S. Kawai
Nagoya Math. J.
Vol. 140 (1995), 151-166

SCALAR CURVATURES OF CONFORMAL METRICS ON S”

SHIGEO KAWAI

§0.

In this paper we consider the following problem: Given a smooth function K
on the n-dimensional unit sphere S”(» > 3) with its canonical metric 8, is it
possible to find a pointwise conformal metric g = fg, (f > 0) which has K as its
scalar curvature? This problem was presented by J. L. Kazdan and F. W. Warner.
The associated problem for Gaussian curvature in dimension 2 had been presented
by L. Nirenberg several years before.

In both cases, the problems can be reduced to solving nonlinear partial dif-
ferential equations: For # = 2,

(1) — Au +1 = K exp(2u)
where f = exp(2u), and for n = 3,

4(n—1) n+2
(2) - ‘-(n—__TAu +unn— 1Du= Kur2, u>0
4
where f = un-2,
It is known that there exist functions K with no solutions. This is shown by
the obstruction of J. L. Kazdan and F. Warner which we now recall.

Proposition 1 ([3], [13], [14]). If u is a solution of the equation (1) (vesp. (2)),
then we have

[, exp(2w) <VK,VFYaV, = 0

s 0

(resp. [ i <VE,VFYaV,, =0)
32

Jor all spherical harmonics F of degree 1, where dVgo denotes the canonical volume form
on S”.
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Taking K = ¢, + ¢,F, with ¢, ¢, constants and F, a spherical harmonic of
degree 1, we conclude there is no solution of the equation (1) and (2). Note that
the spherical harmonics of degree 1 are the restrictions of linear functions on
R to the unit sphere and their critical sets have simple structures. Thus the
nice sufficient conditions may include assumptions on the complexity of the critic-
al set of K. Some existence results are known under symmetry assumptions on the
function K or in low dimensions ([2], [5], [6], [8], [10], [11], [12]). Recently Chang
and Yang [7] presented a result in general dimensions.

The purpose of this paper is to present a consequence of min-max method,
following Chen and Ding [8], applied to the #n-dimensional case with # = 3. We
also use the argument of Bahri and Coron [2] on the deformation of functions along
the gradient line of a functional. For simplicity, we consider the following equation
instead of the equation (2):

nln — 2) nt2
—_— —2

(3) Pu:=— Au+ 1 = Kur2, u>0

and assume that max K = 1, n = 3 throughout the paper.

THEOREM. Assume that a function K on S" with max K = 1 salisfies the follow-
g conditions:

(i) There exist nondegenerate local maximum points a and b such that

(%)%2 <y < K®) <K@

where

V= SUP,er minzeh([o,ll)K(‘r)’
r'={ne C’0,11, S" | h(0) = a, h(1) = b}.

(i) There exists an element hy in I" such that
minzeho((o,ll)K(x) =V

and AK(x) > 0 for any x with K(x) = v.
(iii) There is no critical value of K in the interval (v, K(b)).

Then we have a positive solution of the equation (3).

Though the restrictions on K are rather stringent, we can apply the theorem,

1\n=2
for example, to a function K which has a saddle point ¢ with K(¢) > <§>” 2.
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To prove this theorem, we use the max-min method. Let us define functionals
F, G and J on W"*(S™ as follows:

Flul = f |Vul +quz,
Glul = fqu%,

Jlu] = fKquTnZ

where ff= (vol SH7! (Lndego> and u, (x) = max{u(z), 0}.

Taking families of functions ¢,, and ¢,. which will be specified later, we
consider for some ¢ > 0, the following max-min problem:

1(€) = SUPepeyMiN,e; o1/ [#]
where
H ={ue w"(S"|Flul = 1},
L) = {1e C’([0,1], B [ 1(0) = &,,, 1) = ¢,.}.

Under the assumptions of the theorem, this number ﬂ(e) turns out to be a cri-
tical value of [, for sufficiently small ¢, and we get a desired solution of the equa-
tion (3).

§1.

In this section we make some preparation for the later parts. First we define
several functions. For every point p on S”, g(p) denotes the streographic projec-
tion from S”\ {p} to R”, and p(p) its inverse. Denoting the canonical metric of R”
and S” by g and g’ respectively, we have

2 2
p(P)*g, =\ 3/ &
(1 + |x|2>
Let us define 6(a) : R"— R” by 6{a) (x) = %. Then

2y, 2
s@* LA 01(1+|x|) )* 3
@ o»e) = (%, 5 00
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and consequently we obtain

1+]x[))?
det 6(a) = (a(z |$|2))
a + |z
. . 2 ? n
with respect to the spherical volume form dV, %, = (1—+|—|;> dV, on R". Let
x

-2
us define ¢, = (det 5(a))%"— and ¢, , = o(— ) *¢, where — p denotes the anti-
podal point of p. Since

4
3@ (= 1)) = i (= D¢,
the function ¢, , satisfies the equation

4(n—1 iz
— AR 4yt = g, = nn = Dy

on S”. In fact, every positive solution of this equation coincides with @;.o for some
p and a. Denoting the volume of S” by w,, we have

2n _2n_
0, Cl95) = [ GV, e = [ w2V,
2n_
w0, J($},4] = fR (o= DBV, g
2n_
= fR o= P Bu,"av,,
-2 on
w,Flgy ) = "2 | #.27av,
= [ Ivu;Fav,
2a )%
o + | x |2

— 4
Since Gl¢,,] =1 and Fl¢,,] = le__zl we define @, = /20 "oy $a

4
and u, = /m #,. Then we have ¢, , € H and

n

4\
1= (=) = Clbsd = max,esGlid,

¥ e—
where u,, = (

019,01 = [ (0(= "0V,
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The following property of functions #, will be used: If we fix a ball B(R) of
radius R centered at the origin,
_2n_ " 2 )
[ wav,= o), [ wtlzlav, ~ o,
B(R)® B(R)
u % | x = 1
B " f O(a3 log(a» (n=3)

as a— 0.

Next Proposition is a form of maximum principle by Stampacchia [17] (see
also Kazdan and Warner [13]).

. 1,2 n .. . _ ﬁéz‘
ProposiTioN 2. If a function u € W °(S") satisfies the equation Lu = fu’*

for a function f, then u = 0.

Proof. Let us denote #_(z) = min{0, #(z)}. Then we have u_ € W"*(S")
and

f Ewu_ = ffug{%u_ = 0.

Hence we obtain

Fliecr s 200 0 =

which implies #_ = 0, i.e., u = 0. O

We need the concept of remormalization or rescaling. Consider for ¢ > 0 and
p € S”, a diffeomorphism 7,,:S"— S” defined by 7,, = (= p)-6(@) > a(— p).
For u € W"(S"), @ > 0 and p € S”, we define the rescaled function #(a, p) by

e, ) = oy, ,) (et 74) 7 = (woya,) B a

In this notation, #(a, p) concentrates at p as @ — 0. The functionals G and F are
invariant by rescaling, i.e.,

Gliala, )1 = Glul, Flua(a, p)] = Flul.

Let us consider an inner product <, >, on W"*(S™) defined by

{u, v, = f Vu,Vo) + MI .
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This is apparently equivalent to the usual inner product in W"?(S"). The gra-
dient of ], with respect to < , 7, which we denote by grad /, is given by

nt+2

2n 5 (= JTudu + 27 KDY,

n—

(grad ) [u] =

ProrosiTioN 3. If {u;} is a sequence in H with (grad J)[u,]— 0 and
2
. 1\#—2 .
lim JTu,] > (§>” Uo, then the equation (3) has a positive solution or a subsequence
concentrates at exactly one point in S "

Proof. We follow the proof of Theorem 3.1 in Struwe [18] which proves the
case K = 1. For a function f, let us define a functional E; on W' (S™) by

E lu]l = %F[u] - nz—nZ ffu%lf

Thenz(grad]) [#,] — 0 (i— o) if and only if | E'[v,] | = 0 (i— o) where v, =
-n
Jlul % u,;. By the definition of Eg, we have

—9 nt2
n(n4 ) v — Koit =0

— Ao, +
weakly as ¢ — o0,
We note that the sequence {v} is bounded in W'*(S") because Flu] =1
. 1\7=2
and lim J{u,] > <§)n 2;10. Consequently a subsequence converges to v €

WI'Z(S”) weakly. Then from the fact stated above, the function v is a weak solu-

tion of the equation v = Kv:’ll%%, and we have v = 0 by Proposition 2. This weak
solution v is smooth from Theorem 3 in Trudinger [19]. Using maximum principle
for smooth solution of elliptic equations, we obtain either ¥ = 0 or v > 0 every-
where. Inn+t2he latter case, we get a desired positive solution of the equation
%v = Kv»2. Hence we may only consider the case that a subsequence of {v;},
which is still denoted by {v,}, converges to zero weakly.
n

Next we show [|E [v]]—0 and liminf E;[v;] < % (_11(114;2))2 implies
that {v,} is relatively compact. Though this is true even if the weak limit does not
equal to zero, we treat only the case v; — 0 weakly.

Since

https://doi.org/10.1017/50027763000005468 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005468

SCALAR CURVATURES OF CONFORMAL METRICS 157

o) = <o, Ezlo)> = [ 170, = f Koj* + oD,

we obtain
£ 170, = nEyln) + o) < (ﬁ(”—;—”)7 + o(D).
From the assumption K < 1 and Sobolev inequality, we get
o) = f175, = f Ko + o0
2 f170,1 = f 10,7 + o)
2 fionr - (g (Pt o
< (P17a) - b (7 o

Thus it follows that || v; [, ,— 0 as i— o,
We can derive, as in the proof of Lemma 3.3 in [18], the following fact: There
exist a sequence {z,} of points in S” with x,— x, € S”, a sequence {a,} of posi-

tive numbers with &, — 0 and a nontrivial solution v, of the equation
n+2

(4) P, = K(x)v)} 2

such that the sequence {w;} of functions defined by w, = v, — ¥,(q;, x,) satisfies
Eylw,) = E¢lv] — Eglo (e, )] + 0(1) = Exlv,] — Exy,lv] + 01

and

I E¢ Tw] |- 0.

The argument required to prove this is almost the same as in [18], and we only
point out the differences.

First we use the following identity which can be proved by the method of
Theorem 2 in [4]:

2n_ 2n_ _2n_
J K@) = f K6, 0977 + f Ko + (D),
where {#;} is a rescaled sequence of {v;} and v, is the weak limit of {#,}. The cor-

responding relation for K = 1 is used for example in p.173 (3.3) of [18] (#; and v,
are written there as #,, and 2’ respectively.). Secondly " in [18] is a solution of
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the “limiting problem” (3.1) (p.169), while our “limiting problem” for v, becomes
the equation (4). This is because rescalings are done from the points x; and we
take the subsequence of {x;} so that it converges to a point x, € S”.
We show in the following that w,— 0 in W "*(S") which means that the sequ-
ence {v,} approaches 9,(a;, ;). From the equation (4), we get v, > 0 and K(z,) >
4K(x) \"T° . . . -
0. Let us set v, = <m) v,. Then this positive function v, satisfies the

equation

An—1 ntz
- —(:—;—2—)41){) +nln— Do, =nn— D" 2,

and consequently v; = ¢}, for some p and a. Hence we have

Fly] = (M_;Zlf K(xo)%&' Glo,] = (”4(_”1{('51)%

which implies

1 (n(n —2)

Eylw] = 2 Jtud'® — L (M 22 )T 4 o).

Suppose that {#,;} satisfies the condition

Tl > (1 + K(z) T "2y,

n

4 -2
where g, = (m)” , then the inequality

Eglu) < & (20 =2)

holds and we get w,— 0 in W'*(S") because | E/[w,] | — 0. Since the function
2
2=n __2_ 1\7n—2
a+¢ Zn) n=2 of  on the interval (0,1] takes the maximum value (§>n fatt=

1, the proof is completed. O
The following is a variant of Mountain Pass Lemma.

PROPOSITION 4. Let f be a C'-function defined on a closed smooth submanifold X
of a Hilbert space. Assume that for two points p and q i X,

U= SUp,rmin, o f(c(®) < min{f (@), f(g}
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where
I'={ce C'([0,1], X) | c(0) = p, c(1) = ¢}.

Then for every sequence {c,} in I' with min,.y, f(c,(#)) = 1 (n— ), there exist
sequences {c,} in I, which can be taken as close to {c,} as possible, and {t,} in
[0,1] such that

f(cnl(tn)) = minteio,l]f(cn/(t))

and
| (grad /) (¢, @) |— 0 (n— ).

If X itself is a linear space, this proposition is proved in Aubin & Ekeland [1]
and Shuzhong [16]. The key ingredient in both proofs is Ekeland’s variational
principle ([9]) which is valid for functions on complete metric spaces. In our case,
we consider the function I defined by I(¢) = max,c,yf(c(f)) on the space I, and
apply Ekeland’s variational principle to this function I. Since the space I is a
complete metric space, we can easily modify the proof to fit in with our case.

§2.

The purpose of this section is to show that if J; has no critical point, then
there exists some constant ¢ > 0 such that

oy < ule) < (K(b) — ou,

for sufficiently small €. For every u# € W (S™) with #, 0, we define P(u) =
(P(u)ly P(u)zy. ) P(u)n+1) by the equality

P(w), = (f u%x,)(f uf_%)_l

where (x,, Z,, * * *, Z,,,) is an orthogonal coordinate system of R" . When
| P(w) | + 0, we write Q(w) = P(w)/| P(w) | and d(w) = | Q(w) — P(w) |. If we
are considering a sequence {ui} of functions which concentrates around at most
one point, then {#;} actually concentrates if and only if d(x;) — 0 (i— ). The

n+l

following lemma can be proved by the same way as the proof of Lemma 1.1 in [8].
We present the proof because we need later some of the estimates in it.

LEMMA 1. There exists a constant C, which depends only on the C'-norm of K
such that for u € W'2(S™ with P(u) # 0,
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< ¢,@w)t f W,

| f - K(Q)) "

Proof. Let us define B(r, @ = {x € §"|dist(x, @ < 7} where dist de-
notes the geodesic distance. Then we have

2n

_2n _2n_
f {1 -2 x,Qi} u"2dV’ < d(u) f utdv’
S"™B(7,Q) i s7
and
2
1— 220, > L
- iwi =y
1
for every £ € S"\ B(r, Q). Taking » = (d())3, we get
_2n 1 2n
[ wrav < a@e)? [ wFav,
S™\B(7,Q) S
Consequently we obtain

<

2n
_ n—2 ’
’ L (K — K(Q@)}w2dV f . |+ f - ]
o
< (maleKI)rf u"2dv’
Sn
1 _2n_
+ 8(max | K (@)} [ ur-av’
Sﬂ
o
< Cdw)® [ wrtav’
Sﬂ

which is the desired result. ]

LEMMA 2. Under the assumption on K in the theorem, we have u(e) > pyv for
sufficiently small €.

Proof. Using the path &, in the assumption (ii) of the theorem. We set /() =
By, for t € [0,11. To prove p(e) > v, we have only to show

(5) fK(@,,(n,e)%z_ > Uo¥

for 0 <t <1 Let us set N; = {x € hy([0,1]) | dist(x, A) < 6} where A=
{y € 1y(10,11) | K(y) = v}. Then we can choose a small § so that AKy > 0.
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We first show the inequality (5) for ¢ with h,(f) € S"\ N,. Tuke a sufficient-
ly small 8 > 0 such that

KQ=v+8

for every { € h,([0,1]1) \ N,, and let ¢ be sufficiently small so that

(g0 < (2%)3.

Here note that d(¢,,) does not depend on {. Then by Lemma 1, we have
2n_ 1 _2n_
fK(¢ho(t),s)”~2 2 {K(hy(8)) — Co(d(@), 1)) f (Bh0.e) ™2

B _2n_

2 <V +8— —2'> f (Bhyier.) ™2

2
> oy

Next we consider the case h,(f) € N;. Due to the continuity of J and the rela-
tive compactness of Ny, it suffices to show that for each { € N;, there is a num-
ber €({) such that the inequality (5) holds for € with ¢ < ¢({).

Since p(— §) is a conformal diffeomorphism,

Ap(—= O*K) = AK>p(— ©) = (dK) (z(o(— ) + fAK) - (o(— O)

where f is a positive C” function on R” and (o(— {)) denotes the tension field
of the map o(— (). By straight forward computation, we see 7(o(— &))(0) =0
which implies

Ap(— O*K) (0) = f(0)(AK) (©).

Denoting by B(R) the ball of radius R centered at the origin O and consider-
ing Taylor expansion of p(— {)*K at the origin, we get

wJ19) = [ (o= 0B av, + [ (o(= 0By,
= - n* i ok
B jz;(m[(p( 0K + 21: (6x,- (=0 K)(O))x,.
’ n
42 52 o= 0B () 2, + 00 2P} a,

VY2
+‘]I;(R)C(p( C) K)ue dVg
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f(O)

S 2
= KQuw, + 7 UK © [ 7l zlav,

+ | olz |3)u§'T2dVg + 0",

B(R)

2
In this calculation, we used the property that the functlons u?™?% are radial and

hence the integrals over B(R) involving 2”2 and xxu" = (i # ) must vanish.
Note that

[, ¥\ 2Pav,~¢, [ | 2Pav, = 06 or = o< 10g (1))

Since K({) > v, f(O)(AK) () > 0, we obtain a number £({) such that the ine-
quality (4) holds for every ¢ with ¢ < &({). This completes the proof of the lemma.
O

ProposITION 5. If the function K satisfies the assumption in the theorem, then
either we have a critical point of the functional J, or there exists a positive constant ¢
such that

©(e) < (K(b) — op,

for every sufficiently small €.

Proof. By the definition, the functions ¢,, and ¢, concentrate around the
points @ and b respectively for small e. To investigate the behavior of @,¢,, and
D.p,. by the flow {®} (s > 0) on H generated by grad J, we use the argument in
[2]. In that paper, the set of functions which concentrate at p points is denoted by
W(p, ) and the definition of “center” @, is different from that of @. However if a
function sufficiently concentrates at exactly one point, we may think that our @ is
nearly equal to @, in [2], and ¢ — 0 in our notation corresponds to A, — © in [2].

The equations (121) and (122) in {2] imply that if a function sufficiently con-
centrates around a nondegenerate local maximum point, then it more and more
concentrates around this point by the flow {@} as s— o (Incidentally “—" in
the right hand side of the equation (122) should be replaced by “+4”.). Though [2]
treats mainly 3-dimensonal case, this property is valid in all dimensions if we
consider functions which concentrate at exactly one point. Thus if € is sufficiently
small, the functions @@, . and Dp,. concetrate more and more around points @
and b respectively, and points Q(D,¢,.), Q(DP,,.) are well defined for all s = 0.

By the definition of u(e), there exists / € L(e) such that min ], is close
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to ¢#(e). Then we have for every v € I([0,1]),
Jo,()] = (_21_>m#0, (grad D[P, ()] — 0 (s — + ©0).

It follows from Section 1, Proposition 3 that there exists a critical point of the
functional J or a subsequence {@sk(v)} concentrates at one point in S”. If the first
case does not occur, we have not only d(®;,(v)) — 0 but also d(®;(»)) — 0 as
s— + . Consequently Q(®,(v)) is well defined for every sufficiently large s.

From the compactness of [([0,1]), we get a sufficiently large constant s, such
that Q(@,(v)) is well defined for all » € [([0,1]) and all s = s, Thus consider-
ing the path made by {@(@ye)}o<s<as, (Dos,(1([0,11))} and (D (B, )} o <5<, We
obtain a path !’ between ¢, and @, such that @(v) is well defined and d(v) is
sufficiently small for every element v in I’.

Since {Q() | v € I’'([0,11)} is a continuous path between @ and b, there ex-
ists an element v, € I’([0,1]) such that K(Q(v,)) < K(b) by the assumption (i).
Because v, sufficiently concentrates at Q(v,), we have

Tl < (K(b) — Dy

for some positive constant ¢’. Thus the inequality J (o < minJ, o, and the
closeness of min J|;o ) to #(e) complete the proof. 1

Let us fix a small g, so that Proposition 5 and Lemma 2 hold for every ¢
< g, and let us write ¢ = y(e,) and L = L(g,) for simplicity.

PROPOSITION 6. There exist positive constants o, 0, with the following property:
If a sequence {v,} in H satisfies

Jlv,] > p— 0, P(Uk)—’CES"

as k— o, then
K =z v+ a,

Proof. From Lemma 2, we get positive constants &g and d, such that
n— 0, = u,(v+ aj).
Then from Lemma 1, the following inequalities hold:

W+ au,<pu—6,<Jlv] <{KQW)) + Co(d(v,‘))%}ﬂo.

https://doi.org/10.1017/50027763000005468 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005468

164 SHIGEO KAWAI

Since d(v,) — 0 and K(Q(v,)) — K({) as k— 0, we obtain the desired result. []

§3.

In this section we complete the proof of the theorem. Since we have only to
consider the second case in Proposition 5, let us choose ¢ so small that p
< 1o (K(b) — ¢;) and take the set U, = {u € H| P(w) # 0, K(Q(xw)) < K(b) —
¢, d(u) < d}. From now on, J '(a, b) (resp. J '[a, b]) denotes the subset {# €
H|la< Jlul < b} (resp. {u € H|a < Jlu] < b}).

The proof of the following lemma is almost the same as that of Lemma 5.1 in
[8] and we omit it.

LEMMA 3. There exist positive constants 8, d with K(B)u, — 0 >+ 0, and a
continuous map I : H— H such that

(1) JITul = Jlul for every u € H,

(2) TU =6, Kby N U) < J Hu+ 8, Kby,

(3) T(w) = u for everyu € J (KB o — 0, o),

(4) 9(H\U) € H\ U,.

Proof of the theorem. Choose a sequence {[,},_;,... in L such that
min,e, o,/ #l > ¢ — 6, min,g, o, Jlul —p
as k—o0, By (1) and (3) in Lemma 3, we have 7 (I,) € L and
ming, ./ #] = .

Also we get from (2) and (4) in Lemma 3,
(6) TaQ01)) N U, <]+ 5, Kbpy).

By virtue of Proposition 4, we obtain m, € L and v, € m,[0,1] such that

Jlv,] = min,,, o Jlul, Jlv]—g, (gradDlv]—0.

Moreover we can take m, as close to J (I,) as possible. Hence the relation (6) im-
plies v, € H\ U, for sufficiently large k.
Since (grad J)[v,] — 0, and Jlv,] — #, {v,} concentrates at most one point
from Proposition 3 and Lemma 2. Because v, € H\ U,, we have only two cases:
. 1,2
(a) A subsequence of {»,} converges in W “-norm.

(b) P(v,) = C € S" with K(0) > K(b) — ¢,.
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In the case (b), Jlv,] = . K(Q > p,(K(b) — ¢) which contradicts the fact
Jlv]— u < p,(K(b) — ¢,). Thus only the case (a) occurs and we get a critical
function v in H for functional /. Namely v weakly satisfies the equation

n(n — 2)

2n
— Av + 1 v = AKv"?

for some constant A. Hence from Proposition 2, a constant multiple of v gives the
desired solution of the equation (3). Thus the proof of the theorem is completed. []
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