface N with at most two distinct 
principal curvatures, then M must be rank 1. 

1. Preliminaries. Let M be a connected Riemannian manifold and a sym
metric space. As usual if G denotes the closure of the group of isometries 
generated by an involutive isometry for each point of M, then G acts transi
tively on M; hence the isotropy subgroup H, say at 0, is compact and 
M=G/H. Let g, t) denote the Lie algebras corresponding to G, H, respectively. 
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Then we call 

g = t)+m, and rj = [m,m] 

by the Cartan decomposition. It is well-known the space m consists of the 
Killing vector fields X whose covariant derivative vanish at 0; in particular, the 
evaluation map at 0 gives a linear isomorphism of m onto T0M:X»-» X(0). 
Hence we have 

LEMMA 1.1. For the curvature tensor R at 0 

R(Xy Y)Z = -[[X, Y], Z], for X, Y, Z e m. 

LEMMA 1.2. A linear subspace L of the tangent space T0M to a symmetric 
space M is the tangent space to some totally geodesic submanifold N of M if and 
only if L satisfies the condition [ [n ,n ] ,n ] c n , where 

n=n*{Xem; X(0)eL}. 

Next, let N be a hypersurface of an (n + l)-dimensional Riemannian man
ifold M. And let V and V be the covariant differentiations on N and M, 
respectively. Then the second fundamental form A of the immersion is given 
by 

(1.1) V^Y = VxY+g(AX,Y)Ç, 

(1-2) Vif = - A X 

for vector fields X, Y tangent to N and a vector field £ normal to N, where g is 
the metric tensor of N induced by the immersion from the metric tensor of M. 
The equations of Gauss and Codazzi are then given respectively 

( 1 3 ) R''(X, Y, Z, W) = R(X, Y; Z, W) 

+ g(AY,Z)g(AX, W)-g(AX,Z)g(AY, W), 

(1.4) R(X, Y; Z, £ = g((VxA)Y, Z)-g((VYA)X, Z) 

for vector fields X, Y, Z, W tangent to N and £ normal to N, where 1?' and 1? 
are the curvature tensors of N and M, respectively, and i?(X, Y; Z, W) = 
g(K(X, Y)Z, W). For orthonormal vectors X, Y in M, the sectional curvature 
iC(X, Y) of the plane section spanned by X, Y is given by 

(1.5) K(X, Y) - R(X, Y; Y, X). 

2. Proof of Theorem A. Let N be a hypersurface in M with at most two 
distinct principal curvatures. 

We suppose that there is a point x0 at which two principal curvatures a, (5 
are exactly distinct. Then we can choose a neighborhood U of x() on which 
a^j8 . We put Ta ={Xe TU \ AX= aX} and Tp = { X e TU \ AX= /3X}. By 
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equation (1.3) of Gauss, we have 

R'(X, Y; Z, W) = R(X, Y; Z, W) 
(2.1) 

+ a2{g(Y,Z)g(X, W)-g(X,Z)g(Y, W)} 

for X, Y, Z, We Ta. From equation (1.4) of Codazzi we obtain 

(2.2) R(X, Y;Z,£) = (Xa)g(Y,Z)- (Ya)g(X,Z) 

for X, Y, Z in Ta. 
Let T be any vector tangent to N. By taking differentiation of (2.1) with 

respect to T we have 

(VTR')(X, Y; Z, W) + R'(VTX, Y;Z,W) + R'(X, VTY; Z, W) 

+ R'(X, V; VTZ, W) + R ' (X Y; Z, VTW) 

= R(V^X, Y; Z, W) + R(X, V-i-Y; Z, W) 

+ R(X, Y; V^Z, W) + R(X, Y; Z, VJ-W) 

+ (7a2){g(Y, Z)g(X, W)-g(X, Z)g(Y, W)} 

+ a2VT{g(Y, Z)g(X, W)-g(X, Z)g(Y, W)}, 

since M is symmetric. From (1.1), (1.3) and (2.2) we obtain 

(VTR')(X, Y;Z,W) = (Ta2){g(Y, Z)g(X, W ) - g(X, Z)g(Y, W)} 

+ |(Xa2){g(Y, Z)g(T, W)-g(T , Z)g(Y, W)} 

(2.3) +i(V«2){g(T, Z)g(X, W)-g(X, Z)g(T, W)} 

+ ±(Za2){g(Y, T)g(X, W)-g(X, T)g(Y, W)} 

+ è(Wa2){g(Y, Z)g(X, T) -g(X, Z)g(Y, T)}. 

Let X = W and Y=Z be orthonormal. Then (2.3) gives 

(VT£')(X, Y; Y,X)= Ta2 + (Xa2)g(X, T) + (Yc*2)g(Y, T). 

Since N is locally symmetric, we have 

(2.4) Ta2 + (Xa2)g(X, T)4-(Ya2)g(Y, T) = 0. 

From dimiV>3, either d i m T a > 2 or dim 7^ > 2. Hence we may assume 
dim Ta > 2 on 1/ and take X = T, then we obtain 

Xa 2 = 0. 

In particular, for T e Tp, from (2.4) we have 

Ta2 = Q. 
Thus a is constant on U. 

Now, let co be a vector field in Tp. Then, from (1.3) 

(2.5) R'(X, Y; Z, a>) = R(X, Y; Z, co) 
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holds. By taking differentiation of (2.5) with respect to T, we may find by using 
VTR = VTR' = 0, (1.1), (1.3) and (1.4) that 

a{(Y, Z)g(VTX, <*)- g(X, Z)g(VTY, to) 

(2.6) -g(T,X)g(VzY,<o) + g(T, Y)g(VzX,o>) 

- g(T, Z)g(VxY, co) + g(T, Z)g(VYX, co)} = 0. 

Choosing T = X = Z, Y as orthonormal vectors in T„, we find 

ag(V x Y-V Y X, w) = 0. 

If we put X = T and Y = Z and assume X, Y are orthonormal, then (2.6) gives 

ag(V x X-V Y Y, w) = 0. 

By linearization, we find 

ag(VxY + VYX,to) = 0. 

Hence if a ^ 0, then we obtain 

(2.7) g(VxX,w) = g(VYY,a>) 

(2.8) g(VxY,w) = 0 

for orthonormal vectors X, Y in Ta. 
On the other hand, if S is the Ricci tensor of M, then we have 

S(X,£) = 0 

for all X in TN, since M is Einstein [3]. Noting that, for w,, <o2, «36 Tp, (2.2) 
gives R(w1, w2; co3, £) = 0 in both cases of dim Tp = 1 and dim Tp > 2, we have 

0 = S(w, £) = X R(<o, Xf ; X, £) = £ R(w, X, ; Xb 0 
i = l i = l 

= ( « - / 3 ) Z g(Vx,X;,w) 
i = \ 

for COGT^ and orthonormal basis X1 ? . . . , Xn + 1 in TXM, ate (7, with 
X 1 ? . . . , Xp G Ta ; Xp + 1 = co1?. . . , Xn = o)n_p e Tp and Xn+l = £ where p denotes 
the multiplicity of a. From (2.7) we obtain 

(2.9) g(VXlXi,û)) = 0, i = l , 2 , . . . , p . 

Combining (2.8) and (2.9), we have 

g(VxXy,co) = 0, i, / = 1 , 2 , . . . , p. 
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Since every two vectors X, Y in Ta are linear combinations of X l 5 . . . , Xp, we 
obtain 

(2.io) g(vxy,w) = o 

for all X, Y in Ta. 
Assume that a = 0 on U. From (2.2) we have 

(2.11) R(X, Y ; Z , | ) = 0 

for X,Y,ZeTa = TQ. By taking differentiation of (2.11) with respect to a 
vector TeT0 we obtain 

( 2 1 2 ) -g(AVYZ,VTX) + g(AVxZ,VTY) 

+ g(AVx Y, VTZ) - g(A VYX, VTZ) = 0 

Let X = T and Y = Z. Then (2.12) gives 

( 2 1 3 ) -g(AVYY, VXX) + g(AVxY, VXY) 

+ g(AV x Y,V x Y)-g(AV Y X,V x Y) = 0. 

On the other hand, from (1.3), we have 

(2.14) R ' (X w; «3, Y) = «(X; a>; «5, Y) 

for X, Y e r 0 and w, w e Tp. 
By taking differentiation of (2.14) with respect to a vector T we obtain 

(2.15) l3g(T, co)g(VYX, <5) + |8g(T, d))g(VxY, w) = 0. 

Let X = Y and w = w = T. Then (2.15) gives 

(2.16) g(VxX,w) = 0 

for all X € T0. By linearization, we find 

(2.17) g(VxY + VYX,<o) = 0 

for all X, Ye T0. Thus (2.13), (2.16) and (2.17) give 

(2.18) g(VxY,w) = g(VYX,w) = 0 

for all X, Y e T0. Therefore, from (2.10) and (2.18), we obtain the following 

R(<o,X;Y,$) = (a-p)g(<a,VxY) = 0, 

R(X, Y; a,, 0 = (a - j8)g(VxY- VYX, «) = 0, 

X, Ye r„, (j e Tp. If dim Tp = 1, then as before we have 

0 = S(X, £) = I R(X, X, ; X;, f ) = K(X, « ; co, £) 
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for XeTa and orthonormal basis X 1 ? . . . , X n + 1 in • TXM, xeU, with 
X 1 ? . . . , X , . , G Ta, Xn = co and Xn + 1 = £ If dim Tp > 2, then we obtain 

R(X,û);(5,f) = ( a - j 8 ) g ( X , V » = 0, 

R(co,(ô;X,^=-(a-i3)g(V a >û)-V< 5û),X) = 0, 

X e T a , co, cô G Tp. Thus we have 

JR(X, Y ; Z , f ) = 0 

for X, Y, Z G T U . 

Next, if an open subset V consists of umbilical points, then we obtain a 
similar equation to (2.4) and know that the principal curvature is constant on 
V. Hence we have 

R(X, Y;Z,£) = 0 

for X, Y, ZeTV. 
By a continuity argument we find 

JR(X, Y;Zy f) = 0 

for all X, Y, Z in TN. Therefore we have 

(2.19) R(TxN,TxN)TxNc:TxN 

for all se N. Since M = G/H is a symmetric space and G acts on M transitively, 
we may assume at is the origin 0 (fixed by H). From (2.19) and Lemma 1.1, we 
have 

[[TxN,TxNlTxN]c:TxN. 

Consequently, Lemma 1.2 implies that M admits a totally geodesic hypersur-
face. Theorem A then follows from the results of Chen & Nagano (See 
Introduction). 

3. Proof of Theorem B. Let N be a hypersurface in M and Eu . . . , En be 
an orthonormal basis of TXN, xeN. Then the Ricci tensor S' of N satisfies 

S'(Y,Z)=t «'(E,, Y; Z, E,) 
i = \ 

= S(Y,Z)-R(Ç,Y;Z,Ç) 

+ trace A g(AY, Z) - g(A2 Y, Z) 

for Y, Z E TXN, S denotes the Ricci tensor of M Since N and M are Einstein, 
the scalar curvatures p' and p of N and M satisfy 

R{lY;Z,0 = (-~--)g(Y,Z) 
(3.1) \n + l n) 

+ trace Ag(AY, Z ) - g ( A 2 Y , Z ) . 
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As in the proof of Theorem A, we take X0GN and U. Then (3.1) gives 

0.2) R ^ Y ; Z ^ G r r ^ z > 
+ (pa +(n-p)p)g(AY, Z ) - g ( A 2 Y , Z), 

where p denotes the multiplicity of a. By taking differentiation of (3.2) with 
respect to T, we have 

-g((VATA)Y, Z) + g((VYA)AT, Z) 

(3.3) -g((VATA)Z,Y) + g((VzA)AT,Y) 

= (PTa + (n-p)Tt3)g(AY,Z) 

+ (pa + (n-p)p)g( (V T A)y,Z)-g( (V T A 2 )Y ? Z) . 

Let Z=T and Y be orthonormal vectors in Ta, then (3.3) gives 

(3.4) Xa2 = 0 

for all X in Ta, since we might assume that dim Ta >2. Hence, using (2.2) and 
(3.2), we obtain the following 

THEOREM 3.1. Let M be a symmetric space. If M admits an Einstein hypersur-
face N (dimiV>3) with two distinct principal curvatures of the multiplicities p 
(>2) and n — p, respectively, then M admits a unit vector £ and a codimension 
n — p + l subspace V in TXM such that (a) the sectional curvatures of M satisfy 
K(£ X) - K(£ Y) for any two unit vectors X, Y in V, (b) JR(X, Y; Z, f ) = 0 for 
X, Y, Z in V and (c) T(£ X: Y, £) = 0 /or orthogonal vectors X, Y in V. 

If N is an Einstein hypersurface in M with £ as the unit normal vector at x 
and two distinct principal curvatures of the multiplicities p (>2) and n-p 
(^2), respectively, then there exists a geodesic c through x with £ as its tangent 
vector at x. Let B be a maximal flat totally geodesic submanifold of M which 
contains the geodesic c (and hence x). Then the rank of M is equal to the 
dimension of B. Thus in particular, if r a n k M > 2 , then the intersection 
TXB fl TXN contains nonzero vectors. Then for any unit vector X in TXB Pi TXN 
we have K ( £ X ) = 0. 

Consequently, from (3.1) and Theorem 3.1 we obtain the following 

THEOREM 3.2. Let M, N and p be as in Theorem 3.1. If n - p > 2 and rank o/ 
M is >2, then the Ricci tensor S of M satisfies one of 

(1) S(£ £) = (n - p)K(& (o) for a unit vector œ e T3, 
(2) S(£ £) = pK(fe Y) for a unit vector Y G Ta, 
(3) S(£ 6 = pK(£ XJIIXJI) + (n -p)K(fc X,/ | |Xj) and R(£ Xa ; Xa, Ç) + 

R ( £ X p ; X p , £ ) = 0, 
where Xa, Xp and \[\\ denote the components of a unit vector X to Ta, Tp and the 
length of vectors, respectively. 
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If M is an irreducible symmetric space of dimension <4, then M is one of 
spheres, real projective spaces, complex projective spaces and their noncom-
pact duals. So we may assume that the dimension of M is >5 . In the case of M 
admitting an Einstein hypersurface N with two distinct principal curvatures of 
the multiplicities p (>2) and n-p (>2), respectively, from Lemma 1.1 and 
Theorem 3.2, we see that the rank of M is 1. 

From a continuity argument, the case of M (d imM>5) admitting an 
Einstein hypersurface N with two distinct principal curvatures of the multip
licities ft-1 and 1 remains. Chen and Verstraelen ([2], Theorem 9.1) showed 
the following. 

THEOREM 3.3. If N is an Einstein quasiumbilical hypersurface in M (dim M > 
4), then M is either a sphere, a real projective space or one of their noncompact 
duals. 

However, the proof of the above Theorem is not precise. Here we will give 
the precise proof. 

Now, let the dimensions of Ta and Tp are n - 1 and 1, respectively. By the 
result of Chen and Verstraelen (See Introduction), we may assume that a^O 
on N. Then, from (3.4), we have 

Xa2 = 0 

for all Xe Ta. Let T and Y be in Ta and Z = coe Tp. Then (3.3) gives 

(a-j3)a{ng(VTY,û))-g(VYT,û))} = a(û)a)g(T, Y) 

from which we get 

(3.5) <x(a - p)(n - l)g(VTT, <o) = a(ù>a) 

for unit vector Te Ta, and 

(3.6) a{g(VTY,co)-g(VYT,co)} = 0 

for T,Ye Ta. From (3.5) we find 

ag(VTT,<o) = ag(VYY,<o) 

for unit vectors T,Ye Ta. By linearization, we find 

a{g(VTy,o)) + g(VvT,a;)} = 0 

for orthonormal vectors T,Ye Ta. Since a ^ O , we obtain 

g(VTT,a)) = g(VYY,a;) 

g(VTY,a,) = 0 

for orthonormal vectors T, Y e TiX. Using (2.9) of the proof of Theorem A, we 
obtain 

g(VTY, o)) = 0 
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for all X, Y in Ta. Thus we have 

R(X,Y;Z ,£ ) = 0 

for X,Y,Ze TN. By a similar argument to the last part of the proof of 
Theorem A we see that M admits a totally geodesic hypersurface. Hence we 
obtain Theorem 3.3. 

This completes the proof of Theorem B. 
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