DECOMPOSITION ALGEBRAS OF RIESZ OPERATORS

by G. J. MURPHY and T. T. WEST

(Received 11 December, 1978)

Let H be a Hilbert space and let \mathbf{B} denote the Banach algebra of all bounded linear operators on H with \mathbf{K} denoting the closed ideal of compact operators in \mathbf{B}. If $T \in \mathbf{B}, \sigma(T)$ and $r(T)$ will denote the spectrum and spectral radius of T, respectively, and π the canonical mapping of \mathbf{B} onto the Calkin algebra \mathbf{B} / \mathbf{K}.
$R \in \mathbf{B}$ is called a Riesz operator if $\pi(R)$ is a quasinilpotent element of the Calkin algebra. The second author [9] has proved that every Riesz operator $R=C+Q$ where C is compact normal, Q is quasinilpotent and $\sigma(R)=\sigma(C)$. It follows from a theorem of Ruston [8] that this decomposition characterises Riesz operators on Hilbert spaces and it is an open problem whether such a decomposition is possible in Banach spaces. Similar decompositions have occurred in the work of Gohberg and Krein [3, p. 17] and Stampfli [7, Lemma 6]. As there may be many different decompositions of a Riesz operator into the sum of a compact and a quasinilpotent operator we shall call the decomposition as carried out in [9] and described below a West decomposition. There can be more than one West decomposition of the same Riesz operator.

Gillespie and West [2] have given an example of a Riesz operator on a Hilbert space which cannot be decomposed in any manner so that the compact and quasinilpotent parts commute. From now on we consider a fixed West decomposition $R=C+Q$. Chui, Smith and Ward [1] have proved that $N=C Q-Q C$ is quasinilpotent and R. E. Harte has remarked that $p(C, Q) N$ is quasinilpotent for any polynomial p in two non-commuting variables. This prompted an investigation of the (in general non-unital) closed subalgebra of \mathbf{B} generated by C and Q which we call the decomposition algebra of R associated with C and Q and denote by $\mathbf{D}(C, Q)$ or, when there is no possibility of ambiguity, by \mathbf{D}. We show that Q and N are both contained in $\operatorname{Rad} D$ the radical of D which consists of all the quasinilpotent elements of \mathbf{D}, that \mathbf{D} is commutative modulo its radical, that \mathbf{D} consists entirely of Riesz operators and thus is a Riesz algebra in the sense of Smyth [6], that the quotient algebra $\mathbf{D} / \operatorname{Rad} \mathbf{D}$ is invariant for all West decompositions of R and that \mathbf{D} is the direct sum of $\operatorname{Rad} D$ and the closed subalgebra generated by C.

Smyth [5] has successfully put Riesz theory in an algebraic setting and has obtained a perfect analogue of the West decomposition for Riesz elements of C^{*}-algebras. Legg [4] has shown that the result of Chui, Smith and Ward holds in this context; similarly all the results proved here extend easily to the C^{*}-algebra setting.

We shall need the facts that the spectral radius is continuous relative to the norm topology for operators in a commutative algebra or if the spectrum of the limit operator is totally disconnected (as is the case for Riesz operators). Also if $\boldsymbol{A} \in \mathbf{B}$ can be written as

Glasgow Math. J. 21 (1980) 75-79.
the operator matrix, relative to some decomposition of H,

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

then $\sigma(A) \subseteq \sigma\left(A_{11}\right) \cup \sigma\left(A_{22}\right)$.
Let R be a Riesz operator on H. To avoid trivialities we assume that H is infinite dimensional and that $\sigma(R)=\left\{\lambda_{i}\right\}_{1}^{\infty} \cup\{0\}$, where $\left\{\lambda_{i}\right\}_{1}^{\infty}$ is the set of non-zero eigenvalues of R. It is well known that $\lambda_{j} \rightarrow 0(j \rightarrow \infty)$. Let P_{j} denote the spectral projection for R corresponding to the eigenvalue λ_{j} given by the formula

$$
P_{j}=\frac{1}{2 \pi i} \int_{\Gamma_{j}}(z I-R)^{-1} d z
$$

where Γ_{j} is a circle centre λ_{j} containing no other eigenvalue of R in its interior or on its boundary. Put $S_{k}=\sum_{i=1}^{k} P_{j}$, and F_{k} for the orthogonal projection whose range is the same as that of S_{k}. Write $E_{j}=F_{j}-F_{j-1}(j=1,2, \ldots)$ with $F_{0}=0$. Then $C=\sum_{j=1}^{\infty} \lambda_{j} E_{j}$ is the compact normal operator in the West decomposition of R (relative to this arrangement of the eigenvalues) and the essence of the proof lies in showing that $Q=R-C$ is quasinilpotent. If $C_{k}=\sum_{i=1}^{k} \lambda_{i} E_{j}$ and we consider H as the orthogonal direct sum of the range and null-space of the projection F_{k}, C_{k} and Q may be written in matrix form

$$
C_{k}=\left[\begin{array}{llll|l}
\lambda_{1} & & & 0 & 0 \\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
0 & & & \lambda_{k} & \\
\hline & 0 & & 0
\end{array}\right], \quad Q=\left[\begin{array}{llll|l}
0 & & & & * \\
& 0 & & & * \\
& & 0 & & \\
& & 0 & & 0
\end{array}\right]
$$

where in the C_{k} matrix the eigenvalues are repeated according to multiplicity. Note that we have essentially chosen a basis of the range of each of the E_{j} 's (up to $j=k$) which upper-triangularises the matrices for C, R and Q.

Lemma 1 (Harte). $p(C, Q) N$ is quasinilpotent, where $p(C, Q)$ is any polynomial in C and Q.

Proof. Put $N_{k}=C_{k} Q-Q C_{k}$. Then $C_{k} \rightarrow C(k \rightarrow \infty)$ hence

$$
p\left(C_{k}, Q\right) N_{k} \rightarrow p(C, Q) N \quad(k \rightarrow \infty)
$$

N is compact and therefore

$$
r\left\{p\left(C_{k}, Q\right) N_{k}\right\} \rightarrow r\{p(C, Q) N\} \quad(k \rightarrow \infty)
$$

It suffices to show that $p\left(C_{k}, Q\right) N_{k}$ is quasinilpotent for each k. Now

$$
\begin{gathered}
N_{k}=\left[\begin{array}{lll|l}
0 & & * & * \\
& 0 & & \\
& 0 & & 0 \\
& 0 & & 0
\end{array}\right], \quad p\left(C_{k}, Q\right)=\left[\begin{array}{lll|l}
\mu_{1} & & * & * \\
& \mu_{2} & & \\
0 & & & \\
\hline & p\left(C_{k}, Q\right) N_{k}=\left[\begin{array}{llll}
0 & & & \\
& 0 & * & * \\
& 0 & 0 & \\
\hline & 0 & & 0
\end{array}\right]
\end{array},\right.
\end{gathered}
$$

and the result follows as the matrix is nilpotent.
Proposition 2. $N \in \operatorname{Rad} \mathbf{D}$.
Proof. It suffices to show that $r(T N)=0$ for each $T \in D$. Now there exists a sequence of polynomials $p_{n}(C, Q)$ converging to T as $n \rightarrow \infty$. Thus

$$
p_{n}(C, Q) N \rightarrow T N \quad(n \rightarrow \infty)
$$

and N is compact; hence

$$
r\left\{p_{n}(C, Q) N\right\} \rightarrow r(T N) \quad(n \rightarrow \infty)
$$

The result follows from Lemma 1.
Corollary 3. $\mathbf{D}^{\prime}=\mathbf{D} / \mathbf{R a d} \mathbf{D}$ is commutative.
Proposition 4. Rad \mathbf{D} consists of the quasinilpotent elements of \mathbf{D}.
Proof. Every operator in Rad D is quasinilpotent. By Corollary 3 and the results of [10] the spectral radius is subadditive and submultiplicative on \mathbf{D}; hence the quasinilpotents form an ideal of \mathbf{D} which is therefore contained in Rad \mathbf{D}.

Corollary 5. $Q \in \operatorname{Rad} \mathbf{D}$.
Proposition 6. Every element of \mathbf{D} is a Riesz operator.
Proof. If $T \in \mathbf{D}$ there is a sequence of polynomials $p_{n}(C, Q)$ without constant term converging to T. Then

$$
\pi\left(p_{n}(C, Q)\right)=p_{n}(0, \pi(Q)) \rightarrow \pi(T) \quad(n \rightarrow \infty)
$$

$\pi(Q)$ is quasinilpotent and $p_{n}(0, \pi(Q))$ is a polynomial in $\pi(Q)$ without a constant term; thus $\pi(T)$ is contained in the commutative subalgebra generated by $\pi(Q)$; hence $r\left\{p_{n}(0, \pi(Q))\right\} \rightarrow r(\pi(T))(n \rightarrow \infty)$ and $r(\pi(T))=0$.

Proposition 7. \mathbf{D}^{\prime} is isometrically isomorphic to the closed subalgebra $\mathbf{A}(C)$ of \mathbf{B} generated by C, and is thus independent of the particular West decomposition of \boldsymbol{R}.

Proof. \mathbf{D}^{\prime} is a commutative semi-simple Banach algebra generated by $C^{\prime}=$ $C+\operatorname{Rad} \mathbf{D}$. Now $\sigma_{\mathbf{D}^{\prime}}\left(T^{\prime}\right)=\sigma_{\mathbf{D}}(T)(T \in \mathbf{D})$, and so $r\left(T^{\prime}\right)=r(T)=\|T\|$ if $T \in \mathbf{A}(C)$ (as C is normal); hence $\|T\|=\left\|T^{\prime}\right\|$. Thus the map $\mathbf{A}(C) \rightarrow \mathbf{D}^{\prime}: T \rightarrow T^{\prime}$ is an isometric isomorphism. If $R=C_{1}+Q_{1}$ is a second West decomposition, then there is a unitary operator U for which $C=U C_{1} U^{-1}$; thus $\mathbf{A}(C)$ and $\mathbf{A}\left(C_{1}\right)$ are isometrically isomorphic.

Proposition 8. $\mathbf{D}=\mathbf{A}(C) \oplus \operatorname{Rad} \mathbf{D}$.
Proof (i). If $T \in \mathbf{A}(C) \cap \operatorname{Rad} \mathbf{D}$, then T is both normal and quasinilpotent and hence zero.
(ii) If $T \in \mathbf{D}$ there exists a sequence of polynomials $p_{n}(C, Q)$ converging to T. Thus

$$
p_{n}(C, Q)^{\prime}=p_{n}\left(C^{\prime}, 0\right) \rightarrow T^{\prime} \quad(n \rightarrow \infty)
$$

By Proposition 7, as $n \rightarrow \infty, \quad p_{n}(C, 0) \rightarrow S \in \mathbf{A}(C)$ and $S^{\prime}=T^{\prime}$. Thus, as $n \rightarrow \infty$, $p_{n}(C, Q)-p_{n}(C, 0) \rightarrow S-T \in \operatorname{Rad} \mathbf{D}$ and hence $\mathbf{D}=\mathbf{A}(C)+\operatorname{Rad} \mathbf{D}$, completing the proof.

These results fail to hold for decompositions of Riesz operators which are not West decompositions. If

$$
C=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad Q=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

then C is compact normal, and Q is quasinilpotent but they have no proper invariant subspace in common. Thus the identity representation of the algebra generated by C and Q is irreducible and hence the algebra is semi-simple.

REFERENCES

1. C. K. Chui, P. W. Smith and J. D. Ward, A note on Riesz operators, Proc. Amer. Math. Soc. 60 (1976), 92-94.
2. T. A. Gillespie and T. T. West, A characterisation and two examples of Riesz operators, Glasgow Math. J. 9 (1968), 106-110.
3. I. C. Gohberg and M. G. Kreǐn, Introduction to the theory of linear nonselfadjoint operators Vol. 18 Translations of Math. Monographs A.M.S. (Providence, 1969).
4. D. Legg, A note on Riesz elements in C*-algebras, Internat. J. Math. and Math. Sci. 1 (1978), 93-96.
5. M. R. F. Smyth, Riesz theory in Banach algebras, Math. Z. 145 (1975), 145-155.
6. M. R. F. Smyth, Riesz algebras, Proc. Roy. Irish. Acad. Sect. A 76 (1976), 327-334.
7. J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2), 9 (1974), 165-175.
8. T. T. West, Riesz operators in Banach spaces, Proc. London Math. Soc. (3) 16 (1966), 131-140.
9. T. T. West, The decomposition of Riesz operators, Proc. London Math. Soc. (3) 16 (1966), 737-752.
10. J. Zemánek, Spectral radius characterizations of commutativity in Banach algebras. Studia Math. 61 (1977), 257-268.

School of Mathematics
Trinity College
Dublin

