DECOMPOSITION ALGEBRAS OF RIESZ OPERATORS

by G. J. MURPHY and T. T. WEST

(Received 11 December, 1978)

Let H be a Hilbert space and let **B** denote the Banach algebra of all bounded linear operators on H with **K** denoting the closed ideal of compact operators in **B**. If $T \in \mathbf{B}$, $\sigma(T)$ and r(T) will denote the spectrum and spectral radius of T, respectively, and π the canonical mapping of **B** onto the Calkin algebra **B**/**K**.

 $R \in \mathbf{B}$ is called a Riesz operator if $\pi(R)$ is a quasinilpotent element of the Calkin algebra. The second author [9] has proved that every Riesz operator R = C + Q where C is compact normal, Q is quasinilpotent and $\sigma(R) = \sigma(C)$. It follows from a theorem of Ruston [8] that this decomposition characterises Riesz operators on Hilbert spaces and it is an open problem whether such a decomposition is possible in Banach spaces. Similar decompositions have occurred in the work of Gohberg and Krein [3, p. 17] and Stampfli [7, Lemma 6]. As there may be many different decompositions of a Riesz operator into the sum of a compact and a quasinilpotent operator we shall call the decomposition as carried out in [9] and described below a West decomposition. There can be more than one West decomposition of the same Riesz operator.

Gillespie and West [2] have given an example of a Riesz operator on a Hilbert space which cannot be decomposed in any manner so that the compact and quasinilpotent parts commute. From now on we consider a fixed West decomposition R = C + Q. Chui, Smith and Ward [1] have proved that N = CQ - QC is quasinilpotent and R. E. Harte has remarked that p(C, Q)N is quasinilpotent for any polynomial p in two non-commuting variables. This prompted an investigation of the (in general non-unital) closed subalgebra of **B** generated by C and Q which we call the *decomposition algebra of* R associated with C and Q and denote by D(C, Q) or, when there is no possibility of ambiguity, by **D**. We show that Q and N are both contained in Rad **D** the radical of **D** which consists of all the quasinilpotent elements of **D**, that **D** is commutative modulo its radical, that **D** consists entirely of Riesz operators and thus is a Riesz algebra in the sense of Smyth [6], that the quotient algebra **D**/Rad **D** is invariant for all West decompositions of R and that **D** is the direct sum of Rad **D** and the closed subalgebra generated by C.

Smyth [5] has successfully put Riesz theory in an algebraic setting and has obtained a perfect analogue of the West decomposition for Riesz elements of C^{*}-algebras. Legg [4] has shown that the result of Chui, Smith and Ward holds in this context; similarly all the results proved here extend easily to the C^{*}-algebra setting.

We shall need the facts that the spectral radius is continuous relative to the norm topology for operators in a commutative algebra or if the spectrum of the limit operator is totally disconnected (as is the case for Riesz operators). Also if $A \in \mathbf{B}$ can be written as

Glasgow Math. J. 21 (1980) 75-79.

the operator matrix, relative to some decomposition of H,

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix}$$

then $\sigma(A) \subseteq \sigma(A_{11}) \cup \sigma(A_{22})$.

Let R be a Riesz operator on H. To avoid trivialities we assume that H is infinite dimensional and that $\sigma(R) = \{\lambda_i\}_1^{\infty} \cup \{0\}$, where $\{\lambda_i\}_1^{\infty}$ is the set of non-zero eigenvalues of R. It is well known that $\lambda_i \rightarrow O(j \rightarrow \infty)$. Let P_j denote the spectral projection for R corresponding to the eigenvalue λ_i given by the formula

$$P_{i} = \frac{1}{2\pi i} \int_{\Gamma_{i}} (zI - R)^{-1} dz$$

where Γ_i is a circle centre λ_i containing no other eigenvalue of R in its interior or on its boundary. Put $S_k = \sum_{j=1}^{k} P_j$, and F_k for the orthogonal projection whose range is the same as that of S_k . Write $E_j = F_j - F_{j-1}$ (j = 1, 2, ...) with $F_0 = 0$. Then $C = \sum_{j=1}^{\infty} \lambda_j E_j$ is the compact normal operator in the West decomposition of R (relative to this arrangement of the eigenvalues) and the essence of the proof lies in showing that Q = R - C is quasinilpotent. If $C_k = \sum_{j=1}^{k} \lambda_j E_j$ and we consider H as the orthogonal direct sum of the range and null-space of the projection F_k , C_k and Q may be written in matrix form

$$C_{k} = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ \lambda_{2} & & \\ & \lambda_{3} & \\ 0 & & \lambda_{k} \\ \hline & 0 & & 0 \end{bmatrix}, \qquad Q = \begin{bmatrix} 0 & * & * & * \\ 0 & & & \\ & 0 & & \\ & 0 & & \\ \hline & 0 & 0 & \\ \hline \end{bmatrix},$$

where in the C_k matrix the eigenvalues are repeated according to multiplicity. Note that we have essentially chosen a basis of the range of each of the E_j 's (up to j = k) which upper-triangularises the matrices for C, R and Q.

LEMMA 1 (Harte). p(C, Q)N is quasinilpotent, where p(C, Q) is any polynomial in C and Q.

Proof. Put
$$N_k = C_k Q - QC_k$$
. Then $C_k \to C$ $(k \to \infty)$ hence

$$p(C_k, Q)N_k \to p(C, Q)N \qquad (k \to \infty).$$

N is compact and therefore

$$r\{p(C_k, Q)N_k\} \to r\{p(C, Q)N\} \qquad (k \to \infty).$$

It suffices to show that $p(C_k, Q)N_k$ is quasinilpotent for each k. Now

$$N_{k} = \begin{bmatrix} 0 & * & * \\ 0 & & \\ & 0 & 0 \\ \hline & 0 & 0 \end{bmatrix}, \quad p(C_{k}, Q) = \begin{bmatrix} \mu_{1} & * & * \\ & \mu_{2} & & \\ 0 & & \\ \hline & 0 & & \\ & 0 & & \\ \hline & 0 & & \\ & 0 & & \\ \end{bmatrix},$$

$$p(C_k, Q)N_k = \begin{bmatrix} 0 & & & \\ 0 & * & * \\ & & & \\ 0 & 0 & \\ \hline 0 & & & 0 \end{bmatrix}$$

and the result follows as the matrix is nilpotent.

PROPOSITION 2. $N \in \text{Rad } \mathbf{D}$.

Proof. It suffices to show that r(TN) = 0 for each $T \in \mathbf{D}$. Now there exists a sequence of polynomials $p_n(C, Q)$ converging to T as $n \to \infty$. Thus

$$p_n(C, Q)N \to TN \qquad (n \to \infty)$$

and N is compact; hence

$$r\{p_n(C, Q)N\} \rightarrow r(TN) \qquad (n \rightarrow \infty).$$

The result follows from Lemma 1.

COROLLARY 3. $\mathbf{D}' = \mathbf{D}/\mathbf{Rad} \mathbf{D}$ is commutative.

PROPOSITION 4. Rad **D** consists of the quasinilpotent elements of **D**.

Proof. Every operator in Rad **D** is quasinilpotent. By Corollary 3 and the results of [10] the spectral radius is subadditive and submultiplicative on **D**; hence the quasinilpotents form an ideal of **D** which is therefore contained in Rad **D**.

COROLLARY 5. $Q \in \text{Rad } \mathbf{D}$.

PROPOSITION 6. Every element of **D** is a Riesz operator.

Proof. If $T \in \mathbf{D}$ there is a sequence of polynomials $p_n(C, Q)$ without constant term converging to T. Then

$$\pi(p_n(C,Q)) = p_n(0,\pi(Q)) \to \pi(T) \qquad (n \to \infty).$$

 $\pi(Q)$ is quasinilpotent and $p_n(0, \pi(Q))$ is a polynomial in $\pi(Q)$ without a constant term; thus $\pi(T)$ is contained in the commutative subalgebra generated by $\pi(Q)$; hence $r\{p_n(0, \pi(Q))\} \rightarrow r(\pi(T)) \ (n \rightarrow \infty)$ and $r(\pi(T)) = 0$.

PROPOSITION 7. **D'** is isometrically isomorphic to the closed subalgebra A(C) of **B** generated by C, and is thus independent of the particular West decomposition of R.

Proof. \mathbf{D}' is a commutative semi-simple Banach algebra generated by $C' = C + \operatorname{Rad} \mathbf{D}$. Now $\sigma_{\mathbf{D}'}(T') = \sigma_{\mathbf{D}}(T)$ $(T \in \mathbf{D})$, and so r(T') = r(T) = ||T|| if $T \in \mathbf{A}(C)$ (as C is normal); hence ||T|| = ||T'||. Thus the map $\mathbf{A}(C) \to \mathbf{D}' : T \to T'$ is an isometric isomorphism. If $R = C_1 + Q_1$ is a second West decomposition, then there is a unitary operator U for which $C = UC_1U^{-1}$; thus $\mathbf{A}(C)$ and $\mathbf{A}(C_1)$ are isometrically isomorphic.

PROPOSITION 8. $\mathbf{D} = \mathbf{A}(C) \oplus \operatorname{Rad} \mathbf{D}$.

Proof (i). If $T \in \mathbf{A}(C) \cap \operatorname{Rad} \mathbf{D}$, then T is both normal and quasinilpotent and hence zero.

(ii) If $T \in \mathbf{D}$ there exists a sequence of polynomials $p_n(C, Q)$ converging to T. Thus

$$p_n(C, Q)' = p_n(C', 0) \rightarrow T' \qquad (n \rightarrow \infty).$$

By Proposition 7, as $n \to \infty$, $p_n(C, 0) \to S \in \mathbf{A}(C)$ and S' = T'. Thus, as $n \to \infty$, $p_n(C, Q) - p_n(C, 0) \to S - T \in \text{Rad } \mathbf{D}$ and hence $\mathbf{D} = \mathbf{A}(C) + \text{Rad } \mathbf{D}$, completing the proof.

These results fail to hold for decompositions of Riesz operators which are not West decompositions. If

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix},$$

then C is compact normal, and Q is quasinilpotent but they have no proper invariant subspace in common. Thus the identity representation of the algebra generated by C and Q is irreducible and hence the algebra is semi-simple.

REFERENCES

1. C. K. Chui, P. W. Smith and J. D. Ward, A note on Riesz operators, Proc. Amer. Math. Soc. 60 (1976), 92-94.

2. T. A. Gillespie and T. T. West, A characterisation and two examples of Riesz operators, Glasgow Math. J. 9 (1968), 106-110.

3. I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators Vol. 18 Translations of Math. Monographs A.M.S. (Providence, 1969).

4. D. Legg, A note on Riesz elements in C*-algebras, Internat. J. Math. and Math. Sci. 1 (1978), 93-96.

5. M. R. F. Smyth, Riesz theory in Banach algebras, Math. Z. 145 (1975), 145-155.

6. M. R. F. Smyth, Riesz algebras, Proc. Roy. Irish. Acad. Sect. A 76 (1976), 327-334.

7. J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2), 9 (1974), 165-175.

8. T. T. West, Riesz operators in Banach spaces, Proc. London Math. Soc. (3) 16 (1966), 131-140.

ALGEBRAS OF RIESZ OPERATORS

9. T. T. West, The decomposition of Riesz operators, Proc. London Math. Soc. (3) 16 (1966), 737-752.

10. J. Zemánek, Spectral radius characterizations of commutativity in Banach algebras. Studia Math. 61 (1977), 257-268.

School of Mathematics Trinity College Dublin