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Abstract. We prove that a generic probability measure-preserving (p.m.p.) action of a
countable amenable group G has scaling entropy that cannot be dominated by a given
rate of growth. As a corollary, we obtain that there does not exist a topological action
of G for which the set of ergodic invariant measures coincides with the set of all ergodic
p.m.p. G-systems of entropy zero. We also prove that a generic action of a residually
finite amenable group has scaling entropy that cannot be bounded from below by a given
sequence. In addition, we show an example of an amenable group that has such a lower
bound for every free p.m.p. action.
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1. Introduction
In this paper, we study generic probability measure-preserving (p.m.p.) actions of
amenable groups. The main object we focus on is the scaling entropy of an action, which is
the invariant of slow entropy type proposed by Vershik in [25–27]. This invariant is based
on the dynamics of measurable metrics on the underlying measure space and reflects
the asymptotic behavior of the minimal epsilon-net of the averaged metric. The scaling
entropy invariant was studied in [14, 15, 23, 27, 32, 33]. We will give all the necessary
definitions in §2.2.

It turns out that some properties of the scaling entropy of a generic action can be
established. In particular, we show that its asymptotic behavior cannot be bounded from
above by any non-trivial bound. For the case of a single transformation, similar results were
obtained in [1, 23]. Together with the results from [24], this gives the negative answer to
Weiss’s question about the existence of a universal zero-entropy system (see [20, 24]) for
all amenable groups.
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Also, we study lower bounds for the generic growth rate of scaling entropy. In the case
of a residually finite group, a similar result holds true: there exists no non-constant lower
bound for the scaling entropy of a generic action. However, this is not true in general. It
turns out that there exist discrete amenable groups that have a scaling entropy growth gap,
which means that the scaling entropy of any free p.m.p. action of such a group has to grow
faster than some fixed unbounded function. We show an example of such a group in §5.2.
Our example is based on the theory of growth in finite groups, in particular, the growth
theorem by Helfgott (see [5]) and its generalizations from [16].

1.1. Generic properties of group actions. Descriptive set theory applied to group actions
is a well-studied concept in ergodic theory. We will give several definitions in order to
set up notation. For more details, follow the survey [9] by Kechris. Let � be a discrete
countable group and let (X, μ) be a Lebesgue space. Let Aut(X, μ) be the group of all
invertible measure-preserving transformations of (X, μ) endowed with the weak topology
w with respect to which Aut(X, μ) is a Polish space. The set of all p.m.p. actions of �
on (X, μ) can be naturally identified with the space A(�, X, μ) of all homomorphisms
from � to Aut(X, μ). Clearly, A(�, X, μ) is a closed subset of the space Aut(X, μ)�

endowed with the product topology and, therefore, is Polish. Let us note that this topology
is generated by the family {Uγ ,a,ε(α)}γ∈�,a⊂X,ε>0 of open neighborhoods as prebase,
where α is a p.m.p. action of �. Each Uγ ,a,ε(α) consists of those β ∈ A(�, X, μ) that
satisfy μ(β(γ )a�α(γ )a) < ε.

Every automorphism T ∈ Aut(X, μ) acts on A(�, X, μ) by conjugation: a �→
T aT −1, a ∈ A(�, X, μ). It is shown in [4] that the conjugacy class of every free ergodic
action of an amenable group is dense in the weak topology of A(�, X, μ).

We say that a set P of �-actions is meager if its complement contains a denseGδ subset
in A(�, X, μ). We call P generic (or comeager) if it contains a dense Gδ subset. It is well
known that, for example, the set of all ergodic free actions of a discrete amenable group �
is generic, as well as the set of all actions with zero measure entropy (see [4, 9]).

1.2. Universal systems. Universal dynamical systems appear in various contexts in many
papers (see, e.g., [2, 20, 21, 24, 29, 30]). The exact definition of universality varies from
paper to paper. We will mainly follow the one given in [2] by Downarowicz and Serafin.
Let G be an amenable group and let X be a metric compact space on which G acts by
homeomorphisms. A topological system (X, G) is called universal for some class S of
ergodic p.m.p. actions of G if the following two conditions are satisfied. For any ergodic
G-invariant measureμ on X, the system (X, μ, G) belongs to S, and for any (Y , ν, G) ∈ S,
there exists a G-invariant measure μ on X such that (X, μ, G) is measure-theoretically
isomorphic to (Y , ν, G).

In view of the variational principle, it is natural to consider classes S defined by a
condition on the entropy of an action. From this point of view, one may interpret Krieger’s
finite generator theorem (see [11]) as the universality of the full topological shift on n
letters for the class S consisting of all systems with entropy strictly less than log n and
the Bernoulli shift of entropy exactly log n. It is then possible to construct a universal
system for the class S of automorphisms with entropy strictly (or not strictly) less than
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a given positive constant and, moreover, for the class defined by entropy belonging to a
given non-degenerate interval (see [2]). A special case of a class of such a type is the class
of all zero-entropy actions. Notably, this is the smallest class defined by the condition on
the entropy of an action that corresponds to a comeager set in A(G, X, μ). The question
about the existence of a universal system for the class of all zero-entropy systems was
communicated to the author by V. Ryzhikov, who attributed it to J.-P. Thouvenot. It turned
out, however, that it was earlier asked by B. Weiss, and it first appears in [20].

This question for the case of a single transformation, as it was originally formulated, was
answered in negative by Serafin in his paper [20]. His proof uses the notions of symbolic
and measure-theoretic complexity of a dynamical system (see also [3]) and constructions of
systems with rapidly growing measure-theoretic complexity. This approach, as mentioned
by J. Serafin, does not extend to the realm of actions of amenable groups owing to
insufficient development of the theory of symbolic extensions. In [24], the author extends
Serafin’s result to non-periodic amenable groups using the scaling entropy invariant,
constructions of Vershik’s automorphisms (see [28]) and coinduced actions. The main
difficulty of that proof lies in producing explicitly a special series of actions of a group
with certain conditions on the growth of the scaling entropy. Let us note that an explicit
construction of such actions for a general amenable group is still unknown to the author.

In the present paper, we overcome these difficulties by proving that the actions with
the desired properties are generic in A(G, X, μ) and, therefore, exist. As an immediate
corollary of our results, we give the answer to Weiss’s question for all amenable groups.

THEOREM 1.1. Every infinite countable discrete amenable group does not admit a
universal zero-entropy system.

2. Slow entropy type invariants
2.1. Kushnirenko’s sequential entropy. As an intermediate step in our arguments, we
use the following sequential entropy invariant introduced in [12], or rather its generalized
version from [18]. Let P = {Pn} be a sequence of finite subsets in G and let G

α
� (X, μ)

be a p.m.p. action of G. For a measurable partition ξ , define its sequential entropy as

hP (G, ξ) = lim sup
n

1
|Pn|H

( ∨
g∈Pn

g−1ξ

)
. (2.1)

The sequential entropy along P of the action is the supremum

hP (X, μ, G) = sup
ξ : H(ξ)<∞

hP (G, ξ). (2.2)

2.2. Scaling entropy. In this section, we give a brief introduction to the theory of
scaling entropy. This invariant was introduced by Vershik in his papers [25–27] and was
further developed by Petrov and Zatitskiy in [14, 15, 32, 33]. The main idea of Vershik
is to consider dynamical properties of functions of several variables, namely, measurable
metrics and semimetrics (quasimetrics).
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Let us mention that the closely related notions appear in several papers by S. Ferenczi
(measure-theoretic complexity; see, e.g., [3]) and Katok and Thouvenot (slow entropy;
see [8]). We refer the reader to the survey [7] for details of these invariants.

Throughout this paper, we use the following notation. For two sequences φ= {φ(n)}n
and ψ= {ψ(n)}n of positive numbers, we write φ � ψ if the asymptotic relationship
φ(n) = O(ψ(n)) is satisfied. We write φ � ψ if both inequalities φ � ψ and ψ � φ hold
and write φ ≺ ψ if φ(n) = o(ψ(n)).

2.2.1. Epsilon-entropy and measurable semimetrics. Consider a measurable function
ρ : (X2, μ2) → [0, +∞). We call ρ a measurable semimetric if it is non-negative,
symmetric and satisfies the triangle inequality. For a positive ε, the ε-entropy of the
semimetric ρ is defined in the following way. Let k be the minimal positive integer such
that the space X decomposes into a union of measurable subsets X0, X1, . . . , Xk with
μ(X0) < ε and diamρ(Xi) < ε for all i > 0. Put

Hε(X, μ, ρ) = log2 k. (2.3)

If there is no such finite k, we define Hε(X, μ, ρ) = +∞.
We call a semimetric admissible if it is separable on some subset of full measure. It

turns out (see [14]) that a semimetric is admissible if and only if its ε-entropy is finite
for any ε > 0. In this paper, we consider only admissible semimetrics. A simple example
of such a semimetric is the so-called cut semimetric ρξ corresponding to a measurable
partition ξ with finite Shannon entropy. That is, ρ(x, y) = 0 if both points x, y ∈ X lie in
the same cell of ξ , and ρ(x, y) = 1 otherwise.

The space Adm(X, μ) of all summable admissible semimetrics is a convex cone in
L1(X2, μ2). We define the m-norm on a linear subspace of L1(X2, μ2) containing Adm
as

‖f ‖m = inf{‖ρ‖L1(X2,μ2) : ρ(x, y) � |f (x, y)|, μ2-almost surely}, (2.4)

where the infimum is computed over all measurable semimetrics ρ (see [14, 32] for details).

2.2.2. Scaling entropy of a group action. Let G be a countable amenable group with
some given Følner sequence λ = {Fn}, which we will call the equipment of the group G.
We will refer to the pair (G, λ) as an equipped group. Let us remark right away that the
scaling entropy invariant is well defined beyond amenable groups and Følner sequences.
The only assumption one needs to make is the requirement of the equipment to be suitable
(see [33] for details); a sequence of increasing balls in a finitely generating group may be
viewed as an example. However, we restrict our considerations to the case of amenable
groups since we will deal only with them in this paper.

Suppose that G
α
� (X, μ) is a p.m.p. action of G on a Lebesgue space (X, μ). For

a measurable semimetric ρ and an element g ∈ G, let g−1ρ denote a translation of ρ:
g−1ρ(x, y) = ρ(gx, gy), where x, y ∈ X. Note that if ρ is admissible, then g−1ρ is
admissible as well. A semimetric is said to be generating if all its translations together
separate points of the measure space up to a null set.
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Consider the average of ρ over Fn

Gnavρ(x, y) = 1
|Fn|

∑
g∈Fn

ρ(gx, gy), x, y ∈ X. (2.5)

We will also denote the same semimetric (2.5) by the symbol GFnavρ to emphasize the set
of elements used to compute the average and αnavρ to emphasize the action. Consider the
function

�ρ(n, ε) = Hε(X, μ, Gnavρ). (2.6)

By definition, �ρ(n, ε) depends on n, ε and the semimetric ρ. However, its asymptotic
behavior in n is supposed to be independent of ρ and ε in some sense (see [26, 27]).
The strongest form of such independence corresponds to the following notion from [14,
32]. A sequence {hn} is called a scaling entropy sequence for ρ if �ρ(n, ε) � hn for all
sufficiently small ε > 0. Zatitskiy showed in [32, 33] that if a sequence {hn} is a scaling
entropy sequence for some generating ρ ∈ Adm, then it is also a scaling entropy sequence
for any other such semimetric. Hence, the class of all scaling entropy sequences forms an
invariant of the action. This invariant was studied in [14, 15, 22, 27, 32, 33].

Although there are a lot of nice non-trivial cases where the scaling entropy sequence
can be computed (see, e.g., [33]), it does not always exist in this strong form, as shown
in [22]. In order to cover all of the cases, we use a more general approach. We consider the
set of functions mapping N × R+ to R+ that decrease in their second arguments. Then we
extend the relationship � to this set by setting, for two functions � and �,

� � � ⇐⇒ for all ε > 0 there exists δ > 0 �(n, ε) � �(n, δ). (2.7)

We call � and � equivalent (and write � � �) if both relationships � � � and � �
� are satisfied. The Zatitskiy invariance theorem from [32, 33] states that, for any two
generating semimetrics ρ and ω in Adm, the following equivalence takes place:�ρ � �ω.
Therefore, the equivalence class H(X, μ, G, λ) = [�ρ] is an invariant of a p.m.p. action
of an equipped group. We call this class the scaling entropy of the action. We will also
write H(α, λ), which refers to the scaling entropy of a p.m.p. action α.

Also, we write� ≺ � if there exists δ > 0 such that, for any ε > 0, we have�(n, ε) ≺
�(n, δ). Clearly, relations ≺ and � agree with the equivalence relation � and induce
partial orders on the set of equivalence classes.

3. Main results
In this paper, we study the scaling entropy of a generic action. In §4, we look for p.m.p.
actions whose scaling entropy cannot be bounded by a given function. In [24], such
actions are called actions of almost complete growth and constructed explicitly for any
non-periodic amenable group G. Such explicit constructions for general amenable groups
are unknown. We prove that actions of almost complete growth are generic in the following
sense.

THEOREM 3.1. Let G be a countable amenable group and let λ = {Fn} be a Følner
sequence in G. Let φ(n) = o(|Fn|) be a sequence of positive real numbers. Then the set of

https://doi.org/10.1017/etds.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.24


6 G. Veprev

all zero-entropy ergodic p.m.p. actions of G that satisfy

�(n, ε) � φ(n) for sufficiently small ε > 0, (3.1)

where � ∈ H(α, λ), contains a dense Gδ-subset in A(G, X, μ).

We also study lower bounds for the scaling entropy of a generic action. For any
residually finite group, a similar result holds true.

THEOREM 3.2. Let G be an infinite countable residually finite amenable group with a
Følner sequence λ and let φ(n) be a function with limn φ(n) = ∞. Then the set of all
p.m.p. G-actions satisfying H(α, λ) � φ is meager.

However, there exist groups with the property that the scaling entropy of any free p.m.p.
action has to grow faster than a given function. We call this property a scaling entropy
growth gap. In §5.2, we give an example of such a group (Theorem 5.5) and prove that this
property does not depend on the choice of Følner sequence.

4. Generic actions of almost complete growth
4.1. Sequential entropy of generic actions. In [18], Ryzhikov proves that the set of
all automorphisms T ∈ Aut(X, μ) such that hP (T ) = +∞ contains a dense Gδ subset
of Aut(X, μ) provided min{|x − y| : x, y ∈ Pn, x = y} goes to infinity. Moreover, the
same is proved there for any amenable group provided {gh−1 : g, h ∈ Pn, g = h} does
not intersect any fixed finite set eventually. We use this approach to obtain the following
proposition.

PROPOSITION 4.1. Let G be a countable amenable group and let {P ln}l=1,...,kn
n=1,...,∞ be a family

of finite subsets of G such that, for any finite K ⊂ G, any sufficiently large n and g,
h ∈ P ln, we have gh−1 ∈ K for all l = 1, . . . , kn. Then the set of all actions of G on
(X, μ) satisfying

sup
ξ

lim sup
n

min
l=1,...,kn

1
|P ln|

H

( ∨
g∈P ln

g−1ξ

)
= +∞, (4.1)

where supremum is computed over all finite measurable partitions, is comeager.

Proof. Let {ξi}∞i=1 be a dense (in Rokhlin metric [17]) family of finite measurable
partitions of (X, μ). Consider a countable dense family {αq}q∈I of Bernoulli G-actions.
Such a family exists in the conjugacy class of any Bernoulli action. For any q ∈ I and any
k > 0, there exists some jk,q > k such that, for any j � jk,q ,

R(αq , ξi , j) = min
l=1,...,kj

1
|P lj |

H

( ∨
g∈P lj

αq(g)
−1ξi

)
> H(ξi)− 1

k
, i = 1, . . . , k. (4.2)

Indeed, since αq is Bernoulli, every partition ξi can be approximated by a cylindri-
cal partition whose translations over P lj are independent for sufficiently large j and
l = 1, . . . , kj owing to our assumptions on family {P lj }. Since the function R(α, ξi , jk,q)
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is weakly continuous in α, the set Uk,q of all p.m.p. actions α ∈A(G, X, μ) satisfying
R(α, ξi , jk,q) > H(ξi)− (1/k) for every i = 1, . . . , k is weakly open. Consider the set

W =
⋂
k

⋃
q

Uk,q . (4.3)

Clearly, W is Gδ , contains every αq and, therefore, is dense. Every action in W satisfies
the desired condition (4.1). Indeed, for α ∈ W , for every i > 0 and for every k > i, there
is some q(k) such that R(α, ξi , jk,q(k)) > H(ξi)− (1/k). Hence, lim supn R(α, ξi , n) �
H(ξi) and, since {ξi} is dense, supξ lim supn R(α, ξ , n) = +∞.

4.2. Proof of Theorem 3.1 and non-existence of a universal zero-entropy system. In this
section, we prove Theorem 3.1 and obtain Theorem 1.1 as its corollary. We find it easier to
verify the desired generic properties for sequential entropy first and then transfer them to
scaling entropy when we have certain relationships between these two invariants in hand.
The non-existence of a universal zero-entropy system follows from a natural connection
between the topological entropy and the scaling entropy. A direct proof without sequential
entropy also seems possible. It would, however, involve some technical details that we
would like to avoid.

We proceed with the following proposition that connects sequential entropy in the sense
of Proposition 4.1 to the scaling entropy of the action.

PROPOSITION 4.2. Consider, for every integer n, a family {P ln}l=1,...,kn of finite disjoint
subsets of a countable group G such that Fn = ⋃kn

l=1 P
l
n is a Følner sequence. Assume

that, for some p.m.p. action α of G,

sup
ξ

lim sup
n

min
l=1,...,kn

1
|P ln|

H

( ∨
g∈P ln

g−1ξ

)
> 0. (4.4)

Then, for any � ∈ H(α, λ), where λ = {Fn},
�(n, ε) ≺ |Fn|

kn
(4.5)

for any sufficiently small ε > 0.

Proof. Consider a finite partition ξ satisfying relationship (4.4), and let c be the corre-
sponding value of the left-hand side. Let ρξ be the corresponding cut semimetric. Let
F̃n ⊂ Fn be the union of those P ln that satisfy

|P ln| >
|Fn|
2kn

. (4.6)

Let Ln be the set of corresponding indices l. One may easily see that |F̃n| � 1
2 |Fn|. Hence,

G
F̃n
avρξ (x, y) � 2GFnavρξ (x, y) for any x, y ∈ X. Therefore,

Hε(X, μ, GFnavρξ ) � H2ε(X, μ, GF̃navρξ ). (4.7)

Then we use the following lemma, which is proved in [15], to estimate H2ε(X, μ, GF̃navρξ )
from below.
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LEMMA 4.3. Let ρ1, . . . , ρk be admissible semimetrics on (X, μ) such that ρi(x, y) � 1
for all i � k, x, y ∈ X. Let ρ̃ = (1/k)(ρ1 + · · · + ρk). Then there exists somem � k such
that

H2
√
ε(X, μ, ρm) � Hε(X, μ, ρ̃). (4.8)

It is easy to see that the same result holds for a convex combination ρ̃ = ∑
i αiρi , where

αi > 0, α1 + · · · + αk = 1. In our case,

GF̃navρξ =
∑
l∈Ln

|P ln|
|F̃n|

G
Pln
avρξ . (4.9)

Thus, there exists some l ∈ Ln such that H2ε(X, μ, GF̃navρξ ) � H2
√

2ε(X, μ, GP
l
n
avρξ ).

Suppose that n is such that

min
l=1,...,kn

1
|P ln|

H

( ∨
g∈P ln

g−1ξ

)
>
c

2
. (4.10)

We use the following lemma from [32] that connects ε-entropy to the classical Shannon
entropy.

LEMMA 4.4. Let m, k ∈ N and let {ξi}ki=1 be a family of finite measurable partitions each
having no more than m cells. Let ξ = ∨k

i=1 ξi be the common refinement of these partitions
and let ρ = (1/k)

∑k
i=1 ρξi be the average of corresponding semimetrics. Then, for any

ε ∈ (0, 1
2 ), the following estimate holds.

H(ξ)

k
� Hε(X, μ, ρ)

k
+ 2ε log m− ε log ε − (1 − ε) log(1 − ε)+ 1

k
. (4.11)

Let m = |ξ |, ξg = g−1ξ , where g ∈ P ln. According to Lemma 4.4,

H2
√

2ε(X, μ, GP
l
n
avρξ ) � H4

√
ε(X, μ, GP

l
n
avρξ ) > |P ln|

(
c

2
− 8

√
ε log m− δ(4

√
ε)

)
− 1,

(4.12)

where δ(ε) = −2ε log ε − 2(1 − ε) log(1 − ε), which tends to zero when ε goes to
zero. Then, choosing ε sufficiently small depending only on c and m = |ξ |, we obtain

H4
√
ε(X, μ, GP

l
n
avρξ ) > (c/4)|P ln|. Since |P ln| > |Fn|/2kn by assumption (4.6), we obtain

Hε(X, μ, GFnavρξ ) � H4
√
ε(X, μ, GP

l
n
avρξ ) >

c

4
|P ln| >

c

8
· |Fn|
kn

. (4.13)

Thus, at least along some subsequence, Hε(X, μ, GFnavρξ ) � |Fn|/kn, and that completes
the proof.

Proof of Theorem 3.1. It suffices to construct a family {P ln}l=1,...,kn
n=1,...,∞ of finite subsets of G

satisfying assumptions of Proposition 4.1 and such that |Fn|/kn � φ(n). Then the desired
result follows from Proposition 4.2.
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Let K be a finite subset of G. Consider a locally finite graph �K = (G, EK), where
(g, h) belongs to EK if and only if either gh−1 ∈ K or hg−1 ∈ K . Clearly, the degree of
each vertex in �K does not exceed 2|K|. Therefore, there exists a proper vertex coloring of
�K into rK = 2|K| + 1 colors: that is, a partition of all vertices into rK parts such that any
two adjacent vertices belong to different parts. Indeed, one may color vertices one by one;
each time there is at least one color available since no more than 2|K| colors can appear
in the �K -neighborhood of any vertex. Hence, we obtain a decomposition G = ⋃rK

l=1 C
l
K ,

where ClK are mutually disjoint and gh−1 ∈ K for any l � rk and any g, h ∈ ClK .
Take a sequence of increasing finite subsets exhausting the entire group: K1 ⊂

K2 ⊂ · · · ⊂ ⋃
Ki = G. Now let i(n) be a non-decreasing sequence of positive integer

parameters with lim i(n) = +∞, which we will define later. Put

P ln = Fn ∩ ClKi(n) , l = 1, . . . , rKi(n) . (4.14)

Clearly, the family {P ln} satisfies the assumptions of Proposition 4.1. Since, by the
assumptions of Theorem 3.1, the sequence |Fn|/φ(n) goes to infinity, we can chose
a piecewise constant sequence i(n), also tending to infinity, such that kn = rKi(n) ≺
|Fn|/φ(n). Therefore, |Fn|/kn � φ(n), as desired.

Of course, the genericity implies existence, and we obtain the following corollary.

COROLLARY 4.5. Any countable amenable group admits actions of almost complete
growth with respect to any Følner sequence.

To finish the proof of Theorem 1.1, it only remains to recall the following theorem
proved in [24].

THEOREM 4.6. Suppose that an amenable group G admits ergodic actions of almost com-
plete growth for some Følner equipment. Then G does not have a universal zero-entropy
system.

As a consequence, we obtain that there does not exist a universal zero-entropy system
for any countable amenable group: that is, Weiss’s question is solved in full generality.

5. Generic lower bounds and scaling entropy growth gap
Let us recall that a unitary representation of a discrete group is called compact if every
vector has a precompact orbit. A p.m.p. action is called compact if the corresponding
Koopman representation is compact. It is shown in [14] that, for the group Z, this property
is equivalent to the boundedness of the scaling entropy. In fact, the same proof works for
the case of an amenable group with Følner equipment (see, e.g., [31]).

5.1. Absence of a generic lower bound for residually finite groups. Any countable
residually finite amenable group admits a compact free p.m.p. action and, therefore, has an
action with bounded scaling entropy, that is, the scaling entropy with the slowest growth
possible. Indeed, one may consider an infinite product of finite approximations endowed
with the natural product measure. The reverse implication is not true in general: the group
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of all dyadic rotations of a unit circle, for example, is not residually finite and, nevertheless,
has a compact free action. However, the converse implication is true for finitely generated
groups.

CLAIM 5.1. A finitely generated group admits a compact free action if and only if it is
residually finite.

Proof. Let α be a compact p.m.p. action of a group G and let π be its Koopman
representation. Any compact action of a discrete group decomposes into a direct sum
of finite-dimensional representations (see, e.g., [10]). Therefore, π = ⊕

τi and dim τi =
ni < ∞. The full image of τi is a finitely generated subgroup in GLni (C). Hence, τi(G)
is residually finite owing to Malcev’s theorem [13]. Since the action α is free, the group G
is residually finite as well.

THEOREM 5.2. Let G
α
� (X, μ) be a free ergodic p.m.p. action of an amenable group G

and let λ = {Fn} be a Følner sequence in G. Let φ(n) be a non-negative function satisfying
φ � H(α, λ). Then the set of all free p.m.p. actions β of G with H(β, λ) � φ is meager.

Applying Theorem 5.2 to a compact action of a residually finite amenable group, we
obtain Theorem 3.2.

Proof. Consider a dense sequence of finite measurable partitions {ξi}∞i=1 of (X, μ) and a
measurable metric ρ = ∑∞

i=1(1/2
i )ρξi . Let {αq} be a countable dense family of G-actions

from the conjugacy class of α. Also, fix a monotone sequence {εr } of positive numbers
tending to zero. For any q and k, there exists a jk,q such that

Hεk/4(X, μ, (αq)
jk,q
av ρ) <

1
k
φ(jk,q). (5.1)

Consider a neighborhood Uk,q of αq such that, for every β ∈ Uk,q , the following holds
true.

Hεk (X, μ, β
jk,q
av ρ) <

1
k
φ(jk,q). (5.2)

Such Uk,q does indeed exist owing to the following lemma from [32].

LEMMA 5.3. Assume that ‖ρ1 − ρ2‖m < ε2/32, where ρ1, ρ2 ∈ Adm(X, μ) and ε > 0.
Then the inequality Hε(X, μ, ρ1) < Hε/4(X, μ, ρ2) holds true.

Indeed, having Lemma 5.3 in hand, we can uniformly approximate ρ by a
partial sum

∑r
i=1(1/2

i )ρξi . Then the desired inequality (5.2) is achieved provided
μ(β(g−1)C�αq(g−1)C) is sufficiently small for every set C to be a cell of ξi , where
i � r , g ∈ Fjk,q .

Now consider the Gδ-set

W =
⋂
k

⋃
q

Uk,q . (5.3)
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Consider any β ∈ W and any integer number r. Then, for any k > r , there exists qk such
that

Hεr (X, μ, β
jk,qk
av ρ) � Hεk (X, μ, β

jk,qk
av ρ) <

1
k
φ(jk,qk ). (5.4)

Since ρ is an admissible metric, the function �(n, ε) = Hε(X, μ, βnavρ) belongs to the
scaling entropy class H(β, λ). Therefore, any β ∈ W satisfies H(β, λ) � φ(n) owing to
inequality (5.4).

Remark. We did not really use the Følner property of equipment λ while proving
Theorems 3.1 and 5.2. The same results are also valid if we assume λ to be only suitable
(see [33]). It is important, however, that the group is amenable. This allows us to conclude
that the conjugacy class of every essentially free p.m.p. action is dense. It is unknown to
the author whether or not similar results hold for non-amenable groups.

5.2. Example of a group with a scaling entropy growth gap. In view of §5.1 and
Theorem 3.2, one may wonder if it is always the case that the scaling entropy of a generic
action grows arbitrarily slowly (along a subsequence, of course). We already know that
it is true provided the group possesses a compact free action, but it is unclear for groups
without such actions. We say that a group G has a scaling entropy growth gap with respect
to equipment λ if there exists a function φ(n) tending to infinity such that H(α, λ) � φ for
every free p.m.p. action α of the group G. In this section, we show that there exists a group
with a scaling entropy growth gap.

Let G = SL(2, Fp) be the group of all 2 × 2 matrices with determinant 1 over the
algebraic closure of a finite field Fp, where p > 2 is a prime number. Clearly, G is
countable, and it can be presented as a union of increasing finite subgroupsG = ⋃∞

n=1 Gn,
where each Gn = SL(2, Fqn) and Fqn is a finite extension of Fqn−1 .

We will use the following growth theorem, which was initially proved in [5] by
H. Helfgott for SL(2, Fp) and then generalized to the following result (see [16]).

THEOREM 5.4. Let L be a finite simple group of Lie type of rank r and let A be a generating
set of L. Then either A3 = L or |A3| > c|A|1+δ , where c and δ depend only on r.

THEOREM 5.5. The group G = SL(2, Fp) with equipment λ = {Gn} admits scaling
entropy growth gap. The function φ(n) = log(qn) is the desired lower bound.

Proof. Consider a free p.m.p. actionG� (X, μ). Take some non-trivial element g0 from
G1 = SL(2, Fp); let us take g0 = ( 1 1

0 1 ), for instance. Since g0 has order p and the action is
free, there exists a measurable partition ξ of (X, μ) into p cells such that ξ(x) = ξ((g0)

ix)

for every i = 1, . . . , p − 1: that is, each cell of ξ contains exactly one point from each
g0-orbit. Let ρξ be the cut semimetric corresponding to ξ .

Suppose that Hε2(X, μ, Gnavρξ ) < log k and let X0, X1, . . . , Xk be the corresponding
decomposition. Since Gn is finite, the measure space decomposes as (Gn, ν)× (Y , η),
where the action of Gn preserves the second component. Since the exceptional set X0 has
measure less than ε2, the η-measure of those y that satisfy |Gn × {y} ∩X0| > ε|Gn| is
less than ε. The restriction of Gnavρξ to each Gn-orbit is Gn-invariant and can be obtained
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by averaging the restriction of ρξ . The restriction of ρξ to a Gn-orbit corresponds to its
partition into p parts of equal size. Hence, the restriction of ρξ has mean value at least 1

2
as well as its average, since averaging preserves L1-norm. All of the above implies that
there exits at least one Gn-orbit with an invariant metric that has ε-entropy (with respect
to uniform measure) less than log k and L1-norm of at least 1

2 . It suffices to prove the
following claim.

CLAIM 5.6. Let ρ be a left-invariant semimetric on SL(2, Fq) with diameter greater
than 3ε, where ε ∈ (0, 1

2 ). Then Hε(SL(2, Fq), ν, ρ) � c log q, where ν is the uniform
probability measure and c is an absolute constant.

Indeed, we can identify the orbit that we found above with the group SL(2, Fqn) with
the left-invariant semimetric that has diameter at least 1

2 . Applying Claim 5.6, we obtain
log k � c log qn and complete the proof.

Now let us prove Claim 5.6.

Proof of Claim 5.6. We can assume that q is sufficiently large depending only on δ, which
is an absolute constant since the rank r = 2. Also, assume that Hε(SL(2, Fq), ν, ρ) <
c log q. Then at most qc balls of radius ε cover the entire group except a part of size
ε|SL(2, Fq)|. Since the semimetric ρ is left-invariant, all balls with the same radius have
the same size. Therefore, the size of each ball is at least (1/2qc)|SL(2, Fq)|. Let B = B(ε)

be the ball of radius ε with center at identity. Since the diameter of the group is greater than
3ε, the productB(ε) · B(ε) · B(ε) ⊂ B(3ε) does not cover the whole group. Therefore, due
to the growth theorem 5.4, we have two options: either |BBB| � |B|1+δ or the ball B does
not generate SL(2, Fq). In the first case,

|SL(2, Fq)| � |BBB| � 1
21+δqc(1+δ) |SL(2, Fq)|1+δ . (5.5)

Hence,

qc(1+δ) � 1
21+δ |SL(2, Fq)|δ � 1

21+δ q
δ (5.6)

and, therefore, c > δ/(2 + 2δ) provided q is sufficiently large.
In the second case, the subgroup H generated by B contains at least (1/2qc)|SL(2, Fq)|

elements and, hence, has index smaller than 2qc. Note that all non-trivial irreducible
representations of SL(2, Fq) over C have dimension of at least (q − 1)/2 (see [6, 19]).
However, the unitary representation corresponding to the permutation action of SL(2, Fq)
on SL(2, Fq)/H has dimension less than 2qc, which implies that c > 1

2 .
In both cases, we have c > δ/(2 + 2δ); therefore,

Hε(SL(2, Fq), ν, ρ) � δ

2 + 2δ
log q

and hence the claim.

Therefore Theorem 5.5 is proved.

Notably, the logarithmic bound from Theorem 5.5 is sharp. For any group G that can be
presented as an increasing union of finite groups Gn, one can define the following p.m.p.
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action. Let Cn = {gjn}knj=1 be the set of right coset representatives of Gn−1\Gn endowed
with uniform measure μn. Each finite product space

∏n
i=1(Ci , μi) can be identified with

the groupGn with the uniform measure and, therefore, carries a p.m.p. action ofGn. Since
these actions of Gn-s agree, we obtain a p.m.p. action of G on the whole product space
(X, μ) = ∏∞

i=1(Ci , μi), where each subgroup Gn preserves all the components starting
from n+ 1.

Take ρ = ∑
i 2−iρi , where each ρi is the cut semimetric distinguishing first i compo-

nents. Clearly, ρ is an admissible metric, and for any n > r , the average Gnav
∑
i<r 2−iρi

does not depend on coordinates starting from n+ 1. Therefore, there exists a partition
into |Gn| cells, each of which has diameter zero with respect to Gnav

∑
i<r 2−iρi .

Hence, for any positive ε, the ε-entropy of Gnavρ is bounded from above by log |Gn|
for sufficiently large n. For the case when G = SL(2, Fp), we have q < SL(2, Fq) < q4.
Hence, log |Gn| � log qn, and the bound is sharp.

Also, looking through the proof of Theorem 5.5, one may see a stronger alternative.
For every (not necessarily free) p.m.p. action of SL(2, Fp), its scaling entropy is either
bounded or grows at least as fast as φ(n) = log(qn).

Let us also mention that the scaling entropy growth gap property does not depend on
which Følner sequence we choose.

PROPOSITION 5.7. The property of having scaling entropy growth gap does not depend
on the choice of Følner equipment.

Proof. Assume that a group G has a scaling entropy growth gap with respect to a Følner
sequence {Fn}. Let φ(n) be a corresponding bound and let {Wn} be another Følner
sequence in G.

For any integer n, there exists some kn such that, for any r > kn, the inequality
|FnWr�Wr | < 2−n|Wr | is satisfied. Let (X, μ, G) be a free p.m.p. action of G and let
ρ be a measurable metric bounded from above by one almost everywhere. Then

1
|Wr |

∑
g∈Wr

g−1 1
|Fn|

∑
h∈Fn

h−1ρ � 1
|Wr |

∑
f∈FnWr

f−1ρ = GWrav ρ + l1, (5.7)

where the term l1 is bounded in absolute value by 2−n. The last equality holds true
due to the Fn-almost invariance of Wr . Take ε > 0 satisfying H4

√
ε(G

Fn
avρ) � φ(n). For

sufficiently large n, the term l1 is negligible when computing ε-entropy of GWrav ρ. Lemma
4.3 gives

Hε(G
Wr
av ρ) � H4ε(G

Wr
av ρ + l1) � H4

√
ε(G

Fn
avρ) � φ(n). (5.8)

Therefore, G has a scaling entropy growth gap with respect to {Wr} and bound function
ψ(r) = φ(n(r)), where n(r) is the maximal n such that kn < r .

The fact that every compact representation decomposes into a direct sum of
finite-dimensional representations implies the absence of a free compact action of
the infinite symmetric group S∞. Indeed, the only finite-dimensional irreducible
representations of S∞ are the trivial and sign representations, which do not distinguish
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permutations with the same sign. This observation suggests the conjecture that S∞ should
have a scaling entropy growth gap. It is unknown to the author whether or not this
conjecture is true.
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