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Abstract

We introduce a common generalization of essentially all known methods for explicit computation
of Selmer groups, which are used to bound the ranks of abelian varieties over global fields. We also
simplify and extend the proofs relating what is computed to the cohomologically defined Selmer
groups. Selmer group computations have been practical for many Jacobians of curves over Q of
genus up to 2 since the 1990s, but our approach is the first to be practical for general curves of
genus 3. We show that our approach succeeds on some genus 3 examples defined by polynomials
with small coefficients.

2010 Mathematics Subject Classification: 11G30 (primary); 11G10, 14G25, 14H45 (secondary)

1. Introduction

1.1. Background. The Mordell–Weil theorem [23, 42] states that for any
abelian variety J over a number field k, the abelian group J (k) is finitely
generated. One of the main steps of the proof involves showing the finiteness of
J (k)/n J (k) for some n > 2. And there is essentially only one known proof of this
finiteness, based on a vast generalization of Fermat’s method of infinite descent.
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In modern terms, the proof embeds J (k)/n J (k) into a Selmer group Seln(J ), a
finite group that is computable in principle.

But the Selmer group is defined as a subgroup of a Galois cohomology
group H 1(k, J [n]), and 1-cocycles for the absolute Galois group G of k are not
objects that a computer can deal with directly. Fortunately, sometimes one can
find more concrete representations for elements of H 1(k, J [n]). For example, if
J is an elliptic curve with J [2] ⊆ J (k), then J [2] is isomorphic to µ2 × µ2 as a
G-module, and the Kummer sequence yields H 1(k, J [2]) ' k×/k×2 × k×/k×2.

However, in many higher-dimensional situations, the number field over which
all the points of J [n] become rational is too large for the required computations.
Instead one tries to find exact sequences relating J [n] to modules induced
from Z/nZ or µn , since cohomology of induced modules can be computed by
Shapiro’s lemma [1, Section 4, Proposition 2]. For example, if J is the Jacobian of
a hyperelliptic curve y2 = f (x) with deg f odd, and∆ is the G-set of Weierstrass
points not including the one at infinity, then elements of J [2] are represented by
degree 0 divisors supported on ∆ ∪ {∞}, and we obtain a split exact sequence

0 −→ Z
2Z
−→

(
Z

2Z

)∆
−→ J [2] −→ 0

in which (Z/2Z)∆ is a direct sum of induced modules: this was exploited in [34].
For y2 = f (x) with deg f even, there is still a relationship between J [2] and
induced modules, but it is more involved, and it becomes much harder to relate
H 1(k, J [2]) to concrete objects: this problem, together with its generalization to
y p = f (x) for larger primes p, was addressed in [29]. The situations of the two
previous sentences were called true descent and fake descent, respectively, in [29].

1.2. Goal of this article. The main goal of this article is to develop a practical
generalization of true and fake descent that contains essentially all previous
instantiations of explicit descent. Our generalization is broad enough to suggest an
explicit approach for Jacobians of arbitrary curves, using the G-set of odd theta
characteristics. We demonstrate its practicality by computing the rank of J (Q)
for the Jacobians of several nonhyperelliptic genus 3 curves X , some of which
have no special property beyond having a small discriminant; at least one of
these curves can be handled unconditionally, without assuming the Generalized
Riemann hypothesis (see Section 12.9). This is the first time that Selmer group
computations for ‘general’ genus 3 Jacobians have been possible.

REMARK 1.1. Practical Selmer group calculations rely on the computation of
class groups of number fields, and this is usually the bottleneck, except in
situations where the G-action on certain torsion points is much smaller than
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expected for a general curve. For a general genus 3 curve over Q, our method
requires the class group of a number field of degree 28; this seems to be the
smallest possible, given that 28 is the smallest index of a proper subgroup of
Sp6(F2). For general genus 4 curves, the corresponding index is 120, which is
likely to remain outside the realm of practical computation for some time.

Setting the computational advantages of our approach aside, the main
theoretical advances in our article are as follows.

• Our approach of taking Cartier duals before taking cohomology (Sections 6.2.2
and 6.3.1) leads quickly to concrete results on groups such as H 1(k, J [2])
over any field of characteristic not 2; this approach has already found outside
applications (see [4, Section 4]). In particular, our approach eliminates the
use of generalized Jacobians and the group scheme Jm in [29], a significant
simplification even in the setting of hyperelliptic curves.

• The introduction of the middle rows in (5) and (11) provides short proofs of
the comparison theorems relating the cohomological and explicit definitions of
descent maps.

• Appendix A shows how to augment the explicit descent maps to produce an
explicit description of the Selmer group itself instead of a ‘fake’ approximation
to it.

REMARK 1.2. For certain Jacobians J , there is also a representation-theoretic
approach to understanding J [2] and its Galois cohomology, based on Vinberg
theory, whose relevance for arithmetic problems was first pointed out by Benedict
Gross. Namely, Jack Thorne has shown very generally how, starting from a simple
split algebraic group G of type A, D, or E over a field k of characteristic 0,
one can produce a family of curves for which J [2] can be identified with
the stabilizers for an action of the subgroup Gθ fixed by an involution θ in
a particular canonical Gad(k)-conjugacy class of involutions of G, and from
this one can obtain information about H 1(k, J [2]). In particular, when G is
of type E6 (respectively E7), Thorne’s construction yields the universal family
of nonhyperelliptic genus 3 curves with a marked hyperflex (respectively, a
marked flex that is not a hyperflex). See [41]; the families of genus 3 curves
appear explicitly in Theorem 4.8 there. In the E6 case, Gal(k(J [2])/k) is
generically W (E6), isomorphic to an index 28 subgroup of the group Sp6(F2)

that arises for a general genus 3 curve. In the E7 case, Gal(k(J [2])/k) is
generically W (E7)/{±1}, isomorphic to the full group Sp6(F2). It is reasonable
to hope that it will eventually be possible to use Thorne’s work to study Sel2(J )
for any nonhyperelliptic genus 3 curve with a rational flex.
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1.3. Road map to the rest of the article. The first few sections are
preliminary. Section 2 introduces the notation to be used throughout the rest
of the article; much of it is standard. Section 3 introduces twisted powers, a slight
generalization of induced modules and permutation modules. Section 4 uses
Lang reciprocity to relate various definitions of Weil pairings. Section 5 reviews
and develops the combinatorics of theta characteristics on a curve.

Section 6 introduces the key notions of the paper. First it axiomatizes the
settings to which our explicit approach applies, formalizing them into the notions
of true descent setup and fake descent setup, which are general enough to handle
various isogenies φ : A → J over a global field k. Given a true descent setup,
which includes an étale k-algebra L , we define a homomorphism

J (k)
φA(k)

−→ L×

L×n
(1)

that acts as a computation-friendly substitute for the connecting homomorphism

J (k)
φA(k)

−→ H 1(k, A[φ]) (2)

appearing in the definition of the actual φ-Selmer group. In fact, the
homomorphism (1) can be defined in two ways, either by using cohomology
(good for comparing it to the homomorphism (2) used to define the actual
φ-Selmer group) or by evaluating explicit rational functions on 0-cycles (good
for computing the homomorphism). Using our work on Weil pairings, we
prove that the two definitions agree. A more complicated argument establishes
compatibility of analogous definitions for a fake descent setup; here L×/L×n is
replaced by L×/L×nk×.

Section 7 identifies the computation-friendly analogue of the subgroup of
classes in H 1(k, A[φ]) unramified outside a finite set of places, which is essential
for making the computations finite. Section 9 defines a computation-friendly
analogue of the φ-Selmer group, called the true or fake Selmer group, and defines
an analogue for a variety X whose Albanese variety is J . Section 10 uses the
notion of Shafarevich–Tate group from Section 8 to prove results that often
enable one to pass from knowledge of the true or fake Selmer group to the actual
φ-Selmer group. A more elaborate method that always succeeds in calculating
the φ-Selmer group is presented in an appendix, but in some situations it may be
impractical.

Section 11 provides details on how to compute true and fake Selmer groups.
Section 12 specializes the approach to the case of nonhyperelliptic genus 3 curves,
and ends with several examples.
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2. Notation

If S is a set and n ∈ Z>0, let
(S

n

)
denote the set of n-element subsets of S. For

each field k, choose a separable closure ks (compatibly, when possible), and let
G = Gk = Gal(ks/k). In general, for an object X over k, we denote by Xs its base
extension to ks . If k is a global field, let Ωk be the set of nontrivial places of k.
For v ∈ Ωk , let kv be the completion of k at v; moreover, if v is nonarchimedean,
let Ov be the valuation ring in kv, let Fv be the residue field, and let kv,u be the
maximal unramified extension of kv inside a separable closure kv,s . All G-sets
and G-modules are given the discrete topology, and the G-action is assumed to
be continuous. If M is a G-module, then MG or M(k) denotes the subgroup of
G-invariant elements, and H n(M) or H n(k,M) or H n(G,M) denotes profinite
group cohomology.

If X is an integral k-scheme, then k(X) is its function field. More generally, if X
is a disjoint union of integral k-schemes X i , let k(X) be the product of the k(X i);
equivalently, k(X) is the ring of global sections of the sheaf of total quotient rings
(see [17, page 141]). Let O = OX be the structure sheaf.

Call a variety nice if it is smooth, projective, and geometrically integral. Curves
will be assumed nice unless otherwise specified. For a nice variety X , let Div X
(respectively Div0 X ) be the group of divisors (respectively divisors algebraically
equivalent to 0) on X over k, let Z(X) (respectively Z0(X)) be the group
of 0-cycles (respectively 0-cycles of degree 0), and define Pic X as in [17, II.

Section 6]; if X is a curve, also define Pic0 X := ker(Pic X
deg→ Z). Alternatively,

if Princ X is the group of principal divisors, then Pic X = Div X/Princ X . If
f ∈ k(X)× and z = ∑ nP P ∈ Z(X) is such that no closed point P appearing
in z is a zero or pole of f , let

f (z) =
∏

P

(Nk(P)/k f (P))n P ∈ k×.

Let J := AlbX be the Albanese variety of X , so J is an abelian variety. Then
the Picard variety of X (that is, the reduced subgroup scheme associated to the
connected component of the Picard scheme of X/k) may be identified with the
dual abelian variety Ĵ . If X is a curve, then both J and Ĵ are the Jacobian Jac X .
Let Y0(X) be the kernel of the natural map Z0(X)→ J (k), and let J (k)◦ be the
image of this map. More generally, if G is a subgroup of J (k), let (J (k)/G)◦ be
the image of Z0(X)→ J (k)/G.

3. Twisted powers

Fix a field k.
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DEFINITION 3.1. Given a G-module M , and a finite G-set ∆, the twisted power
M∆ is the G-module of maps from ∆ to M .

REMARK 3.2. The G-action on maps is the usual one: if σ ∈ G and P 7→ m P is
an element m ∈ M∆, then σm is the map P 7→ σ(mσ−1 P).

REMARK 3.3. Applying the construction to Z with trivial action yields Z∆. Then
M∆ = HomZ(Z∆,M) for any G-module M .

REMARK 3.4. If G is a commutative group scheme over k, we also use G to
denote the G-module G(ks), and define G∆ (at least as a G-module). Similarly, a
finite étale k-scheme ∆ can be identified with a finite G-set.

DEFINITION 3.5. If M is a G-module and ∆ is a finite G-set, there is a
homomorphism deg : M∆ → M that sums the coordinates, and we let M∆

deg 0 be
its kernel.

DEFINITION 3.6. Given a finite G-module M of size not divisible by char k, the
Cartier dual of M is the G-module M∨ := HomZ(M, k×s ). (This is compatible
with the notion for finite commutative group schemes.)

REMARK 3.7. For fixed ∆, the functor M 7→ M∆ is exact.

REMARK 3.8. For a finite G-module M of size not divisible by char k, and a finite
G-set ∆, we have (M∆)∨ ' (M∨)∆.

Each finite étale k-scheme ∆ is Spec L for some étale k-algebra L . Define the
étale ks-algebra L s := L ⊗k ks . Thus, G∆

a (k) = L and G∆
a (ks) = L s . Assume

char k - n. Then µ∆n (ks) = µn(L s). The group H 1(G∆
m) = H 1(G, L×s ) is trivial by

a generalization of Hilbert’s theorem 90 [38, page 152, Exercise 2], so H 1(µ∆n ) =
L×/L×n .

4. Weil pairings

Let k be a field. Let n be a positive integer with char k - n.

4.1. The Albanese–Albanese definition. In this section, we review Lang’s
construction of the Weil pairing between Albanese varieties. Let V and W be
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nice k-varieties and let D ∈ Div(V ×W ). The divisor D induces partial maps

D : Z0(Vs)→ Div0 Ws and Dt : Z0(Ws)→ Div0 Vs .

Summation of 0-cycles in AlbV (ks) gives rise to the exact sequence

0 −→ Y0(Vs) −→ Z0(Vs) −→ AlbV (ks) −→ 0.

By [19, III, Theorem 4, Corollary 2], D(Y0(Vs)) ⊂ Princ Ws . In particular, if
v ∈ Z0(Vs) maps to an n-torsion point [v] ∈ AlbV [n](ks), then nv ∈ Y0(Vs),
and D(nv) = div( fnv) for some fnv ∈ ks(W )×. Define fnw ∈ ks(V )×

symmetrically. Define

eD,n : AlbV [n](ks)× AlbW [n](ks) −→ µn(ks)

[v], [w] 7−→ fnw(v)

fnv(w)

where v ∈ Z0(Vs)mapping to [v] and w ∈ Z0(Ws)mapping to [w] are chosen so
that the evaluations make sense. See [19, VI, Section 4] for the proof that eD,n is
well defined, bilinear, and Galois-equivariant.

REMARK 4.1. Let A be an abelian variety, let Â be the dual abelian variety,
and continue to suppose that char k - n. Take V = A and W = Â, and let D
be a Poincaré divisor. Since AlbA = A and Alb Â = Â, we obtain a pairing
en : A[n] × Â[n] → µn . It is nondegenerate (see [19, VI, VII]), so we obtain
an identification of Â[n] with A[n]∨.

4.2. The Albanese–Picard definition. Let X be a nice k-variety. Let
J := AlbX . Let P be a Poincaré divisor in Div(J × Ĵ ). Fix a base point in Xs

to obtain a map ι : Xs → Js . The functoriality of taking Albanese varieties yields
ι(Y0(Xs)) ⊂ Y0(Js). Define P0 := (ι × id Ĵ )

∗P ∈ Div(Xs × Ĵs). If y ∈ Y0(Xs)

and z ∈ Z0( Ĵs), then P0(y) (if defined) is the divisor of some rational function
on Ĵs , which can be evaluated on z (if the supports are disjoint) to obtain a value
P0(y, z) ∈ k×s . This provides a pairing in y, z that satisfies the bilinearity identities
when both sides are defined. Given D ∈ Div0(Xs), we may find z ∈ Z0( Ĵs)

summing to [D] ∈ Pic0(Xs) = Ĵs(ks), which means that D −Pt
0(z) = div(gD,z)

for some gD,z ∈ ks(X)×, and we obtain a partially defined pairing

[ , ] : Y0(Xs)× Div0(Xs) −→ k×s
y, D 7−→ gD,z(y)P0(y, z).
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See [31, Section 3.2] for a proof that this pairing is independent of the choices
made, using Lang reciprocity and the seesaw principle. If g ∈ ks(X)×, then
[y, div(g)] = g(y) since the choice z = 0 yields gD,z = g.

Finally, define
eX,n : J [n] × Ĵ [n] −→ µn(ks)

([x], [D]) 7−→ fnD(x)
[nx, D] ,

where the 0-cycle x ∈ Z0(Xs) represents an element of J [n](ks), the divisor
D ∈ Div0 Xs represents an element of Ĵ [n](ks), the rational function fnD ∈
ks(X)× has divisor nD, and all these are chosen so that everything is defined.

Let us check that eX,n is well defined, that is, independent of the choices of x
and D. Changing x means adding some y ∈ Y0(Xs) to it, and we have

eX,n([y], D) = fnD(y)
[ny, D] =

fnD(y)
[y, nD] =

fnD(y)
fnD(y)

= 1.

Changing D means adding div( f ) to it for some f ∈ ks(X)×, and we have

eX,n(x, div( f )) = f n(x)
[nx, div( f )] =

f (x)n

f (x)n
= 1.

4.3. Functoriality. Let ι : X → X ′ be a morphism of nice varieties. Let
x ∈ Y0(Xs) and D ∈ Div0(X ′s). We have [x, ι∗D] = [ι(x), D] whenever both
sides are defined (take gi∗D,i∗z = i∗gD,z in the definition). It follows that for
[x] ∈AlbXs [n] and [D] ∈ (Pic X ′s)[n]we have eX,n([x], ι∗[D])= eX ′,n([ι(x)], [D]).

4.4. Equality of the pairings. Let J := AlbX . We now have three pairings

eX,n, eJ,n, en : J [n] × Ĵ [n] → µn,

where the first two are from Section 4.2 and the third is from Remark 4.1.

PROPOSITION 4.2. The pairings eX,n , eJ,n , and en are equal.

Proof. Functoriality with respect to an Albanese embedding Xs → AlbXs shows
that eX,n = eJ,n .

Now we prove that eJ,n = en . In the definition of eJ,n , we use P0 = P. Suppose
that a ∈ J [n](ks) and a′ ∈ Ĵ [n](ks) are represented by appropriate z ∈ Z0(Js)

and z′ ∈ Z0( Ĵs). Let D = Pt(z′) ∈ Div0(Js). By definition, fnz′ = fnD. Also, for
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any y ∈ Y0(Js), we have [y, D] = P(y, z′) since in the definition we can take
z = z′ and gD,z = 1. Thus

eJ,n(a, a′) = fnD(z)
[nz, D] =

fnz′(z)
P(nz, z′)

= fnz′(z)
fnz(z′)

= en(a, a′).

5. Odd theta characteristics

Assume char k 6= 2. Let X be a nice curve of genus g over k. Let ω be its
canonical bundle, and let J := Jac X .

5.1. Theta characteristics. A theta characteristic on X is a line bundle ϑ
on X such that ϑ⊗2 ' ω. A theta characteristic ϑ is called odd if the nonnegative
integer h0(ϑ) := dim H 0(X, ϑ) is odd. The isomorphism classes of theta
characteristics on Xs form a set T of size 22g, and the odd ones form a subset Todd

of size 2g−1(2g − 1) (cf. [25]).

5.2. Theta characteristics and quadratic forms. Given a symplectic
pairing e on an F2-vector space V , a quadratic form associated to e is a
map of sets q : V → F2 such that q(x + y) − q(x) − q(y) = e(x, y) for all
x, y ∈ V .

THEOREM 5.1 (Riemann–Mumford). Suppose that k is separably closed and
char k 6= 2. View the Weil pairing e2 as a symplectic pairing on J [2] with values
in F2 ' {±1}.

(a) For each theta characteristic ϑ ,

qϑ : J [2] → F2

L 7→ (h0(ϑ ⊗L )+ h0(ϑ)) (mod 2)

is a quadratic form associated to e2.

(b) The map

T −→ {quadratic forms on J [2] associated to e2}
ϑ 7−→ qϑ ,

is a bijection.

(c) A theta characteristic ϑ is odd if and only if the Arf invariant of qϑ is 1.
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Proof. See [25] and [16, Section 4].

Combining Theorem 5.1 with the following lemma will help us understand
the relations between the odd theta characteristics in the F2-vector space
(Pic X/〈ω〉)[2] (see Corollary 5.3).

LEMMA 5.2. Let f be in the space F2[x1, . . . , xn]62 of polynomials of total
degree at most 2. Let f2 be its homogeneous part of degree 2.

(i) If f vanishes everywhere on Fn
2 , then f2 is a square.

(ii) If n is even, and f2 is nondegenerate (as a quadratic form), and V ⊆ Fn
2 is

a coset of a linear subspace of dimension at least n/2 + 1, then f (v) = 0
for some v ∈ V .

(iii) If n is even and n > 4 and v ∈ Fn
2 , and f2 is nondegenerate, then there exists

x ∈ Fn
2 with f (x) = f (x + v) = 0.

(iv) If n is even and n > 6 and v1, v2 ∈ Fn
2 , and f2 is nondegenerate, then there

exists x ∈ Fn
2 with f (x) = f (x + v1) = f (x + v2) = 0.

Proof.

(i) If f2 is not a square, it contains a monomial xi x j with i 6= j , and then
restricting to the span of the xi - and x j -axes lets us reduce to the case n = 2,
which is easy.

(ii) Replacing f (x) by f (x + v) lets us assume that V is a subspace. Let e be
the symmetric bilinear pairing associated to f2. Since e is nondegenerate,
e|V has kernel of dimension at most n−dim V < dim V , so e|V 6= 0. Hence
f2|V is not a square. Apply (i) to f + 1.

(iii) If v 6= 0, let V ⊆ Fn
2 be the codimension-1 coset defined by the equation

f (x + v)− f (x) = 0; if v = 0, let V = Fn
2 . Apply (ii).

(iv) By (iii), we may assume that v1, v2 are distinct and nonzero. Let V be the
codimension-2 coset defined by

f (x + v1)− f (x) = 0 and f (x + v2)− f (x) = 0.

Apply (ii).

In the rest of Section 5.2 except in Corollary 5.5, we assume that k is a separably
closed field of characteristic not 2, and that X is a nice curve of genus g > 2
over k.
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COROLLARY 5.3.

(a) If g > 2, then every class in J [2] ⊂ (Pic X/〈ω〉)[2] has the form ϑ1 + ϑ2

(modulo ω) with ϑ1, ϑ2 ∈ Todd.

(b) If g > 3, and ϑ1, . . . , ϑ6 ∈ Todd sum to 0 in (Pic X/〈ω〉)[2], then there exist
ϑ12, ϑ34, ϑ56 ∈ Todd such that

ϑ1 + ϑ2 + ϑ34 + ϑ56 = 0,
ϑ3 + ϑ4 + ϑ12 + ϑ56 = 0,
ϑ5 + ϑ6 + ϑ12 + ϑ34 = 0

in (Pic X/〈ω〉)[2].

Proof. Fix ϑ ∈ Todd. The elements of T are ϑ+ x for x ∈ J [2], and ϑ+ x is odd
if and only if qϑ(x) = 0, by the definitions of odd and qϑ . In other words, there is
an identification

{zeros of qϑ in J [2]} −→ Todd

x 7−→ ϑ + x .

Identify J [2] with F2g
2 , and qϑ with a polynomial f .

(a) Apply Lemma 5.2(iii) with v the class in J [2]. Then x corresponds to the
desired ϑ1, and x + v to ϑ2.

(b) Apply Lemma 5.2(iv) with v1 = ϑ1 + ϑ2 and v2 = ϑ3 + ϑ4 to get x . Then
x corresponds to the desired ϑ56, x + v1 corresponds to the desired ϑ34,
and x + v2 corresponds to the desired ϑ12. The first two relations are then
satisfied, and the third is the sum of the first two.

By an incidence structure, we will mean a pair (∆,Σ), where∆ is a set andΣ
is a collection of subsets of∆. An isomorphism (∆,Σ)→ (∆′,Σ ′) is a bijection
∆→ ∆′ under which Σ and Σ ′ correspond.

Let Σ be the set of 4-element subsets of Todd that sum to 0 in (Pic X/〈ω〉)[2].

PROPOSITION 5.4. The following structures have the same automorphism group
Sp2g(F2):

(1) the F2-vector space (Pic X/〈ω〉)[2] equipped with Todd (viewed as a subset);

(2) the F2-vector space J [2] with the Weil pairing e2;

(3) the incidence structure (Todd,Σ).
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Proof. The automorphism group of (2) is Sp2g(F2), so it suffices to show how to
build each structure canonically in terms of the others.
(1) → (2): By Corollary 5.3(a), we can recover J [2] as the subgroup of

(Pic X/〈ω〉)[2] generated by ϑ1 + ϑ2 with ϑ1, ϑ2 ∈ Todd. The subset Todd

determines the function h0 (mod 2) on the nontrivial coset T of J [2] in
(Pic X/〈ω〉)[2]. Choose ϑ ∈ Todd; from h0 (mod 2), we can recover q = qϑ and
hence e2(x, y) = q(x + y)− q(x)− q(y).
(2) → (1): Take the space of functions q : J [2] → F2 such that the function

(x, y) 7→ q(x+ y)−q(x)−q(y) is a multiple of e2. Inside this we have the subset
of q for which the multiple is e2 itself and for which the Arf invariant is 1.
(1)→ (3): Clear.
(3) → (1): If g = 2, take the F2-vector space P with generator set Todd and

with one relation saying that the sum of the generators is 0. If g > 3, take the
F2-vector space P with generator set Todd and with relations given by the elements
of Σ .

To show that the map ε : P → (Pic X/〈ω〉)[2] sending each basis element to
the corresponding ϑ is an isomorphism, it suffices to show that its restriction
ε0 : P0 → J [2] is an isomorphism, where P0 is the codimension-1 subspace of P
spanned by pairs. Corollary 5.3(a) shows that ε0 induces a bijection(

Todd

2

)/
∼ −→ J [2] − {0},

where {ϑ1, ϑ2} ∼ {ϑ3, ϑ4} means
∑4

i=1 ϑi = 0 in (Pic X/〈ω〉)[2]. In particular, ε0

is surjective. If g = 2, then ε0 is injective too, because dim P0 = 4 = dim J [2].
To prove injectivity for g > 3, it suffices to prove that every relation (ϑ1 + ϑ2)+
(ϑ3+ϑ4) = (ϑ5+ϑ6) in (Pic X/〈ω〉)[2] is a consequence of 4-term relations. But
that is true, by Corollary 5.3(b).

COROLLARY 5.5. Let k be any field of characteristic not 2. The action of G
on J [2], on the set of theta characteristics of Xs or on the set of odd theta
characteristics of Xs , factors through the standard action of Sp2g(F2) on J [2].

REMARK 5.6. It follows from the connectedness of the moduli space of genus g
curves [7] that the isomorphism type of each structure in Proposition 5.4 depends
only on g, and not on k or X .

PROPOSITION 5.7. For g > 2, we have

#Σ = 2g−3

3
(22g − 1)(22g−2 − 1)(2g−2 − 1).
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Proof. Since Sp2g(F2) acts transitively on J [2] − {0}, all fibers of the summing
map (

Todd

2

)
−→ J [2] − {0} ⊆ Pic X

〈ω〉 [2]

have the same size, namely
(2g−1(2g−1)

2

)
/(22g−1)= 22g−3−2g−2. Hence the number

of pairs of pairs such that the two pairs have the same image in J [2] − {0} is
(22g−1)

(22g−3−2g−2

2

)
. Each such pair of pairs consists of disjoint pairs, since x+y =

x+z would imply y = z. Thus each pair of pairs corresponds to a 4-element subset
of Todd summing to 0 with a partition into two pairs. Each 4-element subset can
be partitioned in three ways, so

#Σ = 1
3
(22g − 1)

(
22g−3 − 2g−2

2

)
= 2g−3

3
(22g − 1)(22g−2 − 1)(2g−2 − 1).

5.3. Representing odd theta characteristics by divisors over the ground
field.

PROPOSITION 5.8. An odd theta characteristic ϑ on Xs whose class lies in
(Pic Xs)

G is represented by an element of Div X.

Proof. The k-scheme parametrizing effective divisors whose class equals ϑ is
a Brauer–Severi variety, a twisted form of Ph0(ϑ)−1, corresponding to a central
simple algebra of dimension h0(ϑ)2 and hence of index dividing h0(ϑ) [15,
Theorems 5.2.1 and 2.4.3], so the associated Brauer class τ ∈ Br k is killed by the
odd integer h0(ϑ) [15, Proposition 4.5.13(1)]. On the other hand, the Hochschild–
Serre spectral sequence yields an exact sequence Pic X → (Pic Xs)

G → Br k
under which the second map sends ϑ to τ and ω to 0, so 2τ = 0. Thus τ = 0. So ϑ
comes from an element of Pic X , or, equivalently, from an element of Div X .

6. Generalized explicit descent

6.1. The setting. Suppose that X is a nice variety over k. Let J := AlbX .

6.2. True descent. To motivate the definition of a true descent setup, we recall
the following.

EXAMPLE 6.1. Assume char k 6= 2. Let F(x) ∈ k[x] be a nonconstant separable
polynomial of odd degree 2g + 1. Let X be the smooth projective model of the
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curve y2 = F(x), so X is a hyperelliptic curve of genus g. Let∞ be the unique
point at infinity on X , and let ∆ ⊂ X be the 0-dimensional k-scheme such that
∆(ks) consists of the 2g + 1 Weierstrass points not equal to∞. Then there is a
surjection (Z/2Z)∆→ Ĵ [2] sending each basis element P ∈ ∆(ks) to the divisor
class [P −∞] (see [26, Lemma 2.4 and Corollary 2.11]). The family of divisors
P −∞ indexed by P ∈ ∆(ks) may be viewed as a single divisor β on X ×∆.

DEFINITION 6.2. A true descent setup for X consists of a triple (n,∆,L ),
where n is a positive integer not divisible by char k, ∆ = Spec L is a finite étale
k-scheme, and L is a line bundle on X×∆ such that L ⊗n ' O . In more concrete
terms, if we choose β ∈ Div(X × ∆) representing L , the condition on β is that
nβ is principal; that is, there is a function f ∈ k(X ×∆)× such that div( f ) = nβ.

REMARK 6.3. Given β, for each P ∈ ∆(ks), we have the fiber βP ∈ Div Xs . In
fact, we may think of β as the family of divisors βP depending G-equivariantly
on P . Similarly, f may be thought of as a family of functions fP ∈ k(Xs)

×.

Given (n,∆,L ), we will define a homomorphism

C : J (k) −→ L×

L×n

using cohomology, and relate it to a more explicit homomorphism.

6.2.1. Cohomological definition. Take cohomology of

0 −→ J [n] −→ J
n−→ J −→ 0

to obtain J (k) → H 1(J [n]). The condition on L (or β) implies that it induces
a map ∆ → Ĵ [n], and hence a homomorphism (Z/nZ)∆ → Ĵ [n]. Taking the
Cartier dual and applying Remark 3.8 yields α : J [n] → µ∆n . Composition yields
a homomorphism

C : J (k) −→ H 1(J [n]) α−→ H 1(µ∆n ) '
L×

L×n
. (3)

6.2.2. Explicit definition. Choose β and f as in Definition 6.2. Let X good be
the largest open subscheme of X such that f is an invertible regular function
on X good×∆. Then f defines a morphism X good×∆→Gm , and hence a morphism
X good → G∆

m . Evaluating on closed points and taking norms (this is necessary
if the closed point is of degree greater than 1), we obtain a homomorphism
Z(X good) → L×. This induces Z0(X good) → L×/L×n . If we change (β, f ) to
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(β ′, f ′), then β ′ − β is the divisor of some g ∈ k(X)×, and f ′ = cgn f for
some c ∈ k×. If we evaluate on any z ∈ Z0(X) that is good for both f and f ′, then
the value of the homomorphism in L×/L×n is unchanged (the value of g gives an
nth power, and the value of c is cdeg z = 1). Given any z ∈ Z0(X), we can move β
to avoid z, so the compatible homomorphisms glue to give a homomorphism

C̃ : Z0(X) −→ L×

L×n
. (4)

6.2.3. Compatibility of the two definitions.

PROPOSITION 6.4. The maps C and C̃ are compatible in the sense that the
following diagram commutes:

Z0(X) C̃

&&��

J (k) // H 1(J [n]) α // H 1(µ∆n )
L×

L×n
.

∼oo

Proof. We may fix (β, f ) and consider Z0(X good) instead of Z0(X). Let
Z0 = Z0(X good

s ) and let Y0 be the Albanese kernel in the exact sequence of
G-modules

0 −→ Y0 −→ Z0 −→ J (ks) −→ 0.

We will construct the following commutative diagram of G-modules with exact
rows (we write J for J (ks), and so on):

0 // J [n] //

α

))

J n // J // 0

0 // J̃ [n] //

OO

��

Z0 × Y0 nz+y
//

OO

��

Z0 //

OO

C̃
��

0

0 // µ∆n
// G∆

m
n // G∆

m
// 0.

(5)

The top and bottom rows are familiar. Surjectivity of the map Z0 × Y0 → Z0

given by (z, y) 7→ nz + y follows from surjectivity of multiplication by n on
J (ks) = Z0/Y0; let J̃ [n] be the kernel of the nz + y map. We have

J̃ [n] = {(z,−nz) ∈ Z0 × Y0 : [z] ∈ J [n](ks)}.
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All the upward maps are induced by Z0 → J (ks), so commutativity of the top
part of the diagram is straightforward.

The middle and rightmost downward maps in (5) are given by

Z0 × Y0 −→ G∆
m

z, y 7−→ f (z)[y, β] := ( fP(z) · [y, βP ])P∈∆(ks )

C̃ : Z0 −→ G∆
m

z 7−→ f (z).

The bottom right square commutes since

( f (z) · [y, β])n = f (nz) · [y, nβ] = f (nz) f (y) = C̃(nz + y).

The leftmost downward vertical map is obtained by restricting the middle one.
Finally, we check that α and the vertical maps in the first column form a

commutative triangle. Since α∨ sends P to [βP ], Remark 4.1 and the Albanese–
Picard definition of en show that for any [z] ∈ J [n],

α([z]) = en([z], [β]) = f (z)
[nz, β] = f (z) · [−nz, β],

so the images of an element (z,−nz) ∈ J̃ [n] under the two paths to µ∆n are equal.
This completes the construction of (5).

Taking cohomology of (5) yields

J (k) n // J (k) // H 1(J [n])

α

xx

Z0(X good)

OO

//

C̃
��

H 1( J̃ [n])

OO

��

L× n // L× // H 1(µ∆n ).

Equality of the compositions from Z0(X good) to H 1(µ∆n ) is the desired result.

REMARK 6.5. If U is a dense open subscheme of X , then by a moving lemma,
Z0(U ) and Z0(X) have the same image in J (k). (Proof: It suffices to prove that
any closed point x of X is rationally equivalent to a 0-cycle supported on U . Pick
a closed point u ∈ U . By a classical Bertini theorem, or [28, Corollary 3.4] if k is
finite, we can find a nice curve C ⊆ X through x and u, and hence reduce to the
case in which X is a curve. In this case, it suffices to apply weak approximation to
find a rational function on X with prescribed valuations at the points of X −U .)
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COROLLARY 6.6. The explicit homomorphism C̃ in (4) induces a homomorphism

C̃ :
(

J (k)
n J (k)

)
◦
−→ L×

L×n
.

6.3. Fake descent. For computations using true descent setups to be practical,
the degrees of the components of ∆ (that is, the degrees of the field extensions L i

whose product is L) should be not too large. A fake descent setup will be a variant
of the true descent setup, a variant that may allow a simpler ∆ to be used, at the
expense of giving less direct information about Selmer groups. In Section 6.5,
we show that the true descent setup can be viewed as a special case of the fake
descent setup.

DEFINITION 6.7. A fake descent setup for X consists of a triple (n,∆,L ),
where n is a positive integer not divisible by char k, ∆ = Spec L is a nonempty
finite étale k-scheme, and L is a line bundle on X × ∆ such that L ⊗n is
the pullback of a line bundle on X . Equivalently, in terms of a divisor β ∈
Div(X × ∆) representing L , the condition is that there exists D ∈ Div X such
that nβ − (D × ∆) is principal; that is, there is a function f ∈ k(X × ∆)× such
that div( f ) = nβ − (D ×∆).

REMARK 6.8. On the fibers, the last condition says that div( fP) = nβP − D for
all P ∈ ∆(ks). Subtracting shows that [βP − βQ] ∈ Ĵ [n] for all P, Q ∈ ∆(ks).

EXAMPLES 6.9. Definition 6.7 is motivated by the following examples of fake
descent setups for curves.

(i) Assume char k 6= 2. Let π : X → P1
k be a (ramified) degree 2 cover, so X

is a hyperelliptic curve. Let n = 2, let ∆ ⊂ X be the ramification locus
of π , and let β be the diagonal copy of ∆ in X × ∆. Then we can take
D = π∗(y) for some y ∈ P1(k) (cf. [11]). See Example 10.19 for more about
this case.

(ii) The previous example generalizes to other geometrically generically cyclic
covers π : X → P1

k (cf. [29]). Let n > 2. Let k be a field with char k - n.
Suppose that F(x) ∈ k[x] factors completely in ks[x] and is not a pth power
in ks[x] for any p | n. Let X be the smooth projective model of yn = F(x).
Let π : X → P1 be the x-coordinate map. Let ∆ be the ramification locus
of π . Let β be the diagonal copy of∆ in X×∆. Then we can take D = π∗(t)
for some t ∈ P1(k).
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(iii) Assume char k /∈ {2, 3, 7}. Let X be a twist of the Klein quartic curve
x3 y + y3z + z3x = 0 in P2. Let n = 2, let ∆ correspond to the G-set of
8 triangles, as defined in [30, Section 11.1], and let β ∈ Div(X × ∆) be
the divisor of relative degree 3 over ∆ such that each βP is the sum of
the 3 points in the corresponding triangle. This gives a fake descent setup,
provided that D can be found (as turned out to be the case for the curves of
interest in [30]).

(iv) Assume char k 6= 2. Let X be any curve of genus g > 2 over k. Let
n = 2. Let ∆ correspond to the G-set of odd theta characteristics on Xs .
Proposition 5.8 applied over the residue fields of each point of ∆ shows
that one can find β ∈ Div(X × ∆) such that each βP is the corresponding
odd theta characteristic. Then one can take D to be a canonical divisor.
This gives a fake descent setup that in principle can be used to perform
a 2-descent on the Jacobian of X . When g = 2, this specializes to
Example (i).

A fake descent setup (n,∆,L ) will give rise to a cohomologically defined
homomorphism

C : J (k) −→ H 1

(
µ∆n

µn

)
(6)

that we will relate to an explicit homomorphism

C̃ : Z0(X) −→ L×

L×nk×
. (7)

6.3.1. Cohomological definition. By the final statement in Remark 6.8, L
(or β) induces a homomorphism

α∨ : (Z/nZ)∆deg 0 −→ Ĵ [n].
Dualizing

0 −→ (Z/nZ)∆deg 0 −→ (Z/nZ)∆ −→ Z/nZ −→ 0

yields ((Z/nZ)∆deg 0)
∨ ' µ∆n /µn , so the dual of α∨ is a homomorphism

α : J [n] −→ µ∆n

µn
.

The composition

J (k) −→ H 1(J [n]) α−→ H 1

(
µ∆n

µn

)
is the desired homomorphism C .
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6.3.2. Explicit definition. As in Section 6.2.2, f gives rise to a homomorphism
Z(X good)→ L×. If we change (β, D, f ) to (β ′, D′, f ′), then β ′−β is the divisor
of some g ∈ k(X × ∆)×, and D′ − D is the divisor of some h ∈ k(X)×, and
f ′ = (cgn/h) f for some c ∈ k(∆)× = L×. If we evaluate on any z ∈ Z0(X) that
is good for both f and f ′, then the value of the homomorphism in L×/L×nk× is
unchanged (the value of gn/h gives an element of L×nk×, and the value of c is
cdeg z = c0 = 1). Thus we obtain (7).

6.3.3. Compatibility of the two definitions. Taking cohomology of

0 −→ µn −→ µ∆n −→
µ∆n

µn
−→ 0

yields
k×

k×n
−→ L×

L×n
−→ H 1

(
µ∆n

µn

)
−→ Br k, (8)

so we may identify L×/L×nk× with a subgroup of H 1(µ∆n /µn).

PROPOSITION 6.10. The two maps C and C̃ are compatible in the sense that the
following diagram commutes:

Z0(X) C̃

''��

J (k) // H 1(J [n]) α // H 1

(
µ∆n

µn

)
L×

L×nk×
? _oo

Proof. We replace the pairing [y, β] used in the true case with

Y0 −→ G∆
m(ks)

µn(ks)
(9)

y 7−→ [y, β]D := [y, β − H ]
h(y)1/n

where H ∈ Div(Xs) and h ∈ ks(X)× are chosen so that div(h) = D − nH , and
h(y)1/n is a chosen nth root of h(y) (and then H and h(y)1/n are pulled back to
(X×∆)s); such H and h exist because one possibility is to take H = βP for some
P ∈ ∆(ks). If we change H to another choice H ′, then h is changed to hj where
div( j) = nH − nH ′, so the value of (9) is multiplied by [y, H − H ′]/j (y)1/n ,
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which lies in µn(ks) since its nth power equals [y, div( j)]/j (y) = 1. Thus, (9) is
well defined and Galois-equivariant. Also,

[y, β]nD =
[y, nβ − nH ]

h(y)
= [y, div( f h)]

h(y)
= ( f h)(y)

h(y)
= f (y). (10)

As in the proof of Proposition 6.4, we construct a commutative diagram with exact
rows:

0 // J [n] //

α

))

J n // J // 0

0 // J̃ [n] //

OO

��

Z0 × Y0 nz+y
//

OO

��

Z0 //

OO

C̃

��

0

0 //
µ∆n

µn

//
G∆

m

µn

n // G∆
m

// 0.

(11)

The first two rows and the vertical maps between them are the same as in (5). The
bottom row is a pushout of the bottom row of (5).

The middle downward map is

Z0 × Y0 −→ G∆
m

µn

z, y 7−→ f (z)[y, β]D
and the rightmost downward map is

C̃ : Z0(X good
s ) −→ G∆

m

z 7−→ f (z).

The bottom right square commutes since (10) implies

( f (z)[y, β]D)n = f (z)n f (y) = f (nz + y).

The leftmost downward vertical map is obtained by restricting the middle one.
Finally, we check that α and the vertical maps in the first column form a

commutative triangle. Any (z,−nz) ∈ J̃ [n] maps up to [z] ∈ J [n], and maps
right and down to f (z) · [−nz, β]D ∈ (G∆

m/µn). Remark 4.1 and the Albanese–
Picard definition of en show that

α([z]) = en([z], [β − H ]) = f (z) h(z)
[nz, β − H ] = f (z) · [−nz, β]D ∈ G∆

m

µn
.

So the triangle commutes. This completes the construction of (11).
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Taking cohomology of (11) yields

J (k) n // J (k) // H 1(J [n])

α

{{

Z0(X good)

OO

//

C̃

��

H 1( J̃ [n])

OO

��

L× // H 1

(
µ∆n

µn

)
.

Equality of the compositions from Z0(X good) to H 1(µ∆n /µn) is the desired
result.

COROLLARY 6.11. The explicit homomorphism C̃ in (7) induces a homomor-
phism

C̃ :
(

J (k)
n J (k)

)
◦
−→ L×

L×nk×
.

COROLLARY 6.12. The homomorphism C̃, which a priori depends on β and D,
in fact is independent of D and depends only on the linear equivalence class of β.

Proof. The linear equivalence class of β is all that is needed to define C .

REMARK 6.13. By Corollary 6.12, we may move β and D within their linear
equivalence classes and change f accordingly in order to make div( f ) avoid any
particular 0-cycle. Hence, we may view C̃ as being defined on all of Z0(X).

6.4. Isogenies associated to descent setups. Given a true or fake descent
setup, we obtain a homomorphism α∨ : E → Ĵ [n], where E := (Z/nZ)∆ for
a true descent setup and E := (Z/nZ)∆deg 0 for a fake descent setup.

In either case, we obtain an isogeny φ̂ : Ĵ → Â := Ĵ/α∨(E), and Ĵ [φ̂] =
α∨(E). Let A be the dual abelian variety of Â, and let φ : A → J be the dual
of φ̂. (It was first explained in [36] that the generality in which one relates the
functions in a true descent setup to an isogeny is for an isogeny whose image is a
Jacobian.)

PROPOSITION 6.14. The homomorphism C : J (k) → H 1(E∨) factors through
the quotient J (k)/φA(k).
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Proof. By [24, Section III.15, Theorem 1], A[φ]∨ ' Ĵ [φ̂]. Now the
homomorphism α∨ : E → Ĵ [n] factors through α∨(E) = Ĵ [φ̂], and dualizing
shows that α : J [n] → E∨ factors through A[φ]. This explains the right triangle
in the commutative diagram

J (k)
n J (k)

//

��

H 1(J [n]) //

��

H 1(E∨)

J (k)
φA(k)

// H 1(A[φ]),

;;

(12)

while the square comes from functoriality of connecting homomorphisms. Since
the top row gives C , the result follows.

COROLLARY 6.15. The explicit homomorphism C̃ defined on Z0(X) factors not
only through J (k)◦ or (J (k)/n J (k))◦, but also through (J (k)/φA(k))◦.

Proof. Combine Proposition 6.14 with Proposition 6.4 or Proposition 6.10.

Let R := kerα∨, so we have an exact sequence

0 −→ R −→ E
α∨−→ Ĵ [φ̂] −→ 0. (13)

Dualizing yields an exact sequence

0 −→ A[φ] α−→ E∨
q−→ R∨ −→ 0. (14)

Take cohomology: for a true descent setup we obtain(
J (k)
φA(k)

)
◦� _

��

C̃ //

C

""

L×

L×n

0 // A[φ](k) α // E∨(k)
q
// R∨(k) // H 1(A[φ]) α // H 1(E∨)

q
//

q
// H 1(R∨)

(15)
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and for a fake descent setup we obtain (
J (k)
φA(k)

)
◦� _

��

C̃ //

C

""

L×

L×nk×� _

��

0 // A[φ](k) α // E∨(k)
q
// R∨(k) // H 1(A[φ]) α // H 1(E∨)

q
// H 1(R∨).

(16)

The commutativity follows from Proposition 6.4 or Proposition 6.10.

6.5. Comparison of true and fake descent setups. A fake descent setup
(n,∆,L ) in which there exists P ∈ ∆(k) gives rise to a true descent setup
(n,∆′,L ′) as follows: Let ∆′ = ∆ − {P} and define β ′Q = βQ − βP for each
Q ∈ ∆′. The étale algebras L , L ′ corresponding to ∆,∆′ satisfy L ' L ′ × k.
One can check that the fake diagram (11) maps to the true diagram (5) as
follows: the first two rows map via the identity, and the third row maps via the
homomorphisms induced by (cQ)Q∈∆ 7→ (cQ/cP)Q∈∆′ . Finally, the explicit true
and fake homomorphisms are compatible in the sense that(

J (k)
φA(k)

)
◦

C̃true //

C̃fake ""

(L ′)×

(L ′)×n

L×

L×nk×

commutes.

Moreover, every true descent setup can be obtained from some fake descent
setup in this way, at least if k is infinite. Thus fake descent is a generalization of
true descent.

6.6. Notation. For our intended application, we are primarily interested in

fake descent. To avoid having to state things twice, we let ˜L×/L×nk× denote
L×/L×n in the context of a true descent setup, or L×/L×nk× in the context of
a fake descent setup. If v ∈ Ωk , let Lv := L⊗k kv and define ˜L×v /L×n

v k×v similarly.
Decompose L as

∏
L i where each L i is a field.
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6.7. Restrictions on the image of C̃ . Recall that R ⊆ E ⊆ (Z/nZ)∆.

LEMMA 6.16. Suppose that the image of the diagonal Z/nZ → (Z/nZ)∆ is
contained in R. Then the image of C̃ : Z0(X)→ ˜L×/L×nk× is contained in the
kernel of the homomorphism N : ˜L×/L×nk×→ k×/k×n induced by the norm map
L×→ k×.

Proof. Dualizing the complex

Z/nZ ↪→ E → Ĵ [φ̂]
and applying H 1 yields a complex

H 1(A[φ]) −→ H 1(E∨)
N−→ k×

k×n
.

The restriction of N to the subgroup ˜L×/L×nk× equals N , because it is induced
by dualizing Z/nZ→ (Z/nZ)∆ and taking cohomology. The result now follows
from the commutative squares in (15) and (16).

7. Unramified classes

7.1. Local and global unramified classes. Let kv be a nonarchimedean local
field. If M is any Gkv -module, define the subgroup of unramified classes

H 1(kv,M)unr := ker
(
H 1(kv,M)→ H 1(kv,u,M)

)
' H 1(Gal(kv,u/kv),M(kv,u)),

where the isomorphism follows from the inflation–restriction sequence.
Now let k be a global field, and let S be a subset of Ωk containing the

archimedean places. If M is any Gk-module, define the subgroup of classes
unramified outside S , H 1(k,M)S , as the set of ξ ∈ H 1(k,M) whose restriction
in H 1(kv,M) lies in H 1(kv,M)unr for all v /∈ S .

7.2. A Tamagawa number criterion. Let kv be a nonarchimedean local field.
Let φ : A→ J be a separable isogeny of abelian varieties over kv. The short exact
sequence

0 −→ A[φ] −→ A
φ−→ J −→ 0

gives rise to a connecting homomorphism

γv : J (kv) −→ H 1(kv, A[φ]).
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Let J be the Néron model of J over Ov. Let J 0 be the connected component
of the identity in J . Let Φ be the group of connected components of the special
fiber J × Fv, so Φ is a finite étale commutative Fv-group scheme. The number
cv(J ) := #Φ(Fv) is called the Tamagawa number of J at v. We use analogous
notation for objects related to A.

LEMMA 7.1. Let φ : A → J be as above. Let n be a positive integer such that
n A[φ] = 0 (one possibility is n = degφ). If the residue characteristic charFv
does not divide n, and if cv(J ) and cv(A) are coprime to n, then

γv(J (kv)) = H 1(kv, A[φ])unr.

Proof. This is a straightforward generalization of the proof of [37, Lemma 3.1
and Proposition 3.2], which uses results from [35, Section 3].

7.3. Unramified elements in the target of the descent map. Now, suppose
that k is a global field and that we have a true or fake descent setup. From (15)
or (16) applied to kv we obtain ˜L×v /L×n

v k×v ↪→ H 1(kv, E∨). Call an element of
˜L×v /L×n

v k×v unramified if its image in H 1(kv, E∨) is unramified.
Let S be a subset ofΩk containing the archimedean places. Say that an element

of ˜L×/L×nk× is unramified outside S if its image in ˜L×v /L×n
v k×v is unramified for

each v /∈ S . Let ˜(L×/L×nk×)S be the subgroup of such elements. Proposition 7.2
will provide an explicit description of ˜(L×/L×nk×)S .

Given ` ∈ L = ∏ L i , let `i be its image in L i . Let L(n,S) be the subgroup of
L×/L×n consisting of elements represented by ` ∈ L× such that the prime-to-S
part of the fractional ideal (`i) of L i is an nth power for all i . In the true case,
let L̃(n,S) = L(n,S); in the fake case, let L̃(n,S) be the subgroup of L×/L×k×

consisting of elements represented by ` ∈ L× for which there exists a fractional
ideal a of k such that the prime-to-S part of a · (`i) is an nth power for all i .

PROPOSITION 7.2. Suppose that S ⊆ Ωk contains all archimedean places and
all places of residue characteristic dividing n. Then ˜(L×/L×nk×)S = L̃(n,S).

Proof. The statement and proof are the same as for [29, Proposition 12.5].

PROPOSITION 7.3. The group L̃(n,S) is finite and computable.
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Proof. Let OS and OL ,S be the rings of S-integers in k and L , respectively; then
there are exact sequences

0 −→ O×L ,S
O×n

L ,S
−→ L(n,S) −→ Cl(OL ,S)[n] −→ 0 (17)

and (in the fake case)

k(n,S) −→ L(n,S) −→ L̃(n,S) −→ Cl(OS)

n Cl(OS)
, (18)

as in [29, Propositions 12.6 and 12.8], where these are constructed for prime n.
So the finiteness follows from the Dirichlet S-unit theorem and finiteness of the
class groups, and the computability follows too since these are effective.

REMARK 7.4. The computation of the unit groups and class groups typically
dominates the running time in performing explicit descent.

PROPOSITION 7.5. Let M be a finite G-module with char k - #M. Let S be a finite
set of places of k containing the archimedean places. Then H 1(k,M)S is finite.

Proof. Using the inflation–restriction sequence lets us enlarge k to assume that G
acts trivially on M and on the roots of unity of order dividing #M . Decomposing
M as a product of cyclic groups lets us reduce to the case M = µn where
char k - n. Now H 1(k, µn)S ' (k×/k×n)S , which, as in Proposition 7.3, is
finite.

8. Finite Galois modules and X1

Let k be a global field, and let M be a finite Gk-module. If v is a place of k, write
H 1(k,M)→ H 1(kv,M) for the restriction to a decomposition group associated
to v; if ξ ∈ H 1(k,M), let ξv ∈ H 1(kv,M) be its restriction. As usual, define

X1(k,M) := ker

(
H 1(k,M)→

∏
v∈Ωk

H 1(kv,M)

)
.

LEMMA 8.1 (Cf. [22, Example I.4.11(i)]). If Gk acts trivially on M, then
X1(k,M) = 0.
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Proof. The hypothesis implies that H 1(k,M) = Hom(Gk,M), where Hom
denotes the group of continuous homomorphisms. Chebotarev’s density theorem
implies that the union of the decomposition groups Gkv is dense in Gk , so the map

Hom(Gk,M) −→
∏
v

Hom(Gkv ,M)

is injective. This implies the result.

LEMMA 8.2. If p is a prime not equal to char k, and ∆ is any G-set, then
X1(k, µ∆p ) = 0.

Proof. By Shapiro’s lemma, one reduces to proving the statementX1(k, µp)= 0.
The latter is the well-known fact that an element of k× that is a pth power in
every kv is a pth power in k.

The following result allows us to compute X1(k,M) using finite group
cohomology.

PROPOSITION 8.3. Let k be a global field, let M be a finite Gk-module, and let
K be a Galois splitting field of M. Let G = Gal(K/k). For v ∈ Ωk , let Dv ⊂ G
denote a decomposition group. Then

X1(k,M) ' ker
(

H 1(G,M)→
∏
v

H 1(Dv,M)
)
.

In particular,

X1(k,M) ⊆
⋂

cyclic H 6 G

ker(H 1(G,M)→ H 1(H,M)).

Proof. For each nontrivial place v of ks , let kv and Kv denote the corresponding
completions of k and K , and let Dv be the corresponding decomposition group
inside G. The products in the diagram below will be taken over all such v, instead
of just the underlying places of k, but this does not affect the definitions of
the Shafarevich–Tate groups, since in general, the kernel of a restriction map
H 1(G,M) → H 1(H,M) is unchanged if H 6 G is replaced by a conjugate
subgroup. Inflation–restriction with respect to 1 → GK → Gk → G −→ 1 and
its local analogues yield the exactness of the last two rows in the commutative
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diagram

0 //X1(G,M) //

��

X1(k,M) //

��

X1(K ,M)

��

0 // H 1(G,M) //

��

H 1(k,M) //

��

H 1(K ,M)

��

0 //
∏

v H 1(Dv,M) //
∏

v H 1(kv,M) //
∏

v H 1(Kv,M),

and the groups in the top row are defined as the kernels of the vertical maps
connecting the second and third rows. Lemma 8.1 yields X1(K ,M) = 0, so
X1(k,M) ' X1(G,M), which is the first statement of the lemma. By the
Chebotarev density theorem, every cyclic subgroup of G occurs as a Dv; this
implies the second statement.

9. Definition of Selmer groups and sets

9.1. Selmer groups associated to isogenies.

DEFINITION 9.1. Let φ : A→ J be an isogeny of abelian varieties over a global
field k such that char k - degφ. For each v, we obtain a connecting homomorphism
γv : J (kv)→ H 1(kv, A[φ]). Define

Selφ(J ) := {δ ∈ H 1(k, A[φ]) : δv ∈ im γv for all v
}
.

PROPOSITION 9.2. Let S be a finite set of places of k containing

• all archimedean places;

• all places where the residue characteristic divides n; and

• all places where the Tamagawa number of J or A is not coprime to n (these
form a subset of the places of bad reduction).

Then

(a) Selφ(J ) = { δ ∈ H 1(k, A[φ])S : δv ∈ im γv for all v ∈ S }.
(b) The group H 1(k, A[φ])S is finite.

(c) The group Selφ(J ) is finite.
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Proof.

(a) Apply Lemma 7.1 to kv for each v /∈ S .

(b) Finiteness of H 1(k, A[φ])S is a special case of Proposition 7.5.

(c) This follows from (a) and (b).

The image of J (k)/φA(k) ↪→ H 1(k, A[φ]) is contained in Selφ(J ), by
definition of the latter.

9.2. Selmer groups associated to descent setups. We define true and fake

Selmer groups by replacing H 1(k, A[φ]) by its explicit analogue ˜L×/L×nk×, and
by replacing γv : J (kv)→ H 1(kv, A[φ]) by C̃v : J (kv)◦→ ˜L×v /L×n

v k×v , which we
shall henceforth denote by Cv.

DEFINITION 9.3. Given a true descent setup (n,∆, β), define the true Selmer
group

Selαtrue(J ) :=
{
δ ∈ L×

L×n
: δv ∈ im(Cv) for all places v of k

}
.

Given a fake descent setup (n,∆, β), define the fake Selmer group

Selαfake(J ) :=
{
δ ∈ L×

L×nk×
: δv ∈ im(Cv) for all places v of k

}
.

To avoid having to state results twice, we use Selαtrue/fake(J ) to denote either
Selαtrue(J ) or Selαfake(J ), depending on whether we are considering a true or a fake
descent setup.

9.3. True and fake Selmer sets for X . The concept of a Selmer group
associated to an isogeny φ : A→ J can be generalized to the situation of a finite
étale cover Y → X of nice varieties, as a subset of H 1(k,Aut(Ys/Xs)). In general,
it is just a finite set but it contains arithmetic information about X . For instance,
if the Selmer set is empty, then so is X (k). Like Selmer groups, Selmer sets are
in theory computable, but often not efficiently. In this section, we consider more
computationally amenable variants, generalizing the hyperelliptic setting in [6].

Suppose that we have a true or fake descent setup for X , and that we fix
f ∈ k(X × ∆)× as in Definition 6.2 or 6.7, and define X good accordingly.
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Evaluation on closed points as in Sections 6.2.2 or 6.3.2 defines a homomorphism
C̃ f : Z(X good) → ˜L×/L×nk×. Since C̃ f and C̃ agree on Z0(X good), they have a
common extension to the sum of their domains, Z(X good)+Z0(X)= Z(X). Then
we may restrict to X (k) to obtain a map of sets

C f : X (k) −→ ˜L×/L×nk×.

Similarly, for each v ∈ Ωk , we obtain

C f,v : X (kv) −→ ˜L×v /L×n
v k×v .

As the notation suggests, these maps depend on the choice of f .

DEFINITION 9.4. Given a true or fake descent setup for X and f , define

Sel f
true/fake(X) :=

{
δ ∈ L̃×

L×nk×
: δv ∈ im(C f,v) for all places v of k

}
.

LEMMA 9.5. Suppose that the image of the diagonal Z/nZ → (Z/nZ)∆ is
contained in R. Then there exists c ∈ k× such that N (C̃ f (z)) = cdeg z in k×/k×n

for all z ∈ Z(X).

Proof. In the true case, the hypothesis on R implies that
∑

P∈∆ βP = div(r) for
some r ∈ k(X)×. Then

div(NL/k( f )) = n
∑
P∈∆

βP = div(r n),

so NL/k( f ) = cr n for some c ∈ k×. Evaluating on any z ∈ Z(X good) yields the
result for such z. On the other hand, Lemma 6.16 yields the result for z ∈ Z0(X).
Together, these prove the result for any z ∈ Z(X good)+Z0(X) = Z(X).

In the fake case, the hypothesis on R implies that #∆ = nm for some m ∈ Z>0

and that
(∑

P∈∆ βP
)− m D = div(r) for some r ∈ k(X)×. Then

div(NL/k( f )) = n
∑
P∈∆

βP − nm D = div(r n),

so NL/k( f ) = cr n for some c ∈ k×. The rest of the proof is as in the true case.
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10. Relations between various Selmer groups

In Sections 10.1–10.3, we will assume the following:

HYPOTHESIS 10.1. The maps J (k)◦→ J (k)/φA(k) and J (kv)◦→ J (kv)/φA(kv)
are surjective for all places v of k.

There are some common situations in which Hypothesis 10.1 is justified:

LEMMA 10.2. Suppose that X is a nice curve such that

(i) X has a k-point (or more generally H 0(k,Pic Xs)
deg→ Z is surjective); or

(ii) k is a global field and for every v ∈ Ωk the curve X has a kv-point (or more

generally H 0(kv,Pic Xkv,s )
deg→ Z is surjective); or

(iii) k is a global field of characteristic not 2 and X is the smooth projective
model of a hyperelliptic curve y2 = f (x) of even genus.

Then J (k)◦ = J (k). If, moreover, k is a global field, then we have J (kv)◦ = J (kv)
for every v, so Hypothesis 10.1 holds.

Proof. For (i) and (ii), see [29, Propositions 3.2 and 3.3]. For (iii) (generalized to
superelliptic curves), see [29, end of Section 4].

Hypothesis 10.1 will let us define a map from the usual φ-Selmer group into
the Selmer group associated to our descent setup; without this map, not much
could be said about how the groups relate. In Section 10.1, we study a local
group Wv that in a sense measures the difference between the local descent map γv
and our approximation Cv. In Section 10.3, we define a global group K with a
homomorphism κ : K→∏

v Wv whose kernel and cokernel control the difference
between the actual φ-Selmer group and our explicit Selmer group Selαtrue/fake(J ).

10.1. Local considerations. We fix a place v of k. Diagram (15) or (16)
applied to kv yields

J (kv)
φA(kv)� _
γv

��

Cv

%%

E∨(kv)
q
// R∨(kv) // H 1(kv, A[φ]) αv // H 1(kv, E∨) // H 1(kv, R∨),

(19)
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in which the main row is exact. The group kerαv is hence isomorphic to
R∨(kv)/q E∨(kv), which is finite, and computable in terms of the actions of the
decomposition group of v on E∨ and R∨.

Since Cv = αvγv in (19), we have an exact sequence

ker Cv −→ kerαv −→ coker γv −→ coker Cv. (20)

DEFINITION 10.3. Let Wv be any of the following naturally isomorphic groups
obtained from (20):

(i) the cokernel of the first map ker Cv → kerαv;

(ii) the image of the second map kerαv → coker γv; or

(iii) the kernel of the third map coker γv → coker Cv.

LEMMA 10.4. For any v ∈ Ωk , the group Wv is finite, and

#Wv = # coker q · # im Cv

# im γv
.

Proof. The group kerαv ' coker q is finite. Separability of φ implies that
φA(kv) is an open subgroup of the compact group J (kv), so the group im γv '
J (kv)/φA(kv) is finite too. By (19) and Definition 10.3(ii), we have exact
sequences

0 −→ im γv ∩ kerαv −→ kerαv −→ Wv −→ 0,
0 −→ im γv ∩ kerαv −→ im γv −→ im Cv −→ 0,

which let us compute #Wv.

The following lemma will let us understand Wv for most v.

LEMMA 10.5. Let v be a nonarchimedean place of k such that

(i) the residue characteristic of v does not divide n; and

(ii) the Tamagawa numbers cv(J ) and cv(A) are coprime to n.

Then

(a) im(Cv) ⊆ H 1(kv, E∨)unr, and

(b) Wv = im
(

R∨(kv)
q E∨(kv)

→ R∨(kv,u)
q E∨(kv,u)

)
.
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Proof. The commutative diagram

J (kv)
φA(kv)

γv

��

Cv

%%

0 //
R∨(kv)

q E∨(kv)
//

��

H 1(kv, A[φ]) αv //

��

H 1(kv, E∨)

��

0 //
R∨(kv,u)

q E∨(kv,u)
// H 1(kv,u, A[φ]) // H 1(kv,u, E∨)

(21)

has exact rows (cf. (19)). The central column is exact too, by (i), (ii), and
Lemma 7.1.

(a) In (21), J (kv)/φA(kv) maps to 0 in H 1(kv,u, E∨), so im(Cv) ⊂
H 1(kv, E∨)unr.

(b) By Definition 10.3(ii),

Wv = im (kerαv → coker γv)

= im
(

R∨(kv)
q E∨(kv)

→ H 1(kv,u, A[φ])
)

= im
(

R∨(kv)
q E∨(kv)

→ R∨(kv,u)
q E∨(kv,u)

)
.

COROLLARY 10.6. For all but finitely many v, we have Wv = 0.

Proof. For all but finitely many v, the residue characteristic of v does not divide n,
and J and A have good reduction at v, so cv(J ) = cv(A) = 1. If we also discard
the finitely many v at which E∨ is ramified, then for the remaining v the surjection
E∨→ R∨ of finite étale group schemes induces a surjection

E∨(kv,u) = E∨(kv,s)
q−→ R∨(kv,s) = R∨(kv,u),

so Lemma 10.5(b) implies that Wv = 0.

COROLLARY 10.7. The product
∏

v∈Ωk
Wv is a finite group.

Proof. Combine Lemma 10.4 and Corollary 10.6.
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LEMMA 10.8. If v is complex, or if v is real and n is odd, then Wv = 0.

Proof. If v is complex, then Gal(kv,s/kv) = Gal(C/C) = {1}. If v is real then
Gal(kv,s/kv) = Gal(C/R) = Z/2Z. Our assumptions assure that in either case,
Gal(kv,s/kv) is annihilated by a unit modulo n, so

H 1(kv, A[φ]) = H 1(kv, E∨) = 0.

It follows that Wv = 0.

10.2. Finite description of true and fake Selmer groups. Let S be as in
Proposition 9.2. Given another finite set of places T , define

ST :=
{
δ ∈ L̃(n,S) : δv ∈ im(Cv) for all v ∈ T

}
.

THEOREM 10.9. Let S and T be as above.

(a) We have Selαtrue/fake(J ) ⊆ ST .

(b) For each δ ∈ L̃(n,S), fix a finite Galois extension kδ/k splitting R∨ such
that δ maps to 0 in H 1(kδ, R∨). If T contains all places in S , all places
at which E∨ ramifies, and enough places so that for each δ ∈ L̃(n,S) the
Frobenius elements Frobv for v ∈ T unramified in kδ/k cover all conjugacy
classes in Gal(kδ/k), then Selαtrue/fake(J ) = ST .

Proof.

(a) For v /∈ S , Lemma 10.5(a) proves that Selαtrue/fake(J ) consists of elements

unramified at v. Proposition 7.2 now shows that Selαtrue/fake(J ) ⊆ L̃(n,S).
The condition δ ∈ im Cv in the definition of ST is also in the definition
of Selαtrue/fake(J ).

(b) Suppose that δ ∈ ST . Given v /∈ T , we must show that δ ∈ im Cv.
Choose w ∈ T unramified in kδ/k such that the conjugacy classes Frobw
and Frobv in Gal(kδ/k) match. By definition of ST , we have δw ∈ im Cw.
Then (19) for kw shows that δ maps to 0 in H 1(kw, R∨). In other words, the
element δ ∈ H 1(Gal(kδ/k), R∨) restricts to 0 at w. But the decomposition
groups of v and w in Gal(kδ/k) are conjugate, so δ maps to 0 in
H 1(kv, R∨) too. Thus the localization δv ∈ H 1(kv, E∨) is the image of
some ξv ∈ H 1(kv, A[φ]). Since v /∈ S , the element δv is unramified; in
particular, ξv maps to 0 in H 1(kv,u, E∨). By hypothesis, E∨ is unramified
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at v, so E∨(kv,u)
q→ R∨(kv,u) is surjective, so the bottom row of (21) shows

that H 1(kv,u, A[φ])→ H 1(kv,u, E∨) is injective. Thus, ξv maps to 0 already
in H 1(kv,u, A[φ]); that is, ξv ∈ H 1(kv, A[φ])unr. By Lemma 7.1, ξv is in the
image of J (kv) under γv. Thus δv is in the image of J (kv) under Cv.

REMARK 10.10. The idea to use an enlarged set T including places whose
Frobenius elements cover the conjugacy classes was first used in [10,
Corollary 12].

REMARK 10.11. Here we show how to compute a finite set T as in
Theorem 10.9(b). A finite splitting field k∆ of ∆ will split R∨. Given δ,
represented by ` = (`i) ∈ L×, say, adjoining all nth roots of the `i to k∆
yields a candidate for kδ. The Chebotarev density theorem guarantees that we can
find enough v unramified in kδ/k to cover the conjugacy classes.

REMARK 10.12. In practice, we may choose a smaller T , one that does not
satisfy the hypotheses in Theorem 10.9(b). Then we have only inclusions

C(J (k)) ⊆ Selαtrue/fake(J ) ⊆ ST .

But if we find enough points in J (k) to show that C(J (k)) = ST , then we obtain
Selαtrue/fake(J ) = ST nevertheless. Often T = S suffices.

10.3. Comparison of the Selmer group associated to an isogeny with the
Selmer group associated to a descent setup. In the following, we will study
the relation between the Selmer group associated to a true or fake descent setup
(which is an object we can hope to compute) and the Selmer group associated to
the isogeny φ determined by the descent setup (which is the object we would like
to compute). Theorem 10.14 will show that α induces a homomorphism from the
latter to the former.

LEMMA 10.13. We have an exact sequence

0 −→ Selαtrue/fake(J ) −→ H 1(k, E∨) −→
∏
v

H 1(kv, E∨)
im Cv

.

Proof. In the true case, L×/L×n = H 1(k, E∨), so this is just the definition
of Selαtrue(J ). In the fake case, (8) for k and its completion yields a commutative
diagram
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0 //
L×

L×nk×
//

��

H 1(k, E∨) //

��

Br k

��

0 //
∏
v

L×v
L×n
v k×v

//
∏
v

H 1(kv, E∨) //
∏
v

Br kv

with exact rows. An element δ ∈ H 1(k, E∨) mapping into im Cv ⊆ L×v /L×n
v k×v

for all v maps to 0 in Br kv for all v, so by the local–global property of the Brauer
group, it also maps to 0 in Br k, so δ ∈ L×/L×nk×. Thus

ker

(
H 1(k, E∨)→

∏
v

H 1(kv, E∨)
im Cv

)
= ker

(
L×

L×nk×
→
∏
v

H 1(kv, E∨)
im Cv

)
= Selαfake(J ).

Let K be the kernel of the global map α : H 1(k, A[φ])→ H 1(k, E∨). By (16),
K equals the (computable) cokernel of q : E∨(k) → R∨(k). Let κ be the
composition

K = kerα→
∏
v

kerαv �
∏
v

im(kerαv → coker γv) =
∏
v

Wv. (22)

The following proposition gives a homomorphism Selφ(J )→ Selαtrue/fake(J ) and
provides information on its failure to be an isomorphism.

THEOREM 10.14. We have an exact sequence

0 −→ ker κ −→ Selφ(J )
α−→ Selαtrue/fake(J ) ∩ α

(
H 1(k, A[φ])) −→ coker κ.

Proof. By definition of κ , the diagram

0 // K //

κ

��

H 1(k, A[φ]) α //

��

α
(
H 1(k, A[φ])) //

��

0

0 //
∏
v

Wv
//
∏
v

H 1(kv, A[φ])
im γv

//
∏
v

H 1(kv, E∨)
im Cv

(23)

commutes. By definition of K and Definition 10.3(iii) of Wv, the rows are exact.
Apply the snake lemma and take the first four terms of the snake; Lemma 10.13
identifies the kernel of the third vertical map.
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COROLLARY 10.15. We have

# ker
(
Selφ(J )→ Selαtrue/fake(J )

)
6 #R∨(k)/q E∨(k).

Proof. By Theorem 10.14, the kernel is isomorphic to

ker κ ⊆ K ' R∨(k)/q E∨(k).

The following summarizes the best possible situation.

COROLLARY 10.16. Assume that Selαtrue/fake(J ) ⊆ α
(
H 1(k, A[φ])) and that

Wv = 0 for all places v of k. Then we have an exact sequence

0 −→ K −→ Selφ(J ) −→ Selαtrue/fake(J ) −→ 0.

In particular, # Selφ(J ) = #K · # Selαtrue/fake(J ).

Proof. In Theorem 10.14, the codomain of κ : K→∏
v Wv is 0.

We need a criterion that tells us when Selαtrue/fake(J ) is already contained in
α
(
H 1(k, A[φ])). Recall the discussion of X1 in Section 8 and the exact sequence

0 −→ A[φ] −→ E∨
q−→ R∨ −→ 0.

LEMMA 10.17.

(a) There is an exact sequence

0 −→ Selαtrue/fake(J ) ∩ α
(
H 1(k, A[φ])) −→ Selαtrue/fake(J )

q−→X1(k, R∨).

(b) In particular, if X1(k, R∨) = 0, then Selαtrue/fake(J ) ⊆ α
(
H 1(k, A[φ])).

Proof. The last three terms in (15) or (16) for k and the kv give rise to a
commutative diagram with exact rows:

0 // α
(
H 1(k, A[φ])) //

��

H 1(k, E∨)
q
//

��

H 1(k, R∨)

��

0 //
∏
v

αv
(
H 1(kv, A[φ]))

im Cv

//
∏
v

H 1(kv, E∨)
im Cv

//
∏
v

H 1(k, R∨).

Take the kernels of the three vertical maps and apply Lemma 10.13.
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REMARK 10.18. Results of Section 8 allow us to bound X1(k, R∨) and to prove
that it is 0 in many cases.

EXAMPLE 10.19. We revisit the fake descent setup in Example 6.9(i) used for
2-descent on the Jacobian J of a hyperelliptic curve X with an even degree model
y2 = f (x). Assume that X has even genus or that X (kv) 6= ∅ for all v; then
Hypothesis 10.1 is satisfied, by Lemma 10.2. The Gk-set∆ is the set of Weierstrass
points. The group Z/2Z injects into E = (Z/2Z)∆deg 0, and E∨ = µ∆2 /µ2. Since
Ĵ ' J , exact sequence (13) is

0 −→ Z
2Z
−→ E −→ J [2] −→ 0,

and its dual (14) is

0 −→ J [2] α−→ E∨
N−→ µ2 −→ 0

where N is the norm. Cohomology (see (16)) gives

0 −→ K −→ H 1(k, J [2]) α−→ H 1(k, E∨),

where K ' µ2(k)/N (E∨(k)). One can show (see [29, Theorem 11.3]) that
the element of K represented by −1 ∈ µ2(k) corresponds to the class ξ of
the 2-covering Pic1

X/k → J in H 1(k, J [2]), where Pic1
X/k is the Picard scheme

component parametrizing degree 1 line bundles on X . For each v, our assumption
implies that Pic1

X/k has a kv-point, so ξv maps to 0 in H 1(kv, J ), so

ξv ∈ im
(
γv : J (kv)/2J (kv)→ H 1(kv, J [2])) .

Since ξv generates kerαv, we have Wv = 0 by Definition 10.3(ii). We also have
X1(k, µ2) = 0 by Lemma 8.1, so Lemma 10.17(b) applies, and Corollary 10.16
yields an exact sequence

0 −→ K −→ Sel2(J ) −→ Selαtrue/fake(J ) −→ 0.

Finally, since K ' µ2(k)/N (E∨(k)), we have that K = 0 if∆ has a Galois-stable
unordered partition into two sets of odd cardinality (a computable condition), and
K ' µ2(k) otherwise (cf. [29, Theorem 13.2]).

11. Computing true and fake Selmer groups

Choose S and T as in Section 10.2, and compute L̃(n,S) as in Section 7.3.
Because of Theorem 10.9, it remains to find an algorithm to test whether a given
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element of L̃(n,S) is in the local image im Cv for a given v. It is clear that this
can be done in principle, but our goal here will be to describe a practical method,
under an additional hypothesis:

HYPOTHESIS 11.1. The variety X is a genus g curve with a kv-point x0 (or more
generally, a degree 1 divisor x0 over kv), and either char kv = 0 or char kv > g.

We consider the nonarchimedean and archimedean cases separately.

11.1. Computing the local image at a nonarchimedean place. Fix a
nonarchimedean place v of k. Let K be a finite extension of kv, say of degree d ,
with valuation ring O, uniformizer π , and maximal ideal m. Let L K := L ⊗k K .
We have a map X (K )→ Z0(X K ) sending x to the 0-cycle x − x0, and following
this with C̃K defines a continuous map

cK : X (K ) −→ L̃×K
L×n

K K×
.

To define cK on all of X (K ) requires using several functions f1, . . . , fr with
disjoint support, as in Remark 6.13. By perturbing x0 in the smooth space X (kv)
(if x0 is a point) or perturbing each component of x0 in the space of points over its
field of definition (if x0 is a divisor), we may assume that the fi can be evaluated
at x0.

We now explain how to compute a finite description of cK . Choose a proper
O-scheme X with XK ' X K . By the valuative criterion for properness,

X (K ) ' X (O) ' lim←−
m>0

X (O/πm).

By Hensel’s lemma, L×n
K has finite index in L×K , so ˜L×K/L×n

K K× is a finite discrete
set, so cK is locally constant. Proceed as follows:

• Start with m = 1.

• On each remaining residue disk modulo πm in X (K ), check whether any fi is

such that fi(x)/ fi(x0) is constant in ˜(L×K/(L
×n
K K×)); if not, break the residue

disk into residue disks modulo πm+1, and apply recursion.

Because the divisors of the fi are disjoint, eventually this algorithm will terminate,
with a partition of X (K ) into residue disks on which cK takes a known constant
value.
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Next, the diagram

X (K )
x 7→x−x0 //

x 7→trK/kv x−dx0

!!

Z0(X K ) //

trK/kv

��

L̃×K
L×n

K K×

NK/kv
��

Z0(Xkv )
//

L̃×v
L×n
v k×v

commutes, so we can compute C̃ on elements of Z0(kv) of the form trK/kv x−dx0.

LEMMA 11.2.

(a) There are only finitely many extensions K/kv with [K : kv] 6 g up to
isomorphism, and we can list them all.

(b) As K ranges through these field extensions, and x ranges over X (K ), the
images of trK/kv x − dx0 generate J (kv).

Proof.

(a) If char kv = 0, see [27]. If char kv > 0, the characteristic assumption in
Hypothesis 11.1 guarantees that each K is tamely ramified over kv, so
K is obtained by adjoining a single mth root of a uniformizer to a finite
unramified extension of kv. We can compute representatives for the set of
possible uniformizers up to mth powers.

(b) The Riemann–Roch theorem shows that every degree 0 divisor on X is
linearly equivalent to E − gx0 for some effective E ∈ Divg X . Writing E as
a sum of closed points lets one express E − gx0 as a sum of 0-cycles of the
form trK/kv x − dx0 for various K of degree at most g.

We can now compute im Cv as follows:

(i) Compute all extensions K as in Lemma 11.2(a).

(ii) For each, compute the image of cK , and apply NK/kv to find the image of Cv

on 0-cycles of the form trK/kv x − dx0.

(iii) Compute the subgroup generated by all such images.

By Lemma 11.2, the result equals im Cv.
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11.2. Computing the local image at an archimedean place. For
archimedean v a similar method works, but instead of partitioning X (K ) into
residue classes, we partition it into connected components, because a continuous
map to the discrete set ˜L×v /L×n

v k×v is constant on connected components. If
K = C, then every point in X (K ) has the same image under x 7→ trK/kv x − dx0

as x0, which is 0. If K = R, then we compute f (x)/ f (x0) for one point x in
each connected component of X (K ), perturbing x as necessary to ensure that f
is regular and nonvanishing at x .

11.3. Further comments on the computation of local images.

REMARK 11.3. To find different f ’s that can be used to compute cK , we need
to move β (and/or D in the fake case) within their linear equivalence classes. In
the fake case, it is often more convenient to move D in practice, since in many
applications β is the only effective divisor in its class.

REMARK 11.4. Sometimes we can compute cK without moving β, as we now
explain. Suppose that

• we have a true or fake descent setup, with a choice of β, D, and f ;

• f can be evaluated at x0, where x0 ∈ X (K ) or x0 is a degree 1 divisor on X
over K , for some local field K ;

• the supports of βP for P ∈ ∆ are pairwise disjoint; and

• the image of the diagonal Z/nZ→ (Z/nZ)∆ is contained in R.

Given x ∈ X (K ), the hypothesis on the βP implies that there is at most one P
such that fP has a zero or pole at x . We can evaluate fQ(x − x0) for all Q 6= P ,
and the missing component of cK (x) can be recovered from the fact (Lemma 6.16)
that cK (x) lies in the kernel of N .

REMARK 11.5. Under the same hypotheses on β, D, f, R as in Remark 11.4, we
can evaluate C f at arbitrary x ∈ X (k), using Lemma 9.5 instead of Lemma 6.16.
Similarly, we can evaluate C f,v.

REMARK 11.6. Here we describe an alternative method that, when it succeeds,
computes im Cv much more quickly in practice. The method consists of two parts:
computing an upper bound on # im Cv (or its exact value), and computing lower
bounds on the group im Cv, and hoping that the sizes match. Suppose that A = J
and φ is multiplication-by-n on J . To compute an upper bound on # im Cv:
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• Calculate the action of the decomposition group Gal(kv,s/kv) on ∆.

• Using this, compute the exact sequence

0 −→ J [n](kv) −→ E∨(kv)
q−→ R∨(kv) (24)

of finite groups.

• From this, compute #J [n](kv).
• Substitute this into the formula

#
J (kv)

n J (kv)
= ‖n‖− dim J

v #J [n](kv), (25)

where ‖ ‖v is the v-adic absolute value normalized so that for all a ∈ Ov we
have ‖a‖v = (Ov : aOv)

−1 (this is a variant of [29, Proposition 12.10]).

• We obtain the bound # im Cv 6 #J (kv)/n J (kv), since Cv factors through
J (kv)/n J (kv).

• If q : E∨(kv) → R∨(kv) is surjective, a condition that can be checked
using (24), then (19) shows that αv is injective and # im Cv = #J (kv)/n J (kv).

To compute lower bounds on im Cv:

• Randomly select x ∈ X (kv) ↪→ J (kv) and compute their images under Cv

hoping that they generate a group of the right size. (Calculate NK/kv (cK (x)) for
x ∈ X (K ) also for finite extensions K of kv if it seems that the kv-points are
insufficient.)

12. Genus 3 curves

In this section, we specialize to the case of a fake descent setup given by the
bitangents of a smooth plane quartic. This is the nonhyperelliptic g = 3 case of
Example 6.9(iv). Many of the results about smooth plane quartics we require were
established already before 1900. See [33, page 223 onwards] for a survey.

12.1. Bitangents of smooth plane quartics. Let k be a field of characteristic
not 2. Let X be a nonhyperelliptic genus 3 curve over k. The canonical map
embeds X as a smooth quartic curve g(x, y, z) = 0 in P2. Conversely, every
smooth quartic curve in P2 arises in this way. Let P̂2 be the dual projective space,
with homogeneous coordinates u, v, w; its points correspond to lines in P2.
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DEFINITION 12.1. A bitangent to Xs is a line l ⊂ P2
ks

such that the intersection
l.X is 2βl for some βl ∈ Div Xks .

Given a bitangent l, the line bundle Ll associated to βl is an odd theta
characteristic on Xs . The bitangents to Xs form a 28-element G-set∆ in bijection
with the G-set Todd of Section 5.1 [16, page 289]. Alternatively, we may view ∆

as a finite étale subscheme of P̂2, and the collection (Ll) as a line bundle L on
X×∆. Then (2,∆,L ) is isomorphic to the fake descent setup in Example 6.9(iv)
with g = 3. The isogeny φ : A→ J of Section 6.4 is [2] : J → J .

12.2. Syzygetic quadruples.

LEMMA 12.2. Let l1, . . . , l4 be bitangents. Then the following are equivalent:

(i) The corresponding four odd theta characteristics sum to 0 in
(Pic Xs/〈ω〉)[2].

(ii) The divisor βl1 + · · · + βl4 is linearly equivalent to 2 times a canonical
divisor.

(iii) The divisor βl1 + · · · + βl4 is an intersection Q.X for some (not necessarily
irreducible) conic Q ⊂ P2.

Proof.

(i) ⇐⇒ (ii) Considering degrees shows that the odd theta characteristics sum
to 0 in (Pic Xs/〈ω〉)[2] if and only if they sum to ω⊗2 in Pic Xs .

(iii) H⇒ (ii) Let l be any line in P2. Then Q ∼ 2l on P2, so Q.X ∼ 2l.X on X ,
and l.X is a canonical divisor.

(ii) H⇒ (iii) Equivalently, we must show that Γ (P2,O(2)) → Γ (X,OX (2))
is surjective. This is true, since the cokernel is contained in H 1(P2,O(−4 + 2)),
which is 0.

A 4-element set {l1, . . . , l4} satisfying the equivalent conditions of Lemma 12.2
is called a syzygetic quadruple. Let Σ ⊂ (∆4) be the set of syzygetic quadruples.
This incidence structure (∆,Σ) constructed above from bitangents is the same as
that in Section 5.2 for g = 3. In particular, its isomorphism type is independent
of X (see Remark 5.6). By Proposition 5.7, #Σ = 315.
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12.3. Sp6(F2)-modules. If we chose a bijection between ∆ and {1, . . . , 28},
then the image G of G → Aut∆ would be identified with a subgroup of the
symmetric group S28, and changing the bijection would change the subgroup up
to S28-conjugacy.

Instead, we will choose an isomorphism between (∆,Σ) and a fixed incidence
structure (∆,Σ), so that G is identified with a subgroup of Aut(∆,Σ), which by
Proposition 5.4 is a specific copy of Sp6(F2) in S28. Changing this isomorphism
changes G only up to Sp6(F2)-conjugacy. This more refined information will be
needed to deduce the action of G on J [2], E∨, and R∨.

The following lemma constructs our fixed (∆,Σ) directly from the group
Sp6(F2):

LEMMA 12.3.

(a) The group Sp6(F2) has a unique index 28 subgroup H, up to conjugacy. Let
∆ be the G-set G/H. Identify ∆ with {1, . . . , 28}.

(b) There is a unique Sp6(F2)-invariant subset of
(
∆

4

)
of size 315; call it Σ .

Proof. Direct computation using Magma [20].

Let Γ be the image of the map(
∆

2

)
−→

(
∆

12

)
π 7−→

⋃
{σ ∈ Σ : π ⊂ σ }.

In F∆2 , let 1, J̃, R, E be the F2-spans of {∑l∈∆ l}, Γ , Σ ,
(
∆

2

)
, respectively, where

we identify subsets of ∆ with the sums of their elements in F∆2 .

LEMMA 12.4. The Sp6(F2)-submodules of F∆2 are

0 ⊂ 1 ⊂ J̃ ⊂ R ⊂ E ⊂ F∆2 ,

which have dimensions 0, 1, 7, 21, 27, 28, respectively.

Proof. The given modules obviously are submodules. Direct computation
using Magma establishes that there are no others and that the dimensions are
as stated.
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COROLLARY 12.5. Let X be a smooth plane quartic. Let ∆ be its set of
bitangents. Let Σ be its set of syzygetic quadruples. Construct E and R from
the fake descent setup as in Section 6.3. Then there exists an isomorphism
(∆,Σ) ' (∆,Σ) of incidence structures, and any such isomorphism induces
a homomorphism ρ : G → Sp6(F2) and G-equivariant isomorphisms E ' E,
R ' R, and J [2] ' ker(E∨→ R∨), where G acts on the Sp6(F2)-modules via ρ.

Proof. The isomorphism (∆,Σ) ' (∆,Σ) exists because of the uniqueness in
Lemma 12.3. The G-action on ∆ must respect Σ , so we get

G −→ Aut(∆,Σ) ' Aut(∆,Σ) = Sp6(F2).

The induced isomorphism F∆2 → F∆2 sends E to E and R to R because by
Lemma 12.4 there is at most one submodule of each dimension. By (14),
we have

J [2] ' ker
(
E∨→ R∨

) ' ker(E∨→ R∨).

12.4. Computing bitangents and syzygetic quadruples.

LEMMA 12.6. Let k be a field for which arithmetic operations can be computed.
Suppose that g(x, y, z) ∈ k[x, y, z] is a degree 4 homogeneous polynomial
defining a smooth curve X in P2.

(a) We can compute ∆ as a subscheme in P̂2
k .

(b) In the remaining parts, suppose that F is an explicit finite Galois extension
of k over which ∆ splits completely, and write ∆ for ∆(F). If we choose a
bijection ∆

∼→ {1, . . . , 28}, then Σ can be determined as an explicit subset
of
({1,...,28}

4

)
.

(c) With notation as in (b), we can compute an isomorphism (∆,Σ)→ (∆,Σ).

(d) If we have an explicit description of Gal(F/k) acting on F, then the image
of the homomorphism ρ : Gk → Sp6(F2) of Corollary 12.5 can be computed.

Proof.

(a) We describe ∆ as a subscheme of P̂2 by describing its intersection with
each standard affine patch of P̂2. For example, to compute the part of ∆ in
the patch whose points correspond to lines l : ux+vy+wz = 0 withw = 1,
substitute the parametrization (s : t) 7→ (s : t : −us − vt) of the line into
g(x, y, z), set the result equal to (a0s2 + a1st + a2t2)2 for indeterminate
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a0, a1, a2, and eliminate a0, a1, a2 to find the conditions on u, v, w for l to
be a bitangent.

(b) We use criterion (iii) in Lemma 12.2. Enumerate the 3-element subsets
{l1, l2, l3} of ∆. For each, the condition that a conic Q in P2 satisfies
Q.X > βl1 + βl2 + βl3 amounts to linear conditions on the coefficients of
a homogeneous equation of Q; if such a Q exists, it is unique and can be
found by linear algebra over F , and we then compute Q.X to check whether
it equals βl1 + βl2 + βl3 + βl4 for some l4 ∈ ∆. Record all such {l1, . . . , l4}.

(c) Given (b), this is a matter of matching combinatorial data. A bijection
∆→ ∆′ can be built one value at a time; we try all possibilities, checking
as we go along that the distinguished 4-element subsets match so far.

(d) We compute equations for the bitangents, and hence compute the action of
Gal(F/k) on ∆. Using (c), we translate this into an action of Gal(F/k)
on ∆. The image of Gal(F/k)→ Aut∆ is im ρ.

12.5. Computing the discriminant of a ternary quartic form. The
following is well known.

LEMMA 12.7. Fix positive integers n and d. Let g(x0, . . . , xn) ∈ Z[x0, . . . , xn] be
a degree d homogeneous polynomial with indeterminate coefficients c1, . . . , cN ,
so N = (n+d

d

)
. Then there is a polynomial D(c1, . . . , cN ) ∈ Z[c1, . . . , cN ], called

the discriminant, such that whenever c1, . . . , cN are specialized to elements of a
field k, the polynomial D vanishes if and only if the hypersurface g = 0 in Pn

k fails
to be smooth of dimension n − 1. Moreover, D is unique up to a sign.

Sketch of proof. Let B = AN
Z , and let X ⊂ Pn×B be the closed subscheme defined

by g = 0, so X → B is the universal family of degree d hypersurfaces in Pn . Let S
be the locus where X → B fails to be smooth of dimension n−1. Then S→ B is
proper, so its image is a closed subscheme V ⊆ AN

Z . On the other hand, analyzing
the fibers of the other projection S → Pn lets us show that S and V are integral
(or empty) and lets us compute their dimensions. This eventually shows that V is
a hypersurface (possibly empty), so V is cut out by a single equation, defined up
to a unit of Z.

We now restrict to the case n = 2 and d = 4, in which case D is a polynomial
of degree 27, denoted I27(g) in the notation of [9]. We fix the sign by decreeing
that I27(x4 + y4 + z4) > 0.
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Over a ring in which deg g is invertible, the discriminant of g agrees, up to a
unit, with the resultant R(g) of ∂g/∂x, ∂g/∂y, ∂g/∂z (cf. [14, Ch. 13, Section 1]),
for which an algorithm is given in [32, Section 91]. Thus I27(g) = cR(g) for some
c ∈ Z[1/2]× independent of g.

To determine the power of 2 in c, we compute R(g) for a single g ∈ Z2[x, y, z]
for which g = 0 is smooth over Z2 (for example, take g = x3 y + y3z + z3x); for
this g we must have cR(g) ∈ Z×2 . The sign of c can be determined as the sign
of R(x4 + y4 + z4). It turns out that c = 2−14 (cf. [14, Ch. 13, Proposition 1.7]
and [8, Section 5, Définition 4 and Exemple 3]).

An algorithm for computing I27(g) was implemented by Christophe
Ritzenthaler, and included by D. Kohel in his Magma package Echidna [18].
We used this implementation (but negated the output to make the sign agree with
our convention).

REMARK 12.8. Given a smooth plane quartic curve X over Q defined by g = 0,
we can choose g ∈ Z[x, y, z] to minimize |I27(g)|. But I27(−g) = −I27(g), so
the sign of I27(g) for such a minimizer g is not uniquely determined by the curve
X in P2

Q.

12.6. Computing fake Selmer groups of smooth plane quartics. We apply
the procedure outlined in Section 11 to compute Selαfake(J ) for the fake descent
setup given in Section 12.1, under the assumption that Xkv has a divisor of
degree 1 for all v ∈ Ωk . For simplicity and practicality, we assume that k = Q.
By multiplying the polynomial g(x, y, z) defining X in P2 by a positive integer,
we may assume that g has coefficients in Z. We proceed with the following steps:

(1) Determine L .

(2) Determine the ring of integers OL of L .

(3) Determine a finite set S ⊂Ωk containing the archimedean places, the places
of residue characteristic 2, and the places v where the Tamagawa number
cv(J ) is even.

(4) Determine L̃(2,S).

(5) Determine the image G of G → Aut∆ as a subgroup of Sp6(F2) up to
Sp6(F2)-conjugacy.

(6) Choose a finite set T ⊂ Ωk . For each v ∈ T ,
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(a) Determine the decomposition group Dv as a subgroup of G up to G-
conjugacy.

(b) Determine im Cv.

(7) Compute

S′T =
{
δ ∈ L̃(2,S) : NL/k(δ) = 1∈ k×

k×2
and Resv δ ∈ im Cv for all v ∈ T

}
.

Sections 12.6.1–12.6.7 elaborate on the implementation of the corresponding
steps.

Lemma 6.16 and Theorem 10.9(a) imply Selαfake(J ) ⊆ S′T . So the result of
the calculation is an upper bound S′T for Selαfake(J ), which by Theorem 10.9(b)
can be guaranteed to equal Selαfake(J ) by choosing T appropriately large. (But as
explained in Remark 10.12, in practice we will often not choose T so large.)

12.6.1. Determine L. Our goal is to find a squarefree h(t) ∈ k[t] of degree 28
such that ∆ ' Spec L with L := k[t]/h(t). First compute ∆ as a subscheme
of P̂2 as in Lemma 12.6(a). Next, repeatedly choose a projection P̂2 → P1 (that
is, perform a change of variables, and then eliminate a variable) until one is found
that maps∆ to an étale scheme∆′ of degree 28 with∞ /∈ ∆′. Then∆′ is the zero
locus in A1 of the desired h(t) ∈ k[t].

Let θ be the image of t in L .

12.6.2. Determine the ring of integers of L. Here our task is to find a Z-basis
of OL , with each basis element expressed as a polynomial in θ of degree less
than 28. This is a standard operation in algebraic number theory packages if L
is a field. If L splits nontrivially as a product of fields, we just compute the
integer rings of each constituent separately and piece the results together using
the Chinese remainder theorem.

From the denominators of the coefficients of h(x) we find m ∈ Z such that mθ
is an algebraic integer. The standard approach for determining OL would then be
to compute the integral closure of O := Z[mθ ] in L . But since θ was obtained
by projecting a degree 28 subscheme of P2 onto P1, there are probably primes
introduced into DiscO that do not divide DiscOL . In practice, these primes can
easily be of size 10100, so even finding them in DiscO may involve a challenging
factorization.

Here are two ways to circumvent this problem:
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(1) Compute the discriminant I27(g) of the quartic form as in Section 12.5,
and factor it. If p is an odd prime not dividing the integer I27(g), then the
28 bitangents of X reduce to the 28 distinct bitangents of the smooth plane
quartic curve defined by g(x, y, z)(mod p), so p - DiscOL . In other words,
the set of odd prime factors of I27(g) is an upper bound for the set of odd
prime factors of DiscOL . Magma’s routine MaximalOrder accepts this
upper bound as part of the input to help it remove extraneous factors via a
lazy factorization.

(2) Use a different projection to find a second order O′. Then the order
generated by O and O′ is likely of small index in OL , in which case
computing its integral closure in L is much easier.

REMARK 12.9. It is advisable to compute an LLL-reduced basis for OL and use
that to represent elements of OL and L .

12.6.3. Determine the set S ⊂ Ωk . Compute the integer I27(g) and factor it. If
p is a prime such that p - I27(g), then X has good reduction at p, from which it
follows that J has good reduction at p and cp(J ) = 1. Therefore, we may take
the set S of Proposition 9.2 to be the set of prime divisors of I27(g), together with
2 and∞.

REMARK 12.10. Often we can use a smaller S by computing a proper regular
model of X over Zp and using [5, Section 9.6, Theorem 1] to compute cp(J ).
Magma has an implementation by Steve Donnelly that can compute regular
models of plane curves in many cases; there is also a function that extracts the
component group Φ; then cp(J ) = #Φ(Fp) is a divisor of #Φ, so this may let us
prove that cp(J ) is odd, in which case p can be excluded from S .

Here is a common special case in which no extra computation is required to
exclude a prime:

REMARK 12.11. Suppose that an odd prime p appears with exponent 1 in the
factorization of I27(g). Then ProjZp[x, y, z]/(g) is regular and its special fiber is
an irreducible curve with multiplicity 1, with a single node. We deduce cp(J ) = 1,
so we may exclude p from S .

12.6.4. Determine L̃(2,S). Our goal here is to compute elements of L× whose

images in L×/L×2k× form a basis for L̃(2,S).
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We first compute L(2,S). If we compute L(2,S ′) for some S ′ ⊃ S , we can
recover its subgroup L(2,S) by performing linear algebra with the valuations
in S ′ − S; thus we are free to enlarge S . If S is enlarged enough that we can
verify that Cl(OL ,S)[2] = 0, then (17) implies that L(2,S) = O×L ,S/O×2

L ,S .
Next, since k = Q, we have Cl(OS) = 0, so (18) implies

L̃(2,S) = coker
(
O×S /O×2

S → O×L ,S/O×2
L ,S
)
.

Thus, we need only solve the following standard problems of algebraic number
theory:

(A) find S such that Cl(OL ,S)[2] = 0; and

(B) compute bases for O×S /O×2
S and O×L ,S/O×2

L ,S .

Current methods for solving problem (A) involve computing the whole class
group Cl(OL ,S). Doing this unconditionally requires computation up to the
Minkowski constants of the fields L i with product L , which requires running
time polynomial in DiscOL i ; in the case where L is a degree 28 field, it is rare
that DiscOL is small enough to make this practical. On the other hand, if we are
willing to assume the Generalized Riemann hypothesis for the L i of large degree,
we can handle many more instances.

Problem (B) is less serious, once problem (A) has been solved. One can
check whether an element of O×L ,S is a square, by constructing the square root
numerically to prove a positive answer and by reducing modulo primes to prove
a negative answer. The Dirichlet S-unit theorem yields dimF2 O×L ,S/O×2

L ,S = #S
in advance, so if generators are constructed conditionally, they can be verified
without difficulty.

REMARK 12.12. Magma has a command to compute L(2,S) when k = Q.

12.6.5. Choice of T . Choose a finite set of places T , while keeping
Remark 10.12 in mind. If it is necessary to get a better upper bound S′T on
Selαtrue/fake(J ), we can enlarge T later.

12.6.6. Determine the global and local Galois actions on ∆. We have two
goals:

(A) Describe the image G of the homomorphism ρ : G → Sp6(F2) in
Corollary 12.5 as a subgroup of Sp6(F2) up to Sp6(F2)-conjugacy. Since
in Lemma 12.3(a) we fixed an embedding Sp6(F2) ↪→ S28, the answer
can be specified by giving explicit elements of S28 that generate one such
representative G of its conjugacy class.
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(B) For each v ∈ T , describe the decomposition group Dv as a subgroup of
the G in (A) up to G-conjugacy. Each Dv is to be specified by a list of
elements of G ⊆ S28 that generate Dv.

If (A) and (B) are done, then E , R, J [2] with the actions of G and Gkv can be
computed as submodules and subquotients of F∆2 , as in Section 12.3.
Magma shows that there are 1369 conjugacy classes of subgroups in Sp6(F2)

to distinguish. Here are some methods that can be applied (with varying
degrees of success) toward determining the image G K of GK → Sp6(F2)

(up to Sp6(F2)-conjugacy) for a field K :

• Splitting field. If a splitting field of ∆ over K is of small enough degree,
then Lemma 12.6(d) is practical. But in the worst case, the splitting degree
is # Sp6(F2) = 1451520.

• Orbit sizes. Factoring h(x) over K determines the orbit sizes of G K ; this
already cuts the number of possibilities from 1369 down to at most 107 (there
are 107 conjugacy classes for which the orbit sizes are 4, 8, 16). Factoring h(x)
over the fields obtained by adjoining one root of (one factor of) h(x) determines
the orbit sizes for the one-point stabilizers; these constrain G K further.

• Decomposition subgroups. If K is a global field k, and we have computed
decomposition subgroups Dv in Sp6(F2) up to Sp6(F2)-conjugacy for several v,
then these constrain the possibilities for G K .

Next we discuss the practicality of these methods for special types of fields K :

(1) Finite fields. Here G K is cyclic. Magma shows that for each cyclic subgroup
of Sp6(F2), either the orbit size multiset determines the conjugacy class
uniquely, or the subgroup has size at most 6, in which case the splitting
field method is practical. So G K is determined easily.

(2) Archimedean local fields. The splitting field has degree at most 2, so use the
splitting field method.

(3) Nonarchimedean local fields. If X has good reduction, then we reduce to the
case of a finite field. Otherwise, let q = pe be the size of the residue field (for
k = Q, e = 1); then we have normal subgroups PG I of G K (wild inertia and
inertia) such that G K/I is cyclic of some order f , and I/P is cyclic of order
dividing q f −1 and P is a p-group. If p > 7, then p - # Sp6(F2), so P = {1},
and G K is metacyclic; there are only 214 conjugacy classes of metacyclic
subgroups of Sp6(F2), and the largest such subgroup has order 60, which
is about the largest degree for which the splitting field method is easily
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practical. For K = Q2,Q3,Q5,Q7, the maximal size of G K is 2304, 432,
120, 60, respectively; if the splitting field method is impractical, we can
eliminate possibilities by using the orbit size methods, and by using that the
local Galois group must be contained in the global Galois group if the latter
has been computed already.

(4) The global field Q. Determining the Galois group of a polynomial
h(t) ∈ Q[t] is a standard problem in computational number theory; see
[12, 13, 39]. A recent implementation by Claus Fieker and Jürgen Klüners
in Magma chooses a prime p, labels the roots of h in a splitting field K p/Qp

by giving approximations to them, and computes the Galois group over Q
as a subgroup of the permutations of the labels; in fact, by choosing an
unramified prime p, the computations can be done in finite extensions of Fp

instead of Qp. Once this is done for our h of degree 28, the splitting field
method can then compute G in Sp6(F2) up to Sp6(F2)-conjugacy.

An alternative to using the general-purpose implementation above is to use
orbit sizes and decomposition subgroups to try to eliminate all possibilities
except one. When this succeeds, which in practice seems to be almost
always the case, it is often faster.

Summary: In practice, we can always achieve goal (A). Goal (B) may be more
difficult to reach, but the methods presented above often succeed. From now on,
we assume that both goals have been reached.

12.6.7. Determining the local images. Given v ∈ T , our goal is to compute
elements of L×v whose images in L×v /L×2

v k×v form a basis of im Cv. We follow the
approach in Section 11.

First let us explain how to compute the map cK in Section 11.1, for any finite
extension K of kv. Let (uθ : vθ : wθ ) ∈ ∆(L) be the generic point of∆ over k; we
perturb x0 so that uθ x + vθ y + wθ z does not vanish at (points in the support of)
x0. Given P ∈ X (K ), choose a linear form u0x + v0 y + w0z ∈ K [x, y, z] not
vanishing at P or (points in the support of) x0. If P ∈ X (K ) does not lie on any
bitangent, then evaluating the rational function

uθ x + vθ y + wθ z
u0x + v0 y + w0z

at P and x0 give elements of L×K ; their ratio mapped to L×K/L×2
K K× is cK (P). If

P does lie on a bitangent, then use Remark 11.4, which applies since the βl are
disjoint.
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Now, to compute im Cv, attempt to use Remark 11.6, in which for kv = Qp,
(25) becomes

#
J (kv)

2J (kv)
=
{

#J [2](kv) if v 6= 2,
8#J [2](kv) if v = 2.

(26)

If the approach of Remark 11.6 fails, use the general approach of Section 11.1
or 11.2.

12.7. Comparing Selαfake(J) with Sel2(J). Let notation be as in Section 12.6,
where we computed a group S′T containing Selαfake(J ), which Section 10.3 relates
to Sel2(J ).

We review here the ways in which S′T , Selαfake(J ), and Sel2(J ) can differ:

(i) S′T may be larger than Selαfake(J ).

(ii) Selαfake(J ) may fail to be contained in α(H 1(k, J [2])) (both are subgroups
of H 1(k, E∨)).

(iii) If Selαfake(J ) ⊆ α(H 1(k, J [2])), then α induces a map Sel2(J )→ Selαfake(J )
(see Theorem 10.14), but it may fail to be injective and/or surjective.

And here are ways to detect or avoid these differences:

(i) Theorem 10.9(b) shows how to choose T to ensure that Selαfake(J ) = ST ,
in which case both equal the group S′T sandwiched between them. But the
amount of computation involved in implementing that strategy is probably
prohibitive, so we may prefer to use the observation of Remark 10.12.

(ii) Lemma 10.17(b) shows that the containment Selαfake(J ) ⊆ α(H 1(k, J [2]))
follows if X1(k, R∨) = 0, and Proposition 8.3 gives an upper bound
on X1(k, R∨) that is often 0. More precisely, this upper bound is 0 for 1103
of the subgroup classes of Sp6(F2). Any group in one of the remaining 266
classes has a small orbit inΣ , of size at most 15, so the ideas of Appendix A
are probably practical. Furthermore, in all these 266 cases, J [2] is reducible,
so there are nontrivial isogenies available for descent computations.

(iii) In order to estimate the kernels and cokernels of Sel2(J )→ Selαfake(J ), we
use Theorem 10.14. Assuming that we succeeded in computing global and
local Galois groups as in Section 12.6.6, we have for each v ∈ T an explicit
description of
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0 // J [2](k) //
� _

��

E∨(k)
q
//

� _

��

R∨(k)� _

��

0 // J [2](kv) // E∨(kv)
q
// R∨(kv).

Let κ ′v be the map K = kerα → kerαv implicit in (22), which can be
identified with

R∨(k)
q E∨(k)

−→ R∨(kv)
q E∨(kv)

,

and hence computed. The map in (22) we are really interested in is the map

κv : K = kerα −→ Wv := kerαv
kerαv ∩ im γv

,

which factors through κ ′v. We computed #J (kv)/2J (kv) and # im Cv.
Dividing gives the size of ker Cv ' γv(ker Cv) = kerαv ∩ im γv, so in some
cases we may have sufficient information to deduce κv and piece together
κ =∏v κv and its kernel and cokernel. Even if we can determine # coker κ ,
however, it is only an upper bound on # coker(Sel2(J ) → Selαfake(J )) (see
Theorem 10.14).

12.8. Descent on the curve. Let X be a smooth plane quartic over a global
field k of characteristic not 2. The fake descent setup described in Section 12.1
can be used also to perform a descent on the curve as described in Section 9.3. Let
uθ , vθ , wθ ∈ L be as in Section 12.6.7, and choose f to be (uθ x + vθ y + wθ z)/`
for some linear form ` ∈ k[x, y, z].

To apply Remark 11.5, we need to find the c and r of Lemma 9.5. By
interpolation, find a degree 14 form r14 ∈ k[x, y, z] whose zero divisor on X
is
∑

P∈∆ βP ; such a form is unique modulo g and up to scalar multiple. Thus,
there exists c ∈ k× such that

NL[x,y,z]/k[x,y,z](uθ x + vθ y + wθ z) ≡ cr14(x, y, z)2 (mod g(x, y, z)). (27)

Comparing coefficients lets us compute c. Then c and r := r14/`
14 are as in

Lemma 9.5.
We can now evaluate C f,v(Q) for any Q ∈ X (kv), by using f ; in fact, it

suffices to evaluate uθ x + vθ y + wθ z at any triple of homogeneous coordinates
representing Q, since the value of ` on this triple will be in k×v .

LEMMA 12.13. Assume that the uθ , vθ , wθ above are in OL . Let S ⊂ Ωk be
a finite set of places containing the archimedean places, the places of residue
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characteristic 2, the places of bad reduction of the model g(x, y, z) = 0 of X, and
places lying under OL-primes dividing the OL-ideal (uθ , vθ , wθ ). Then im C f ⊂
L̃(2,S).

Proof. Let v ∈ Ωk \S . Then Lv is a product of local fields, and we let OL ,v be the
product of their valuation subrings. Suppose that (x : y : z) ∈ X (kv). Without loss
of generality, x, y, z ∈Ov and (x, y, z)Ov =Ov. The point (uθ : vθ : wθ ) ∈ P̂2(L)
extends to a point in P̂2(OL ,v). Given Q ∈ ∆(kv,u) = ∆(ks), we can specialize
uθ to an element uQ in the valuation ring of kv,u , and define vQ and wQ similarly;
our hypothesis on (uθ , vθ , wθ ) implies that min(v(uQ), v(vQ), v(wQ)) = 0. On
the reduction of X at v, the 28 bitangents are distinct, so the reduction of
(x : y : z) ∈ X (kv) lies on at most one bitangent, so v(uQ x+vQ y+wQz) > 0 for
at most one Q. On the other hand, (27) and our hypothesis on (uθ , vθ , wθ ) imply
that 2 | v(c), so

2 | v(NLv/kv (uθ x + vθ y + wθ z)) = v
(∏

Q

(uQ x + vQ y + wQz)

)
.

Combining the previous two sentences shows that 2 | v(uQ x + vQ y + wQz) for
all Q, and hence uQ x + vQ y + wQz is a square in L ⊗ kv,u .

By breaking up X (kv) as in Section 11.1, we can compute C f,v(X (kv)) for
any v. (Note that in contrast to Section 11.1, we do not need to work with
extensions of kv.) For a finite set T ⊂ Ωk , we compute

S′T :=
{
δ ∈ L̃(2,S) : N (δ) ∈ ck×2 and δv ∈ C f,v(X (kv)) for all v ∈ T

}
,

which contains Sel f
fake(X). In particular, if S′T is empty, then X has no k-rational

points.
On the other hand, the following may be useful in proving the existence of local

points:

LEMMA 12.14. Let kv be a nonarchimedean local field with valuation ring Ov

and residue field Fv of size at least 37. If Xkv is a smooth plane quartic, and XFv
is geometrically irreducible, then X (kv) is nonempty.

Proof. Removing the singularities from XFv yields a smooth curve of genus g
with at most 6 − 2g punctures, for some g ∈ {0, 1, 2, 3}. In all four cases,
the Hasse–Weil bound implies the existence of a smooth Fv-point. By Hensel’s
lemma, it lifts to an Ov-point, which gives a kv-point.
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12.9. Examples. Denis Simon kindly supplied us with a list of smooth plane
quartics with small integer coefficients and small discriminant. These serve as test
cases for the methods outlined in Section 12.6. In the first three examples, we use
fake descent to determine the structure of J (Q), which in the first two examples
lets us determine X (Q). In the fourth example, we use descent on the curve to
prove that X (Q) = ∅.

12.9.1. A genus 3 curve with J (Q) ' Z/51Z. Let X be the curve in P2
Q

defined by
x3 y − x2 y2 − x2z2 − xy2z + xz3 + y3z = 0.

(This is isomorphic to the curve of smallest discriminant in Simon’s list.)

Steps 1 and 2. The algebra L = Q[t]/(h(t)) turns out to be a degree 28 number
field over Q. It follows that GQ acts transitively on the bitangents. We compute
OL and find that DiscOL = 242 · 296 · 1636.

Step 3. We find that I27 = 4727 = 29 · 163. By Remark 12.11, we may take
S = {2,∞}.
Step 4. The class group of OL is generated by primes of norm below the
Minkowski bound, which is 36984868, remarkably small for a degree 28 number
field. We can prove unconditionally that the class group of OL is trivial, and
we can find explicit generators of L(2,S). We find L(2,S) ' (Z/2Z)17 and
L̃(2,S) ' (Z/2Z)15.

Step 5. By computing the Frobenius action at 3 and 5, we find that G is either the
full group Sp6(F2) or the unique index 36 subgroup up to conjugacy. The larger
group acts doubly transitively on the bitangents, whereas the smaller does not. If
we factor h(t) over L , we find factors of degrees 1, 12, 15, so G is the smaller
group. With this information we can check that

0 // J [2](Q) // E∨(Q) // R∨(Q)

0 0 F2.

(28)

Step 6. Taking T = ∅ (that is, doing no local computations with X ) yields the
upper bound S′∅ ' (Z/2Z)13 on Selαfake(J ). To obtain a better bound, we next try
T = {2}; it will turn out that this suffices.

Step 6a. We check that h is irreducible over Q2, so D2 acts transitively on ∆.
This, together with the general constraints on a decomposition subgroup at 2,
leaves only two candidates for D2 up to conjugacy: a group G56 of order 56 and a
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group G168 of order 168. We can distinguish these by the number of points fixed
by their one-point stabilizers: G56 leaves 4 points fixed and G168 leaves 1 point
fixed. We find that h has 4 roots in Q2(θ), so D2 = G56. Actually, the distinction
is unimportant, because for either group we have

0 // J [2](Q2) // E∨(Q2)
q
// R∨(Q2)

0 0 F2.

(29)

Step 6b. From J [2](Q2) = 0 and (26), we deduce # im γ2 = 8. Embed XQ2 in JQ2

using x0 = (0 : 0 : 1) ∈ X (Q2); we find points in X (Q2) whose images under C2

generate a group of size 8. Thus, the inequality # im C2 6 # im γ2 is an equality;
that is, # im C2 = 8. By Lemma 10.4 and its proof, we obtain

W2 ' kerα2 ' R∨(Q2)

q E∨(Q2)
' Z/2Z, (30)

in which the last isomorphism follows from (29).

Step 7. Given that we have explicit generators for L̃(2,S), we can compute the
map

L̃(2,S) −→ (L ⊗Q2)
×

(L ⊗Q2)×2Q×2
.

In Step 6b, we computed im C2, so we can compute S′T for T = {2}. We find
S′T = 0. Thus, Selαfake(J ) = 0.

By (28) and Corollary 10.15, Sel2(J ) is either 0 or Z/2Z. We can decide
which by computing ker κ in Theorem 10.14. By (30), the map K → W2

is R∨(Q)/q E∨(Q) → R∨(Q2)/q E∨(Q2), which is an isomorphism, so κ is
injective; thus Sel2(J ) = 0 by Theorem 10.14.

REMARK 12.15. The situation can be reinterpreted as follows: the kernel K
of the map α : H 1(Q, J [2]) → H 1(Q, E∨) has a nontrivial element δ, but its
restriction δ2 ∈ H 1(Q2, J [2]) is not in im γ2. (This is because 0 6= δ2 ∈ kerα2,
while im γ2∩kerα2 = 0: see Step 6b above.) In classical language, δ corresponds
to a 2-covering of J that has no Q2-point, so δ /∈ Sel2(J ).

PROPOSITION 12.16. If X is the curve

x3 y − x2 y2 − x2z2 − xy2z + xz3 + y3z = 0

in P2
Q, then J (Q) = 〈[(0 : 1 : 0)− (0 : 0 : 1)]〉 ' Z/51Z and

X (Q) = {(1 : 1 : 1), (0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0), (1 : 1 : 0), (1 : 0 : 1)}.
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Proof. Since Sel2(J ) = 0, the group J (Q) is finite and of odd order. Reduction
modulo 3 injects J (Q)tors into J (F3), which, according to Magma, is of order 51.
(We use J (F3) to denote the group of F3-points on the reduction.) On the other
hand, Magma shows that [(0 : 1 : 0) − (0 : 0 : 1)] is of exact order 51 in J (Q).
Thus J (Q) ' Z/51Z.

Finally, we determine X (Q). The Abel–Jacobi map X → J given by P 7→
[P−(0 : 0 : 1)] injects X (Q) into J (Q). Magma determines which points in J (Q)
can be represented as [P − (0 : 0 : 1)], and the result is as stated.

12.9.2. A positive rank example. Let X be the curve in P2
Q defined by

x2 y2 − xy3 − x3z − 2x2z2 + y2z2 − xz3 + yz3 = 0.

The group J (Q)tors injects into J (F3), and its odd part injects into J (F2) (the curve
has good reduction at 2 and 3). We compute J (F2)' Z/71Z and J (F3)' Z/85Z,
so J (Q)tors = 0. On the other hand, the divisor class

G := [(0 : 1 : −1)+ (0 : 0 : 1)− 2(0 : 1 : 0)]
is nonzero since X is not hyperelliptic. Thus rk J (Q) > 1.

Steps 1 and 2. The algebra L turns out to be a degree 28 number field. We find
that DiscOL = 242 · 416 · 3476.

Step 3. We have I27 = 41 · 347. By Remark 12.11, we may take S = {2,∞}.
Step 4. The Minkowski bound for OL is 1008340641. The truly dedicated
enthusiast could probably verify unconditionally that the class group of OL

is trivial. We verified this only conditionally on the Generalized Riemann
hypothesis for L . Subject to this, we find explicit generators of the groups
L(2,S) ' (Z/2Z)17 and L̃(2,S) ' (Z/2Z)15.

Step 5. By computing the Frobenius action at 5 and 7, we find that G ' Sp6(F2).
Thus J [2](Q) = E∨(Q) = R∨(Q) = 0.

Step 6. It will turn out that taking T = {2} is enough to obtain the upper bound
S′{2} ' Z/2Z on Selαfake(J ).
Step 6a,b. We check that h is irreducible over Q2, so D2 acts transitively on
the bitangents. This leaves 6 possibilities for D2 up to Sp6(F2)-conjugacy, but
for all of them we have J [2](Q2) = E∨(Q2) = 0. Following Remark 11.6, we
obtain # im C2 6 #J (Q2)/2J (Q2) = 8 (see (26)), but we also find enough points
in X (Q2) to show that # im C2 > 8, so # im C2 = 8.
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Step 7. We can compute the map

L̃(2,S) −→ (L ⊗Q2)
×

(L ⊗Q2)×2Q×2

explicitly, and we have im C2; from this we compute that S′T = Z/2Z.
Since R∨(Q) = 0, Corollary 10.15 implies that Sel2(J ) → Selαfake(J ) is

injective. Thus

J (Q)
2J (Q)

↪→ Sel2(J ) ↪→ Selαfake(J ) ⊂ S′T = Z/2Z,

so rk J (Q) 6 1. Combining this with the earlier information yields J (Q) ' Z.

PROPOSITION 12.17. Let X be the curve

x2 y2 − xy3 − x3z − 2x2z2 + y2z2 − xz3 + yz3 = 0

in P2
Q. Assume the Generalized Riemann hypothesis. Then J (Q) ' Z and

X (Q) = {(1 : 1 : 0), (−1 : 0 : 1), (0 : −1 : 1), (0 : 1 : 0),
(1 : 1 : −1), (0 : 0 : 1), (1 : 0 : 0), (1 : 4 : −3)}.

Proof. We already proved that J (Q) ' Z. To determine X (Q) we use an explicit
version of the method of Chabauty and Coleman over Q3 (see [21] for a survey).

We check that #X (F3) = 7, and that the set of 8 points in X (Q) listed above
surjects onto X (F3), with P0 := (1 : 1 : 0) and P1 := (1 : 4 : −3) reducing to the
same point. Since rk J (Q) = 1 and dim J = 3, there is a 2-dimensional subspace
V ⊂ H 0(XQ3,Ω

1) such that
∫ P ′

P ω = 0 for all P, P ′ ∈ X (Q) and ω ∈ V . Since
[P1 − P0] is nonzero in J (Q), it is of infinite order, so V = {ω : ∫ P1

P0
ω = 0}.

We compute this integral (to some 3-adic precision) for ω in a basis for
H 0(XQ3,Ω

1) by evaluating the integral as a power series in a uniformizing
parameter t at P0; then linear algebra produces a basis for V . Explicitly, if we
identify each ω ∈ H 0(XQ3,Ω

1) with a linear form ux + vy + wz, a basis for V
is given by ω1 corresponding to (21 262+ O(310))x − y and ω2 corresponding to
(1302+ O(310))x − z.

For each point of X (F3), we need to find the rational points in the corresponding
residue class in X (Q3). For each point Q ∈ X (F3) other than the reduction of P0

(and P1), the (mod 3) reduction of one of ω1, ω2 is nonvanishing at Q, so by [40,
Proposition 6.3], there is at most one rational point reducing to Q, and we already
know one. The rational points P in the residue class containing P0 and P1 satisfy
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P0
ω1 =

∫ P
P0
ω2 = 0; these give two power series equations over Q3 to be solved

for t ∈ 3Z3. We calculate that each power series has three zeros in 3Z3, but the
intersection is of size at most 2, so P0 and P1 are the only rational points in this
residue class.

12.9.3. A modular curve of level 13. Let Xsplit(13) (respectively, Xnonsplit(13))
be the modular curve of level 13 over Q corresponding to the normalizer
of a split (respectively, nonsplit) Cartan subgroup of SL2(Z/13Z). These are
nonhyperelliptic curves of genus 3, and it turns out [2, 3] that both are isomorphic
to the smooth plane quartic curve

X : x3 y+x3z−2x2 y2−x2 yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0. (31)

This curve has at least the following 7 rational points:

{(0 : 1 : 0), (0 : 0 : 1), (−1 : 0 : 1), (1 : 0 : 0), (1 : 1 : 0), (0 : 3 : 2), (1 : 0 : 1)}.
We compute J (F3) ' Z/91Z and J (F7) ' Z/659Z. Since J (Q)tors injects into
both groups, J (Q)tors = 0. One can verify that the three divisor classes

[(0 : 1 : 0)−(1 : 0 : 0)], [(0 : 0 : 1)−(1 : 0 : 0)], [(−1 : 0 : 1)−(1 : 0 : 0)] ∈ J (Q)

generate a group containing all differences of the points listed above.
Furthermore, the image in J (F3)× J (F5)× J (F43) is isomorphic to

Z/(7 · 13 · 29 · 97)Z× Z/13Z× Z/13Z,

so rk J (Q) > 3.
We apply the procedure in Section 12.6 to compute an upper bound on rk J (Q).

Steps 1 and 2. The algebra L is a degree 28 number field with DiscOL = 242 ·1324.

Step 3. We have I27 = 136. The closed subscheme of P2
Z13

defined by (31) is
regular, and its special fiber is a geometrically integral curve of genus 0, so
c13(J ) = 1. Therefore, we can take S = {2,∞}.
Step 4. The Minkowski bound for OL is 8158 071 456. The truly dedicated
enthusiast could probably verify unconditionally that the class group of OL is
trivial. We verified this only conditionally on the Generalized Riemann hypothesis
for L . Subject to this, we find explicit generators of the groups L(2,S) '
(Z/2Z)17 and L̃(2,S) ' (Z/2Z)15.

Step 5. Since L is a field, G acts transitively on the bitangents. There are
18 subgroups of Sp6(F2) up to conjugacy with that property. The Fieker–Klüners
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implementation in Magma for finding Galois groups yields #G = 504. This
determines G uniquely up to conjugacy.

This information allows us to compute:

0 // J [2](Q) // E∨(Q) // R∨(Q)

0 0 F2
2.

(32)

Steps 6 and 7. It will turn out that taking T = {2} is enough to obtain the
upper bound S′{2} ' Z/2Z on Selαfake(J ). The fact that L has only one prime
above 2 shows that D2 acts transitively. This together with the constraints on a
decomposition group at 2 determines D2 uniquely up to conjugacy in Sp6(F2).
We obtain #D2 = 56 and

0 // J [2](Q2) // E∨(Q2) // R∨(Q2)

0 0 F2
2.

(33)

Following Remark 11.6, we obtain # im C2 6 # im γ2 = #J (Q2)/2J (Q2) = 23

(see (26)). Further computation shows that S′∅ = (Z/2Z)13 and that the
homomorphism

S′∅ −→
(L ⊗Q2)

×

(L ⊗Q2)×2Q×2
is injective. It follows that #S′T 6 # im C2 6 23. Thus # Selαfake(J ) 6 23. By
Corollary 10.15 and (32), this implies # Sel2(J ) 6 25, so rk J (Q) 6 5.

We now present two approaches to improve this to rk J (Q) 6 3. The first is
to use the isomorphism End J ' Z[ζ7 + ζ−1

7 ] of [3, Proposition 2.4] to obtain
that rk J (Q) is a multiple of 3, which improves the bound to rk J (Q) 6 3.
The second is to follow Section 11.1 to compute that # im C2 = 2, which
can be used as follows. By the same argument as in the previous paragraph,
# im C2 = 2 implies # Selαfake(J ) 6 21 and # Sel2(J ) 6 23. On the other hand,
3 6 rk J (Q) 6 dimF3 Sel2(J ), so equality holds everywhere in this paragraph.
In particular, if X(J ) is the Shafarevich–Tate group of J , then X(J )[2] = 0.
We have proved the following:

PROPOSITION 12.18. Let X = Xsplit(13) ' Xnonsplit(13) over Q. Assume the
Generalized Riemann hypothesis. Then J (Q) ' Z3 and X(J )[2] = 0.

REMARK 12.19. By (33) and Lemma 10.4, we have W2 = 0. In particular, we
are in the situation of Corollary 10.16.
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12.9.4. A genus 3 curve violating the local-to-global principle. The fake
descent setup presented in Section 12.1 allows us also to compute Sel f

fake(X) for
a smooth plane quartic X .

PROPOSITION 12.20. Let X be the curve in P2
Q defined by

x4 + y4 + x2 yz + 2xyz2 − y2z2 + z4 = 0.

Then X (R) 6= ∅ and X (Qp) 6= ∅ for all p, but if the Generalized Riemann
hypothesis holds, then X (Q) = ∅.

Proof. We have I27 = −28 ·52 ·1361·97103, so Lemma 12.14 implies X (Qp) 6= ∅
for p > 37. A further calculation using Hensel’s lemma shows that X (Qp) 6= ∅
for p < 37 too, and that X (R) 6= ∅.

To prove X (Q) = ∅, we apply Section 12.8 with S = {∞, 2, 5, 1361, 97103}.
It is straightforward to find (uθ , vθ , wθ ) satisfying the hypotheses of Lemma 12.13
for S . We find that Disc(OL) = 230 ·510 ·13616 ·971036 and the Minkowski bound
exceeds 1022, so determining Cl(OL ,S) unconditionally is out of the question.
Conditional on the Generalized Riemann hypothesis for L , which we assume from
now on, we find that Cl(OL ,S)= Z/2Z and we also find O×L ,S/O×2

L ,S . This leads to

explicit generators of L(2,S) ' (Z/2Z)41 and L̃(2,S) ' (Z/2Z)36. We compute
c = −1. For T = {2, 1361}, we find S′T = ∅, so X (Q) = ∅.

Appendix A. Determining the φ-Selmer group directly

We can modify our approach so that it computes Selφ(J ) directly, instead of
computing Selαtrue/fake(J ) and hoping to control the difference.

The fundamental idea behind a true descent setup is to replace the Galois
module Ĵ [φ̂] whose cohomology we want by a permutation module (Z/nZ)∆
whose cohomology we can compute. The discrepancies between Selαtrue/fake(J )
and Selφ(J ) come from the noninjectivity of (Z/nZ)∆ → Ĵ [φ̂]. In this section
we deal with the noninjectivity by finding another permutation module (Z/nZ)∆′

that surjects onto the kernel. This allows us to describe, in terms of efficiently
computable objects, a subgroup H ⊂ H 1(k, A[φ]) that contains Selφ(J ); see
Propositions A.12 and A.15. Theorem A.16 summarizes the computational tasks
we need to be able to perform in order to compute the Selmer group explicitly via
this method.

A.1. Correspondences. A correspondence∆
τ· · ·K ∆′ between finite G-sets is

a G-homomorphism Z∆ → Z∆′ . Given a G-module M and ∆
τ· · ·K ∆′, we define
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homomorphisms τ ∗ : M∆′ → M∆ and τ∗ : M∆→ M∆′ as follows. Restricting the
composition pairing

HomZ(Z∆
′
,M)× HomZ(Z∆,Z∆

′
) −→ HomZ(Z∆,M)

by setting the second argument to τ yields a G-homomorphism that with
the identifications of Remark 3.3 becomes τ ∗ : M∆′ → M∆. Applying this
construction to the Z-dual of τ yields τ∗.

EXAMPLE A.1. Suppose that X is a nice k-variety. If we apply the previous
remark to the étale group scheme M such that M(ks) is the Gk-module Div Xs ,
then M∆(k) = Div(X × ∆), and we obtain τ∗ : Div(X × ∆) → Div(X × ∆′).
Similarly we obtain τ∗ : k(X ×∆)×→ k(X ×∆′)×.

LEMMA A.2. Let M be a finite G-module, and let n be a positive integer such
that nM = 0.

(a) There exists a finite G-set ∆ with a surjection (Z/nZ)∆ � M.

(b) There exists a finite G-set ∆ with an injection M ↪→ µ∆n (here we assume
char k - n).

Proof. For (a), take ∆ = M : the identity M → M induces ZM � M , which
factors through (Z/nZ)M since nM = 0. Applying (a) to M∨ := HomZ(M, k×s )
and applying HomZ(−, k×s ) yields (b).

LEMMA A.3. Let n be a positive integer. Each of the four homomorphisms

HomZ(Z∆,Z∆
′
)
τ 7→τ∗−−→ HomZ((Z/nZ)∆, (Z/nZ)∆′),

HomZ(Z∆,Z∆
′
)
τ 7→τ∗−−−→ HomZ((Z/nZ)∆′, (Z/nZ)∆),

HomZ(Z∆,Z∆
′
)
τ 7→τ∗−−→ HomZ(µ

∆
n , µ

∆′
n ),

HomZ(Z∆,Z∆
′
)
τ 7→τ∗−−−→ HomZ(µ

∆′
n , µ

∆
n )

is surjective with kernel n HomZ(Z∆,Z∆
′
) (in the last two we assume char k - n).

Proof. The statements do not involve the G-action, so each reduces to an easy
statement about abelian groups.
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A.2. Determining the Selmer group. Set G̃∆
m := G∆

m for a true descent setup,
and G̃∆

m := G∆
m/µn for a fake descent setup.

Recall that R = ker(α∨ : E � Ĵ [φ̂]). Fix a finite étale scheme ∆′ = Spec L ′

with a surjection (Z/nZ)∆′ � R (one such choice is∆′ = R). By definition of R,
we have an exact sequence

(Z/nZ)∆′ −→ E
α∨−→ Ĵ [φ̂] −→ 0 (A.1)

and its dual

0 −→ A[φ] −→ E∨ −→ µ∆
′

n (A.2)

in which the image of the last map is R∨.

REMARK A.4. Define Q and q ′ by the exact sequence

0 −→ R∨ −→ µ∆
′

n
q ′−→ Q −→ 0. (A.3)

If Q(k) = q ′
(
µn(L ′)

)
and X1(k, µ∆

′
n ) = 0 (the latter holds if n is prime, by

Lemma 8.2), then X1(k, R∨) = 0, so by Lemma 10.17(b) the first assumption in
Corollary 10.16 is satisfied. This gives a simple way of showing that X1(k, R∨)
vanishes, but the criterion can be weaker than that coming from Section 8.

By Lemma A.3, the composition

(Z/nZ)∆′ � R ↪→ E ↪→ (Z/nZ)∆ (A.4)

is τ ∗ for some correspondence ∆
τ· · ·K ∆′. We use τ∗ to denote any of several

homomorphisms induced by τ ; the context will make the meaning clear. In the
fake case, τ∗ : µ∆n → µ∆

′
n kills the diagonal µn , because taking duals in (A.4)

shows that τ∗ factors through E∨ = µ∆n /µn . Thus τ∗ : G∆
m → G∆′

m induces
τ∗ : G̃∆

m → G∆′
m in both cases.

Let U be the image of (τ∗, n) : G∆
m → G∆′

m × G∆
m . The last map in (A.2) is

induced by τ∗ : µ∆n → µ∆
′

n , so we have a commutative diagram with exact rows
and columns
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0

��

0

��

R∨

��

0 // A[φ]
α

��

// G̃∆
m

(τ∗,n) // U

pr2

��

// 0

0 // E∨ //

q

��

G̃∆
m

n // G∆
m

//

��

0

R∨

��

0

0

(A.5)

in which ker pr2 is identified as R∨ by the snake lemma. Taking cohomology, we
obtain

R∨(k)� _

��

(G̃∆
m)(k)

(τ∗,n) // U (k)

pr2

��

// H 1(k, A[φ])
α

��

// H 1(k, G̃∆
m)

E∨(k) // (G̃∆
m)(k)

n // L× // H 1(k, E∨) // H 1(k, G̃∆
m).

(A.6)

We record the following lemma and corollary for use in Section A.3.

LEMMA A.5. There exist a finite étale k-scheme ∆′′ and a correspondence

∆′
τ ′· · ·K ∆′′ such that

µ∆n
τ∗−→ µ∆

′
n

τ ′∗−→ µ∆
′′

n

is exact. There is another correspondence∆
τ ′′· · ·K ∆′′ such that τ ′ ◦τ = nτ ′′. Then

U = ker
(
G∆′

m ×G∆
m −→ G∆′

m ×G∆′′
m , (`′, `) 7−→

(
`′n

τ∗(`)
,
τ ′∗(`

′)
τ ′′∗ (`)

))
.
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Proof. Lemma A.2(b) applied to the cokernel of τ∗ yields ∆′′ and τ ′. By
Lemma A.3, τ ′ ◦ τ is n times some τ ′′. Direct computation shows that U is
contained in the kernel. To see the other inclusion, let (`′, `) be in the kernel. Let
λ ∈ G∆

m(ks) be such that λn = `, and let ζ ′ = `′/τ∗(λ). Then ζ ′n = `′n/τ∗(λn) =
`′n/τ∗(`) = 1, so ζ ′ ∈ µ∆′n . Also,

τ ′∗(ζ
′) = τ ′∗(`

′)
τ ′∗τ∗(λ)

= τ ′∗(`
′)

(nτ ′′)∗(λ)
= τ ′∗(`

′)
τ ′′∗ (λn)

= τ ′∗(`
′)

τ ′′∗ (`)
= 1,

which implies that ζ ′ = τ∗(ζ ) for some ζ ∈ µ∆n . Then

(`′, `) = (τ∗(ζλ), (ζλ)n) ∈ U.

COROLLARY A.6. Keeping the notation from Lemma A.5, we have

U (k) = {(`′, `) ∈ L ′× × L× : τ∗(`) = `′n, τ ′′∗ (`) = τ ′∗(`′)
}
.

In this paragraph, suppose that we are in the fake case. The map τ∗ : µ∆n → µ∆
′

n
factors through E∨ = µ∆n /µn , so it kills the diagonal image of µn . Let ι : Z→ Z∆
be the diagonal embedding; the previous sentence shows that (τ ◦ ι)∗ : µn → µ∆

′
n

is trivial. By Lemma A.3, τ ◦ ι = nθ for some correspondence θ . The image of
a ∈ k× under θ∗ : Gm → G∆′

m in each component of (L ′)× is a fixed power of a.

LEMMA A.7.

(a) In the true case, G̃∆
m(k) is mapped by G̃∆

m
n→ G∆

m to L×n ⊆ L× and by (τ∗, n)
to {

(τ∗(`), `n) : ` ∈ L×
} ⊆ U (k). (A.7)

(b) In the fake case, G̃∆
m(k) is mapped by G̃∆

m
n→ G∆

m to L×nk× ⊆ L× and by
(τ∗, n) to {

(τ∗(`)θ∗(a), `na) : ` ∈ L×, a ∈ k×
} ⊆ U (k). (A.8)

Proof. The true case is immediate from the definitions, so assume that we are in
the fake case. We have an exact sequence

0 −→ Gm −→ G∆
m ×Gm

j−→ G̃∆
m −→ 0

with maps induced by a 7→ (a, a−n) and (`, a) 7→ `a1/n (the nth root is well-
defined modulo µn). Taking cohomology shows that j induces a surjection
L× × k× → G̃∆

m(k). Following j by G̃∆
m

n→ G∆
m yields (`, a) 7→ `na, whose

image on k-points is L×nk×. Following j by G̃∆
m

(τ∗,n)−→ U ⊆ G∆′
m × G∆

m yields
(`, a) 7→ (τ∗(`)θ∗(a), `na).
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REMARK A.8. The definition of j in the proof of Lemma A.7(b) shows that
in (A.8), it suffices to let a run over a set of representatives of k×/k×n .

Define V := im
(
G̃∆

m(k)
(τ∗,n)−→ U (k)

)
, so V is given by (A.7) or (A.8).

LEMMA A.9. Suppose that we have a true (respectively, fake) descent setup
(n,∆,L ). Choose β as in Definition 6.2 (respectively, β and D as in
Definition 6.7). Then the divisor τ∗(β) (respectively, τ∗(β)− θ∗(D)) is a principal
divisor on X ×∆′.

Proof. In the true case, the composition

(Z/nZ)∆′ τ∗−→ (Z/nZ)∆ α∨−→ Ĵ [φ̂] ⊆ Pic Xs

is 0 by (A.1), and it sends a basis element P ′ to the class of the divisor τ∗(β)|X×{P ′}.
In the fake case, we use the following diagram:

Z∆′ (τ∗,θ∗)
//

����

Z∆ × Z
〈(n P, 1) : P ∈ ∆〉

(β,−D)
// Pic Xs

(Z/nZ)∆′ τ∗ // (Z/nZ)∆deg 0

OO

α∨ // Ĵ [φ̂]
?�

OO

(A.9)

Here, the middle vertical map sends
∑

P āP P (where aP ∈ Z reduces to āP ∈
Z/nZ) to

(∑
P aP P, (

∑
P aP/n)

)
. The map (β,−D) sends (

∑
aP P, b) to the

class of
∑

aPβP−bD, so (n P, 1) goes to the class of nβP−D, which is trivial by
the definitions of β and D. Both paths from Z∆′ to (Z∆ × Z)/(〈(n P, 1) : P ∈ ∆〉)
send a basis element P ′ to (∑

P

τP ′,P P,
∑

P τP ′,P

n

)
,

where τP ′,P is the coefficient of P ′ in τ(P) ∈ Z∆′ . Both paths from (Z/nZ)∆deg 0
to Pic Xs send P1 − P2 to the class of βP1 − βP2 . Thus (A.9) commutes. The
composition along the bottom row is zero, so the composition along the top row
is zero, which is the desired result.

Lemma A.9 shows that there is a function r = (rP ′)P ′∈∆′ ∈ k(X × ∆′)× such
that

div(r) =
{
τ∗(β), in the true case,
τ∗(β)− θ∗(D) in the fake case.
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Recall from Definitions 6.2 and 6.7 the function f ∈ k(X ×∆)× satisfying

div( f ) =
{

nβ, in the true case,
nβ − D in the fake case.

LEMMA A.10. We have τ∗( f ) ≡ r n (mod (L ′)×). If y ∈ Y0(X good), then
τ∗([y, β]) = r(y) (respectively, τ∗([y, β]D) = r(y)).

Proof. Since div(τ∗( f )) = nτ∗(β) = div(r n), the congruence holds. In the true
case,

τ∗([y, β]) = [y, τ∗(β)] = [y, div(r)] = r(y) ∈ G∆′
m (ks).

In the fake case, define [y, β]D using H and h as in (9); then

τ∗([y, β]D) = [y, τ∗(β − ι∗H)]
τ∗(ι∗(h(y)1/n))

= [y, τ∗(β)− θ∗(nH)]
θ∗(h)(y)

= [y, div(r · θ∗(h))]
θ∗(h)(y)

= r(y).

In the following diagram with exact rows, the first, second, and fourth rows are
as in (5) or (11), except that the first is a pushout by J [n]� A[φ]. The third and
fourth rows are the same as in (A.5). The two maps from Z0 × Y0 to U coincide
by Lemma A.10. Thus the diagram below commutes:

0 // A[φ] // A
φ

// J // 0

0 // J̃ [n] //

OO

��

Z0 × Y0 nz+y
//

OO

��

Z0 //

OO

(r, f )

��

f

vv

0

0 // A[φ] //

α

��

G̃∆
m

(τ∗,n) // U //

pr2

��

0

0 // E∨ // G̃∆
m

n // G∆
m

// 0

(A.10)
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Applying cohomology to the first, third and fourth rows and using Lemma A.7(b),
we obtain the following diagram with exact rows:

0 //
J (k)
φA(k)

γ
// H 1(k, A[φ])

Z0(X good)

OO

(r, f )

��

0 //
U (k)

V
//

pr′2
��

H 1(k, A[φ])

α

��

// H 1(k, G̃∆
m)

0 //
L̃×

L×nk×
// H 1(k, E∨) // H 1(k, G̃∆

m)

(A.11)

We write H := U (k)
V

and ρv : H → Hv, where Hv is the local analogue of H .

LEMMA A.11. We have X1(k, G̃∆
m) = 0.

Proof. In the true case, H 1(k,G∆
m) = 0 (see the end of Section 3). In the fake

case, taking cohomology of

0 −→ µn −→ G∆
m −→ G̃∆

m −→ 0

yields an injection H 1(k, G̃∆
m) ↪→ H 2(k, µn), which restricts to an injection

X1(k, G̃∆
m) ↪→X2(k, µn). But X2(k, µn) = 0 by the local–global property for

the Brauer group.

PROPOSITION A.12. Assume Hypothesis 10.1. Then the injection

H ↪→ H 1(k, A[φ])
in the third row of (A.11) identifies{

h ∈ H : ρv(h) ∈ (r, f )
(
Z0(X good

kv )
)

for all places v
}

with Selφ(J ).
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Proof. Hypothesis 10.1 shows that the image of J (kv)/φA(kv) in H 1(kv, A[φ])
equals the image of Z0(X good

kv ), which in (A.11) for kv maps to 0 in H 1(kv, G̃∆
m).

Thus, the image of Selφ(J ) ⊆ H 1(k, A[φ]) in H 1(k, G̃∆
m) lies in X1(kv, G̃∆

m),
which is 0 by Lemma A.11, so Selφ(J ) ⊆ H by (A.11). For h ∈ H , the element
ρv(h) is in the image of J (kv)/φA(kv) (or Z0(X good

kv ) as above) if and only if it is
in the image of (r, f )

(
Z0(X good

kv )
)
, by (A.11).

We now describe the fibers of the map pr′2 in (A.11). This will help us obtain a
computable description of Selφ(J ): see Proposition A.15 below.

Recall the exact sequence (cf. Remark A.4)

0 −→ A[φ] −→ E∨
τ∗−→ µ∆

′
n

q ′−→ Q −→ 0. (A.12)

LEMMA A.13. Let ` ∈ L× and let ξ be its image in H 1(k, E∨).

(a) If ξ lifts to H 1(k, A[φ]), then τ∗(`) is an nth power in L ′.

(b) Conversely, suppose that τ∗(`) is an nth power in L ′, say τ∗(`) = un . Let
λ ∈ L×s be such that λn = `. Then:

(1) The element w := q ′(τ∗(λ)/u) ∈ Q is G-invariant,

(2) Let Z := {ζ ∈ µn(L ′) : q ′(ζ ) = w}. Then (ζu, `) ∈ U (k) if and only
if ζ ∈ Z.

(3) The set of elements of H 1(k, A[φ]) mapping to ξ is the image of the
set {(ζu, `) : ζ ∈ Z} under U (k)→ H 1(k, A[φ]).

(4) Two such pairs (ζu, `) and (ζ ′u, `) have the same image in
H 1(k, A[φ]) if and only if ζ ′/ζ ∈ τ∗(E∨(k)).

(c) In particular, if µn(L ′) surjects onto Q(k), then ξ lifts to an element of
H 1(k, A[φ]) if and only if τ∗(`) is an nth power in L ′.

Proof. In (A.6), the image of pr−1
2 (`) under U (k)→ H 1(k, A[φ]) equals the set

α−1(ξ) of lifts of ξ .

(a) If ξ lifts, then there is a pair (u, `) ∈ U (k). By Lemma A.5, τ∗(`) = un .

(b) (1) First, (
τ∗(λ)

u

)n

= τ∗(λn)

un
= τ∗(`)

un
= 1,
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so τ∗(λ)/u ∈ µ∆′n . For σ ∈ G,

σw

w
=

σq ′
(
τ∗(λ)/u

)
q ′
(
τ∗(λ)/u

) = q ′
( σ τ∗(λ)
τ∗(λ)

)
= q ′

(
τ∗
( σλ
λ

))
= 1,

since q ′ ◦ τ∗ is trivial and u is G-invariant.

(2) For ζ ∈ µn(L ′), the following are equivalent:

• (ζu, `) ∈ U (k);
• there exists λ̃ ∈ L×s with τ∗(̃λ) = ζu and λ̃n = ` (by definition of

U );
• there exists ζ̃ ∈ µn(L s) such that τ∗(̃ζ ) = ζu/τ∗(λ) (write λ̃ = ζ̃ λ);
• q ′(ζu/τ∗(λ)) is trivial (Equation (A.12) yields τ∗(µn(L s)) =

ker(q ′));
• q ′(ζ ) = q ′(τ∗(λ)/u);
• q ′(ζ ) = w (by definition of w).

(3) By the first sentence of this proof, it suffices to prove the equality
pr−1

2 (`) = {(ζu, `) : ζ ∈ Z}. An element of pr−1
2 (`) has the form

(u ′, `) for some u ′ ∈ L ′, and (u ′)n = τ∗(`) = un as in (a), so u ′ = ζu
for some ζ ∈ µn(L ′). Now part (2) identifies the possibilities for ζ .

(4) In (A.6), the intersection of ker pr2 with the kernel of U (k) →
H 1(k, A[φ]) is (τ∗, n)(E∨(k)) = τ∗(E∨(k))× {1}.

(c) This follows from part (b).

REMARK A.14. We can compute w ∈ Q(k) by working over a finite field. Let v
be a finite place of k such that the characteristic of its residue field Fv does not
divide n and such that ` is a unit at v. The formula in Lemma A.13(b)(1), applied
over Fv to the reductions of ` and u modulo v, computes an element of Q(Fv) that
is the image in Q(Fv) of the desired w. Since the reduction map Q(k)→ Q(Fv)
is injective, we can recover w in Q(k).

Proposition A.12 involves an infinite group H . Imposing the condition that
elements are unramified at all places outside a finite set S lets us replace H by
a finite subgroup HS . This will reduce the determination of Selφ(J ) to a finite
computation. Let H 1(k, A[φ])S be the group of classes unramified outside S , as
in Section 7.1.

PROPOSITION A.15. Assume Hypothesis 10.1. Let S be a finite set of places of k
containing the set of places in Proposition 9.2 and the places at which E∨ is
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ramified. Let HS be the preimage in H = U (k)/V of L̃(n,S) ⊂ ˜L×/L×nk×
under the map pr′2 in (A.11). Then the injection H ↪→ H 1(k, A[φ]) in the third
row of (A.11) identifies the subgroup HS with

H 1(k, A[φ])S ∩ im(H → H 1(k, A[φ])),
and identifies {

h ∈ HS : ρv(h) ∈ (r, f )
(
Z0(X good

kv )
)

for all v ∈ S } (A.13)

with Selφ(J ).

Proof. Let v /∈ S be a place of k. Since E∨ is unramified at v, we have E∨(kv,u) =
E∨(ks), so the first map in

E∨(kv,u) −→ R∨(kv,u) −→ H 1(kv,u, A[φ]) α−→ H 1(kv,u, E∨)

is surjective. This shows that for ξ ∈ H 1(k, A[φ]), ξ is unramified outside S if
and only if α(ξ) is unramified outside S . On the other hand, Proposition 7.2 shows
that HS equals the set of h ∈ H whose image pr′2(h) in ˜L×/L×nk× is unramified
outside S . By (A.11), the previous two sentences yield the first identification.
Combining this with Proposition 9.2(a) and the last sentence of the proof of
Proposition A.12 yields the second identification.

We now sketch an algorithm for computing Selφ(J ), using the explicit
description given in Proposition A.15. First compute L̃(n,S). Lemma A.13
lets us compute its inverse image HS under the map pr′2 in (A.11). To perform
the computations required by Lemma A.13, we need to be able to evaluate
τ∗ : L× → L ′× and extract nth roots in L ′; the remaining computations use only
finite Galois modules like E∨, µ∆′n , or Q, so they are not difficult.

Similarly, for each v ∈ S , first compute ˜L×v /L×n
v k×v , and use Lemma A.13

(over kv) to obtain a description of Hv. The map HS → Hv is induced by the
inclusion U (k) ↪→ U (kv), so it too is easily described. Next, assuming that we can
evaluate r and f on Z0(X good

kv ), we can determine the image of J (kv) in Hv. Using
all this, the second identification in Proposition A.15 lets us compute Selφ(J ).

We summarize this discussion as follows.

THEOREM A.16. Given a true or fake descent setup with associated isogeny
φ : A→ J , we can compute the Selmer group Selφ(J ) if we can do the following:

• Compute in the algebras L and L ′ and their completions (this includes the
ability to take nth roots).
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• Determine a set S of places of k as in Proposition A.15.

• Compute k(n,S) and L(n,S).

• Evaluate τ∗ on L× and L×v for v ∈ S , and on finite residue fields.

• Evaluate f and r on Z0(X good
kv ) for v ∈ S .

EXAMPLE A.17. Consider the case of 2-descent on Jacobians of nonhyperelliptic
genus 3 curves X , as in Section 12. For generic X , the smallest usable set ∆′ is
the set of syzygetic quadruples, which has size 315. We have not had the need to
implement the approach of this appendix on such examples, but it is likely that
this could be done if required.

A.3. Determining the Selmer group in special situations. In some cases,
the computation of Selφ(J ) as described in Section A.2 can be simplified. In
particular, in the following proposition, the set S is potentially smaller than that
required in Proposition A.15.

PROPOSITION A.18. In the situation of Section A.2, let S be a set of places of k
containing the set of places in Proposition 9.2. Assume that the homomorphism
E∨(k ′) → R∨(k ′) is surjective for all field extensions k ′ of k and that the map
q ′ : µn(L ′)→ Q(k) is surjective. Then

Selφ(J ) '
{
δ = [`] ∈ L̃(n,S) : τ∗(`) ∈ L ′×n and δv ∈ im Cv for all v ∈ S

}
.

Proof. Since E∨(k)→ R∨(k) is surjective, the map H 1(k, A[φ]) α→ H 1(k, E∨)
is injective. So the map pr′2 in (A.11) identifies H with a subgroup of ˜L×/L×nk×,
and similarly identifies Hv with a subgroup of ˜L×v /L×n

v k×v , for each v. Also
E∨(kv,u) → R∨(kv,u) is surjective for each v, so the proof of Proposition A.15
shows that HS is the subgroup of elements of H unramified outside S . Since
µn(L ′)→ Q(k) is surjective, Lemma A.13(c) yields

HS ' {[`] ∈ L̃(n,S) : τ∗(`) ∈ L ′×n}. (A.14)

In (A.11), Cv = pr′2 ◦(r, f ), so (r, f )
(
Z0(X good

kv )
) = im Cv. Substituting this and

(A.14) into (A.13) completes the proof.

REMARK A.19. In contrast with Theorem A.16, Proposition A.18 lets us
determine Selφ(J ) without evaluating τ∗ on Lv and without evaluating (or even
constructing) r .
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REMARK A.20. The surjectivity assumptions in Proposition A.18 can be checked
by a finite computation. This is clear for the statements over k, since they
involve only the k-points of some finite Galois modules. To check surjectivity
of E∨(k ′) → R∨(k ′) for all extension fields k ′ of k, let Γ be the (finite) Galois
group over k of the splitting field of E∨; then the action of Gk′ on E∨ (and therefore
also R∨) factors through a subgroup Γ ′ 6 Γ . The surjectivity of E∨(k ′)→ R∨(k ′)
is determined by Γ ′, so it suffices to check it for each Γ ′; in fact, we need only
consider one Γ ′ in each conjugacy class of subgroups.

REMARK A.21. Suppose that n is prime, and that the surjectivity assumptions
in Proposition A.18 hold. Then X1(k, R∨) = 0 by Remark A.4, and Wv = 0 for
all v by Lemma 10.5(b), and K = 0 by its second definition (preceding (22)). So
by Lemma 10.17(b) and Corollary 10.16, we have Selφ(J ) ' Selαtrue/fake(J ).
The advantage of computing Selφ(J ) using Proposition A.18 instead of
computing Selαtrue/fake(J ) using Theorem 10.9(b) is that the former requires
local computations at only the places in S instead of the places in the potentially
much larger set T of Theorem 10.9(b). This improvement is possible because of
the additional condition τ∗(`) ∈ L ′×n: in terms of the notation ST of Section 10.2,
Proposition A.18 says that

Selφ(J ) ' SS ∩ {[`] ∈ L̃(n,S) : τ∗(`) ∈ L ′×n},
which by Lemma A.13(c) equals SS ∩ α(H 1(k, A[φ])) under the assumptions
made. In other words, enlarging S to a T large enough that ST = Selαtrue/fake(J )
has the effect of intersecting SS with α(H 1(k, A[φ])).
EXAMPLE A.22. We consider 3-descent on an elliptic curve J , as in [37]. Let
∆ = J [3] − {0}, and let β be the graph of the map ∆ → Div0 Js sending P to
(P) − (O). This defines a true descent setup, for which A[φ] = J [3] and L is
an étale algebra of degree 8. Fix a Weierstrass equation for J ; then let ∆′ be the
set of eight lines in P2 passing through three of the points in ∆, together with
the four vertical lines passing through two of them and the origin of J . Let the
correspondence τ be given by incidence. A finite computation as in Remark A.20
shows that the maps µ3(L ′)→ Q(k) and µ3(L)→ R∨(k) are surjective over any
field. So Proposition A.18 gives us a way to determine Sel3(J ), if we can compute
L(3,S).

The approach described here and in Section A.2 has advantages and
disadvantages compared to computing Selαtrue/fake(J ) as in Section 11. One
obvious advantage is that it computes the Selmer group directly. Also, as in
Remark A.21, it requires local computations at only the places in S instead of
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the places in a potentially much larger set T . So whenever this direct approach is
feasible (as in the example above), one should use it.

On the other hand, the direct approach requires not only information on the
(S-)class and unit groups of L , but also a presentation of L ′, the map τ∗ : L× →
L ′×, and possibly the function r , which is defined over L ′.

A.4. Passing from a true or fake Selmer group to the actual Selmer group.
Recall the exact sequence

0 −→ ker κ −→ Selφ(J )
α−→ Selαtrue/fake(J ) ∩ α

(
H 1(k, A[φ])) −→ coker κ

from Theorem 10.14. Assuming that we have computed the group Selαtrue/fake(J ),
we can determine the order of Selφ(J ) if we can

• find the order of ker κ;

• for any given ξ ∈ Selαtrue/fake(J ) check if ξ ∈ α(H 1(k, A[φ]));
• and if so, find its image in coker κ .

In this subsection, we will explain why this seems no easier than
computing Selφ(J ) directly using the approach of Section A.2.

Lemma A.13 implies the following.

COROLLARY A.23. If we can evaluate the map τ∗ explicitly on L× and if we can
extract nth roots in L ′, then we can determine whether any given element in the
image of L× in H 1(k, E∨) lies in α

(
H 1(k, A[φ])).

This takes care of the second point in the list above.
For the other two points, we need to find the groups Wv and the homomorphism

κ : K → ∏
v Wv. The group K = R∨(k)/q E∨(k) can be found by a finite

computation, using the inclusion R∨(k) ↪→ µn(L ′) arising from (A.3) to represent
elements of R∨(k). For the finitely many v for which the proof of Corollary 10.6
does not guarantee Wv = 0, we use the following to compute Wv:

LEMMA A.24. Fix v.

(a) The map
ker Cv

γv
↪→ kerαv ' R∨(kv)/q E∨(kv)

can be described explicitly as follows. Given [z] ∈ ker Cv ⊆ J (kv)/φA(kv),
represented by some z ∈ Z0(X good

kv ), the image γv([z]) is represented by
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ζ ∈ R∨(kv) ⊂ µn(L ′v) defined as follows:
In the true case, f (z) = `n for some ` ∈ L×v ; then set ζ := r(z)/τ∗(`).
In the fake case, f (z) = `na for some ` ∈ L×v and a ∈ k×v ; then set
ζ := r(z)/(τ∗(`)θ∗(a)).

(b) Assume Hypothesis 11.1. If we know #
(
J (kv)/φA(kv)

)
and we can compute

the functions f and r on Z0(X good
kv ) and τ∗ on L×v , then we can compute Wv

in the course of the computation of im Cv as in Remark 11.6 as follows:

(1) Search for points on X over finite extensions of kv until a 0-cycle x0 of
degree 1 on Xkv is found.

(2) For finite extensions K/kv of degree d, randomly generate elements
z := trK/kv (x) − dx0 ∈ Z0(X good

kv ) as in Remark 11.6, let J be the
subgroup of J (kv)/φA(kv) they generate so far, and compute the
groups

I := Cv(J ) ⊆ ˜L×v /L×n
v k×v ,

G := γv(ker(Cv|J )) ⊆ R∨(kv)/q E∨(kv)

until #I · #G = #
(
J (kv)/φA(kv)

)
.

(3) When equality occurs, I = im Cv and Wv '
(
R∨(kv)/q E∨(kv)

)
/G.

Proof.

(a) In the true case, Cv([z]) = 0 means that f (z) = `n for some ` ∈ L×v .
Let Vv be the local analogue of V . Dividing (r(z), f (z)) ∈ U (kv) by
(τ∗(`), `n) ∈ Vv (cf. Lemma A.7) yields (ζ, 1) ∈ U (kv), so Corollary A.6
implies ζ ∈ µn(L ′). In the fake case, we divide instead by the element
(τ∗(`)θ∗(a), `na) ∈ Vv. Lemma A.13(b)(2) applied with `= 1, u = 1, λ= 1,
and hence w = 1, yields ζ ∈ ker(q ′|µn(L ′)) = R∨(kv) (see (A.3)).

(b) We have #I · #G = #J 6 #
(
J (kv)/φA(kv)

)
with equality if and only if

J = J (kv)/φA(kv). When equality occurs, I = im Cv and G = γv(ker Cv),
and Definition 10.3(i) yields Wv '

(
R∨(kv)/q E∨(kv)

)
/G.

REMARK A.25. By computing #J = #I ·#G as the algorithm in Lemma A.24(b)
progresses, we can detect when J = J (kv)/φA(kv). This stopping rule can help
make our computation more efficient.

Once we know Wv as a quotient of R∨(kv) for all v for which Wv might be
nonzero, the map κ : K → ∏

v Wv, with K = R∨(k)/q E∨(k), is induced by the
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maps R∨(k) → R∨(kv) and hence is computable. In particular, we can find the
size of ker κ , which takes care of the first point in our list.

The following lemma deals with the last point.

LEMMA A.26. Under the assumptions in Corollary A.23 and Lemma A.24(b),
given an element ξ ∈ Selαtrue/fake(J ) ∩ α(H 1(k, A[φ])), represented by some
explicit ` ∈ L×, we can find the image of ξ in coker κ .

Proof. Use Lemma A.24 (and the sentence preceding it) to compute Wv for all v.
Compute κ as in the sentences preceding Lemma A.26. Our task is to compute
the image of ξ under the snake map implied by (23). To do this, we do a parallel
diagram chase in the more computation-friendly diagram

0 // R∨(k) //

��

U (k)
pr2 //

��

L×

��

0 //
∏
v

R∨(kv) //
∏
v

U (kv)
pr2 //

∏
v

L×v

(A.15)

(with exact rows from (A.6)), which maps to (23).
Use Lemma A.13 to compute u such that (u, `) ∈ U (k), that is, such that

τ∗(`) = un . For the places v for which Wv = 0, set ζv := 1 ∈ R∨(kv). For
the finitely many remaining v, we have ξv = Cv([zv]) for some zv ∈ Z0(X good

kv )

found during the local image computation; then f (zv)≡ ` in ˜L×v /L×n
v k×v . Dividing

(u, `) ∈ U (kv) by (r(zv), f (zv)) and then by an element of Vv as in Lemma A.7
yields an element (ζv, 1) ∈ U (kv) with the same image as (u, `) in the group
H 1(kv, A[φ])/ im γv in the corresponding position of (23). By exactness of the
second row of (A.15), we have ζv ∈ R∨(kv). Then (ζv) ∈ ∏ R∨(kv) maps to an
element of

∏
Wv in (23), which represents the image of ξ in coker κ .

We conclude that in order to find (the order of) Selφ(J ) from Selαtrue/fake(J ),
we need to be able to lift a given ` ∈ L× to (u, `) ∈ U (k) (or show that such a
lift does not exist), and to evaluate r and τ∗ locally at the places with potentially
nontrivial Wv. But if we can do all this, then we can also compute Selφ(J ) directly
as described in Theorem A.16.

Acknowledgments

Our research project was begun at the Mathematical Sciences Research
Institute in 2006, and continued over several years at several institutions: Banff

https://doi.org/10.1017/fms.2016.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.1


N. Bruin et al. 78

International Research Station, Institute for Computational and Experimental
Research in Mathematics, Jacobs University, Massachusetts Institute for
Technology, Mathematisches Forschungsinstitut Oberwolfach, Pacific Institute
for the Mathematical Sciences, and Universität Bayreuth. We thank them all for
their hospitality. We also thank David Kohel and Christophe Ritzenthaler for
comments on discriminants of ternary quartic forms, Benedict Gross and Jack
Thorne for the content of Remark 1.2, and Edward Schaefer for suggestions of
references. We thank the referee for many helpful comments.

N.B. was partially supported by the Natural Sciences and Engineering Research
Council. B.P. was partially supported by the Guggenheim Foundation, by a grant
from the Simons Foundation (#340694 to Bjorn Poonen), and by National Science
Foundation grants DMS-0301280, DMS-0841321, and DMS-1069236. M.S. was
partially supported by the Deutsche Forschungsgemeinschaft.

References

[1] M. F. Atiyah and C. T. C. Wall, ‘Cohomology of groups’, in Algebraic Number Theory (Proc.
Instructional Conf., Brighton, 1965) (Thompson, Washington, DC, 1967), 94–115.

[2] B. Baran, ‘An exceptional isomorphism between modular curves of level 13’, J. Number
Theory 145 (2014), 273–300.

[3] B. Baran, ‘An exceptional isomorphism between level 13 modular curves via Torelli’s
theorem’, Math. Res. Lett. 21(5) (2014), 919–936.

[4] M. Bhargava, B. H. Gross and X. Wang, ‘Arithmetic invariant theory II: Pure inner forms
and obstructions to the existence of orbits’, in Representations of Reductive Groups, (eds.
M. Nevins and P. E. Trapa) Progress in Mathematics, 312 (Springer International Publishing,
Boston, 2015), 139–171.

[5] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Ergebnisse der Mathematik und
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(1971), 181–192.
[26] David Mumford, Tata Lectures on Theta. II, Progress in Mathematics, 43 (Birkhäuser
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