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TRANSFERRING RESULTS FROM RINGS OF 
CONTINUOUS FUNCTIONS TO RINGS OF 

ANALYTIC FUNCTIONS 

ANDREW ADLER AND R. DOUGLAS WILLIAMS 

I n t r o d u c t i o n . Let C(X) be the ring of all real-valued continuous functions 
on a completely regular topological space X, and let A{Y) be the ring of all 
functions analytic on a connected non-compact Riemann surface F . T h e ideal 
theories of these two function rings have been extensively studied since the 
fundamental papers of E . Hewi t t on C{X) [12] and of M. Henriksen on the 
ring of entire functions [10; 11]. Despite the obvious differences between these 
two rings, it has turned out t h a t there are striking similarities between their 
ideal theories. For instance, non-maximal prime ideals of A ( F ) [2; 11] behave 
very much like prime ideals of C{X) [13; 14], and pr imary ideals of A(Y) 
which are not powers of maximal ideals [19] resemble pr imary ideals of C(X) 
[15]. In this paper we show tha t there are very good reasons for these similari­
ties. I t tu rns out t h a t much of the ideal theory of A ( Y) is a special case of the 
ideal theory of rings of continuous functions. We develop machinery t h a t 
enables one almost automatical ly to derive results about the ideal theory of 
A(Y) from corresponding known results of ideal theory for rings of continuous 
functions. 

In section 1 we present some facts about A(Y) t h a t are needed later. In 
section 2 we construct a special topological space X and analyze the s t ructure 
of some of the impor tan t ideals of the ring C*(X) of bounded real-valued 
continuous functions on X. Section 3 contains the transfer machinery promised 
above. We define a map from the set of ideals of A ( F ) into the set of ideals of 
C*(X) and derive its basic properties in Theorems 3.5 and 3.6. Theorem 3.5 
in part icular shows t h a t the differentially closed ideals of A ( F) behave very 
much like the 'regular ' ideals of C*(X). (An ideal is called regular if it is 
generated by a set of regular elements of the ring, i.e. elements t ha t are not 
zero divisors.) 

Finally in section 4 we show how^ the results of section 3 may be applied to 
transfer results of ideal theory from C*(X) to A(Y). Many examples are 
provided in order to give a clear idea of what kinds of results can be transferred 
and how the transfer process works. 

Corollary 3.7. together with some applications to local ideal theory was 
announced in [1]. T h e proof sketched there relies on valuat ion theory and the 
isomorphism of certain groups obtained from ultrapow^ers of the integers and 
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the reals. In this paper we give a more direct proof which does not use valuation 
theory and we obtain in addition a great deal of information relating the 
global ideal theories of A (F) and C*(X). 

1. The Ring A(Y). The basic terminology and notation of this paper will 
be that of [8] with one exception: the whole ring will be considered an ideal. 
If F is an analytic function, VX(F) will denote the order of the zero of F at the 
point x. 

Let A(Y) be the ring of all functions analytic on a connected, non-compact 
Riemann surface Y. In this section we present facts about the ideal theory of 
A(Y) that are needed later. For results mentioned but not proved in this 
section and for further information about A(Y) see the papers of N. L. Ailing 
[2; 3] and M. Henriksen [10; 11]. 

Suppose that M is a maximal ideal of A (F ) . Let F be a nonzero element of 
M, and set D = Z(F). D is a nonempty, closed discrete subset of F, either 
finite or countably infinite. Let M = \Z P\ D : Z Ç Z[M]}. fx is an ultrafilter 
on the set D, and 

(1.1) M = \F e A (J) :Z{F)f^D 6 »}. 

If /x is a fixed (principal) ultrafilter on D, then M is called a fixed maximal 
ideal. If jit is a free ultrafilter on D, then M is called a free maximal ideal. 

Now let I be a proper ideal of A (F) . If M is a maximal ideal that contains 
/ , we set 

IMc = {F G A {Y) :GF £ I for some G G A (F) - M}. 

JM
C is an ideal of A (F) , and J C ^MC C M. We will need two facts about the 

ideals IM
C: 

(1) A nonzero ideal I is contained in a unique maximal ideal M if, and only 
if, / = IM

C. 
(2) If / is any ideal and v(I) is the set of maximal ideals containing / , 

then I = f W t O ) IMC-
If M is a maximal ideal of A ( F), then the ideal P M * = PUÇAT ^ W is the largest 

non-maximal prime ideal contained in M. If M is fixed, PM* = (0). If M is 
free, however, (0) ^ P / . In fact (using the notation above) 

PM* = {F £ A(Y) :{x £ D : VX(F) ^ n\ € M for all n 6 iV}. 

1.2. Definition. Let AT be a maximal ideal of A(Y). We say that an ideal 
I oi A(Y) is PM*-restricted provided 

I = {F £ A(Y) :HF e I for some H 6 4 (F) - P / j . 

The notion of a P^*-restricted ideal is interesting only when M is free; 
for M fixed the only PM*-restricted ideals are (0) and A{Y). If / is a proper 
PM*-restricted ideal, then clearly I = IM

C\ so if / ^ (0), Mis the only maximal 
ideal that contains I. The PM*-restricted ideals include all non-maximal prime 
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ideals that are contained in M and all the primary ideals that are contained 
in M except for the powers Mn of M. 

The result we record next, originally due to O. Helmer [9] for Y = the com­
plex plane, has been a valuable tool in all studies of the ideal theory of 4 (F) . 

1.3. PROPOSITION. Let {Fu . . . , Fn] C 4 ( F ) . If H is any element of 4 ( F ) 
that satisfies VX(H) = min { Vx(Fi), . . . , Vx(Fn)} for all x G F, then (H) = 
(Fu...yFn). 

We will call an ideal I of A ( F) differentially closed if F' G 7 whenever F £ I. 
We now give an elementary but useful description of the differentially closed 
ideals of A (J). 

1.4. PROPOSITION. The following are equivalent for any ideal I of A(Y). 
(1) I is differentially closed. 
(2) G G I if, and only if, for some F £ I and some integer ft, F^G) ^ ^ ( F ) — ft 

/ar a// x G F. 
(3) For a// I f » ( / ) , IM

C is PM*-restricted. 

Proof. (1) => (2): Suppose F G I and F,(G) ^ F*(F) - ft for all * G F. 
Let F<*> denote the ftth derivative of F, and take H £ A(Y) such that VX(H) = 
min { F ^ F ) , Vx(F^k))} for all x G F. (The existence of such an H follows from 
the generalized Weierstrass product theorem [6], which we use without com­
ment throughout the remainder of the paper.) Note that VX(H) = VX(F) — ft 
for all x G Z(H). Since I is differentially closed, (F, F^k)) C I, and so by 1.3 
H £ I. Since VX(G) è F^ i J ) for all *, G/H G 4 (F), and so G G I. 

(2) =» (3): Let M £ v(I), and suppose that FG G i V , where F G 4 ( F ) -
PM*. We want to show that G G /MC- NOW since FG G 7MC, 77FG G / for some 
ff G 4 ( F ) — if. Let D and M be as in (1.1). Since F G P / , there exists 
ft G N such that P i = {x G D : F ^ F ) g ft} G M- And since H £ M, 
D2 = {* G £> : F^(H) = 0} G M, SO Dll^D2 G /*. Take i G i ( F ) such that 
Z(X) = Z ( # P ) - Dlr\D2 and F ^ ) = 7*(JÏF) for all x G 2(iC). Then 
F.CKG) ^ VX(HFG) - ft for all x, so KG G I by (2). Since K (£ M, G £ IM

C. 
(3) =* (1): Since (1) holds for J = 4 ( F ) , assume that 7 ^ 4 ( F ) . Since 

I — C^Mevd) IMC, it is sufficient to show that any PM*-restricted ideal J is 
differentially closed. Let F £ J. Take G G 4 ( F ) such that Z(G) = Z(F) -
Z ( F ) and F,(G) = 1 for all x G Z(G). Then GF ' /F G 4 ( F ) , so GF G J. 
Obviously G G PM*, so F' G / . 

1.5. COROLLARY. An ideal of 4 ( F ) is differentially closed if, and only if, it 
is an intersection of PMU*'-restricted ideals for some collection {Ma) of maximal 
ideals. 

The Corollary tells us that the class of differentially closed ideals, which 
we denote by ^ , is quite large. 2$ contains all non-maximal prime ideals, all 
primary ideals that are not powers of maximal ideals, and all intersections of 
such ideals. 
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For an ideal I oi A{Y) let I be the differential closure of 7 (the smallest 
differentially closed ideal t h a t contains I). Using 1.3 and 1.4 it is easy to see 
t h a t G G J if, and only if, for some F £ I and some integer k, VX{G) ^ 
VX(F) - k for all x £ Y. 

2. T h e r ing C*(X). In this section we construct a topological space X 
and investigate certain ideals of the ring C*(X) of all bounded, continuous, 
real-valued functions on X. We use small let ters / , g, . . . to denote elements 
of C*(X) to distinguish these functions from the elements F, G, . . . of A ( F ) . 

Let X be F together with an addit ional point co. T h e topology on X is 
defined as follows: Y has the discrete topology, and the neighborhoods of co 
are complements of subsets of Y t h a t are closed and discrete in the Riemann 
surface topology of F . Note t h a t the open-and-closed sets are precisely the 
closed discrete subsets of Y and their complements in X. (Whenever we use 
the phrase ' 'closed discrete subset of F " we mean a set t ha t is closed and dis­
crete in the Riemann surface topology of F.) I t is easy to verify t h a t X is 
completely regular. 

Now suppose t h a t / G C*(X). If/(co) ^ 0, then f-^R - {0}) is a neighbor­
hood of co, so Z(f) is a closed discrete subset of F. This observation enables 
us to describe the free 2-ultrafilters (the ultrafilters of zero sets of elements of 
C*(X)). If (JLf is a free z-ultrafilter, then there exists D £ M' such t ha t co (I D. 
D is therefore an infinite closed discrete subset of F. Fur thermore , the collec­
tion jit = {Z C\ D : Z Ç //} is a free ultrafllter on D, and \x = \Z G Z(X) : 
Z C\ D c M}- Hence the free z-ultrafilters are just the free ultrafilters on 
countably infinite closed discrete subsets of F (with the obvious identification.) 

Let fiX be the Stone-Cech compactification of X. T h e points of $X — X 
are, of course, in 1-1 correspondence with the free maximal ideals of C*(X). 
Let p G $X — X, and denote the corresponding free maximal ideal by Mp. 
Suppose t ha t y! is the unique z-ultrafilter t h a t converges to p, and let /x and 
D be as above. Then 

Mp = {fe C*(X) :{x e D : \f(x)\ S l/n} e n for all n G N\. 

Denote by Op the ideal 

0v = y e C * ( Z ) : Z ( f ) is a / ^ -ne ighbo rhood of p], 

w h e r e p is the continuous extension of / to fiX. I t is easy to see t ha t 

(2.1) Op = {/ G C*(X) : Z(J) r\D e M}. 

I t follows t h a t Ov is a prime ideal, and is therefore the unique minimal prime 
ideal of C*(X) contained in Mv [8, Theorem 7.15]. Hence the free minimal 
prime ideals of C*(X) are also in 1-1 correspondence with the points of j3X — 
X. For a given free ultrafllter /x on some infinite closed discrete set D we will 
say t h a t the free maximal ideal M of A(Y) given by (1.1) is the maximal 
ideal of A{Y) t h a t corresponds to the minimal pr ime ideal Ov of C*(X) given 
by (2.1). 
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Recall that an ideal I of C*(X) is absolutely convex if whenever \f\ :g \h\ 
and h £ I, then / G 7. 

2.2 PROPOSITION. Ew^ry idea/ I of C*(X) that contains a function that does 
not vanish at co is absolutely convex. 

Proof. Suppose g £ I and g(co) ^ 0. First we show that I is convex. Suppose 
that 0 ^ / ^ i for some i £ I. Let j = i + g2. Then j G / , and 0 ^ f ^ j . 
Z(j) C ^(g2)> so Z(j) is an open-and-closed subset of X. Define h by h(x) = 
f(x)/j(x) for x G X - Z(j)\ h{x) = 1 for * G Z(j) . Then A G C*(X), and 
/ = Aj, so / G I. 

Now by [8, Theorem 5.3] it is sufficient to show that if / £ / , then |/ | G I. 
Since g(co) 7e 0, there exists a closed discrete set D such that g is bounded 
away from 0 on X — D. Define functions k} s, t G C*(X) as follows. 
k(x) = l/g(x) îor x £ X - D, k(x) = l f o r * 6 £>. s(x) = | / (* ) | for * G X - D, 
s(x) = Oîor x £ D. t(x) = 0 for x G X — D; and for x G £* we set /(x) = 1 if 
fix) ^0,t(x) = - 1 if fix) < 0. Then |/ | = skg + tf G I. 

Recall that an element of a ring is called regular if it is not a zero divisor. 
In the ring C*(X) the regular elements are precisely the functions which are 
nowhere zero. 

2.3. Definition. An ideal I of C*(X) is regular if there exists a set R of 
regular elements of C*(X) such that I is the ideal generated by R. 

Note that (0) is a regular ideal of C*(X) according to this definition (with 
R = 0). In the next section we will need a few facts about regular ideals. 

2.4. PROPOSITION. The following are equivalent for any nonzero ideal I of 
C*(X): 

(1) Every element of I is a multiple of a regular element of I. 
(2) I is regular. 
(3) I contains a regular element. 

Proof. (1) => (2) =» (3) is trivial. For (3) =» (1), suppose that I contains a 
regular element h. L e t / G I. By 2.2. / is absolutely convex, so |/| + \h\ G I. 
Now (l/l + \h\) is also absolutely convex by 2.2. Therefore since |/| g | / | + 
\h\,f is a multiple of the regular element | / | + \h\ of I. 

2.5. PROPOSITION. Any ideal of C*(X) that strictly contains a free minimal 
prime ideal is regular. 

Proof. Suppose that Op £ J", where Ov is given by (2.1), and l e t / G / — Op. 
Since/ G 0\ S = {x G D : fix) ^ 0} G /x. Define g G C*(X) by g(x) = 0 for 
x G S, gix) = 1 for x G X — 5. Then g G Op, so g + / 2 G / . Since g + / 2 is 
regular, J is regular by 2.4. 

3. The transfer machinery. In this section we connect the rings AiY) 
and C*iX), first by defining a map from AiY) to C*(X), and then by using 
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that map to define a map from the set of ideals of A (F) into the set of ideals 
of C*(X). 

3.1. Definition. For F G A (F) - {OJ let F* G C*(X) be defined by F# (x) = 
exp ( - VX(F)) for x G F, i*(«) = 1. We set 0# = 0. 

3.2. PROPOSITION. / / g G C*(X) is regular, then there exists a unit u of C*(X) 
and a function F G A (Y) such that g = uF#. 

Proof. Since g(co) ^ 0, there exists a closed discrete set D such that g is 
bounded away from 0 on X — D. Define hi G C*(X) by h±(x) = l/g(x) for 
x G X - D,h!(x) = lforx e D. Define A2 € C*(X) by h2(x) = l i f /hg(x) > 
0, h2(x) = — 1 if hig(x) < 0. Let X be an upper bound for h2h\g on Z>. Define 
As G C*(X) by ft3(*) = 1 for x 6 I - D, A3(x) = l/elf for x G P . A3Mig 
is equal to 1 outside D and is positive and ^1/e on D. Now for every x £ D 
let ?z(x) be the largest positive integer such that exp( — n(x)) ^ h%h2hig(x). 
Define h A G C*(X) by /*4(x) = 1 for x £ X — D, h^(x) = exp( — n(x))/ 
hzh2h\g(x) for x G D. 

Let & = l/hihMh. Then w is a unit of C*(X). g(x)/u(x) = 1 for x Ç X — 
D, and g(x)/^(x) = exp( — n(x)) for x £ D. Take F G -4(F) such that 
Z(F) = D and 7*(F) = n(x) for all x G D. Clearly g = «/*. 

It follows from this Proposition that a nonzero ideal of C*(X) is regular if, 
and only if, it contains an element F# for some nonzero F. Now we define the 
map that will be our main tool throughout the remainder of the paper. 

3.3 Definition. For an ideal I of A (F) , we set 

TCO = | ^ : ^ C*(X),F£ / } . 

3.4. PROPOSITION. T(I) is the ideal of C*(X) generated by the set {F^ : Ft I}. 

Proof. We need only to show that r(I) is an ideal. It is sufficient to verify 
that for any F, G G I and r, 5 G C*(X) there exists H G / and t G C*(X) 
such that rF$ + sG# = tHt Take i ï G A (F) such that F,(i7) = m'm(Vx(F), 
VX(G)) for all x G F. By 1.3, H G / . Set / = (rF# + sG*)/H*. Since |/| ^ 
\r\F*/H* + \s\G*/H* g |r| + |$|, / G C*(X). 

Denote the set of ideals of A (F) by */ (,4 (F)) and the set of regular ideals 
of C*(X) by St. 

3.5. THEOREM. 77^ mâ > r : J(A(Y)) -* 3% has the following properties: 
(1) T ( / J ) = r(I)r(J)forallI,Je J(A(Y)). 
(2) r /a&es principal ideals to principal ideals. 
(3) r preserves sums. 
(4) r ( j ) = T{I)for alii G . / ( 4 ( F ) ) . 
(5) 77ze restriction T\2) of r to 2) satisfies: 

(a) r\2iï is 1-1 and 0?z/0. 
(b) T\2$ preserves sums and nonzero intersections. 
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Proof. (1) For T(I)T(J) C T(IJ) it is sufficient to show that if F G J and 
G G 7, then 7^G# G r(7J) . Since 7^G# = (FG)', this is obvious. For the 
reverse inclusion we need to show that if F G 77, then F# G T(I)T(J). Since 
T7 G 77, F = Gii/i + . . . + Gwi7w for some Gt £ I, Ht £ J. Therefore 

F* = (Gitfi + . . . + GnHny ^ GSm* + . . . + Gn'Hn* G r ( / ) r ( / ) . 

Since T(I)T(J) is convex, F# G T(I)T(J). 

(2) T ( ( / ? ) ) = ( / * ) . 

(3) Let {/«} C ^ 04(F)) , and set I = £ 7a. Clearly 2 T( / a) C T ( I ) . We 
complete the proof by showing that if J is any ideal of C*(X) such that 
T(I<X) C 7 for all a, then r(7) C 7. This is obvious if Ia = (0) for all a, so 
assume that at least one of the Ia is nonzero. Then J is absolutely convex. Let 
Gel. Then G = i7x + . . . + Hk for some i7* G I«t-, so we have 0 ^ G# ^ 
i7i# + . . . + Hk* G 7. Hence G# G 7 by convexity. 

(4) Since 7 C 7, r(7) C r(I). Let F £ J. Then there is a G G I and an 
integer k such that VX(F) ^ VX(G) ~ k for all x G F. Therefore F# ^ e*G#, 
so F# G T(I) by convexity. 

(5) (a) To verify that r\3f is 1-1 we show that for 7 G J {A {Y)) and 
J G ^ , if r(7) C r ( J ) , then I C / . Let F G I. Then F* G r(7), so 7* = gH* 
for some g G C*(X) and some 77 G 7. Hence VX(F) = 1^(77) - log g(x) ^ 
VX(H) — k for all x G F for some positive constant k. Since J £ 9, F £ J. 

Next we show that r | ^ is onto. Let 7 be a nonzero regular ideal. We claim 
that for a n y / G 7 there exists F G A (Y) such t h a t / G (7^) and (F*) C 7. 
For, by 2.4 every/ G 7 is a multiple of some regular g G 7, and by 3.2, g = ^7,# 
for some F G -4 (F) and some unit u of C*(X). Now for each / G 7 pick such 
an 7\ and let J be the ideal of A ( F) generated by these T^s. It is easy to verify 
that T(J) = 7. Finally, J G 9, and r (J) = 7. 

(5) (b) We have shown that r preserves sums, and since the sum of any 
collection of differentially closed ideals is differentially closed, T\3) preserves 
sums. 

Suppose now that C\Ia ^ (0) for some collection {Ia\ C 9. We want to 
show that r(P|7a) = fV(7a). Obviously r ( n 7 a ) C fV( / a ) . Now since 
PIT(Ia) is a nonzero regular ideal, for the reverse inclusion it is sufficient to 
deal with regular functions. Let / G fV(7a) be regular. / = uF$ for some 
F G A (Y) and some unit u of C*(X). For each a, WF# G r(7a), so 7^ G r(7a). 
I t follows that F G 7a since 7a G ^ . Hence F G P|7a, and s o / G r(P|7a). 

It should be noted that the map r, unlike its restriction to 9, does not 
preserve nonzero intersections. For if it did, it would follow from Theorem 3.5 
that Pi7a = P|7a for any collection {7a} of ideals of A(Y) such that Ç\Ia ^ 
(0). This is not the case, as we now show. Let D = {xi, x2, . . . } be an infinite 
closed discrete subset of F. Take G G A (Y) such that Z (G) = D and VXn(G) = 
n,n = 1 ,2 , . . . . For each positive integer k take Fk G A (Y) such thatZ(Fk) = 
D and Vx(Fk) = k for all x G 7). Set 7̂  = (TV, G). Then for every k, Ik = 
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A(Y), so C\h = A(Y). But C\h = (G), so Oh = (G). It is true that r 
preserves finite intersections since I C\ J = I H J for all 7, J G J {A {Y)). 

Now we give some information about the ''local" behavior of r. 

3.6. THEOREM. Let M be a free maximal ideal of A(Y), and let Op be the 
corresponding minimal prime ideal of C*(X). 

(1) T is a bisection of the nonzero P M*-restricted ideals of A(Y) onto the ideals 
of C*(X) that strictly contain Op. 

(2) For every f G C*(X) there exists F G A (Y) such that T((F)) + Op = 
(f) + O*. 

(3) Let I be a nonzero P M*-restricted ideal. I is prime {respectively primary) 
if, and only if, r(I) is prime (respectively primary). 

Proof. (1) By 1.5, PM*-restricted ideals are differentially closed. It follows 
from 3.5 that the map is 1-1. Now let I be a nonzero PM*-restricted ideal. We 
show first that Ov C T(I). This is obvious if 7 = A (F) , so assume 7 ^ A(Y). 
Let / G Op. Let G G I - {0}, and take H G A {Y) such that Z(H) = 
Z(G) C\Z(J) n D and VX(H) = VX(G) for all x G Z(H). Since Z{H) C Z(f), 
f = f ffl, so we only need to show that H G I. Take K G A (Y) such that 
Z(K) = Z(G) - Z(i7) and VX(K) = VX(G) for all* G Z(K). ThenKH/G £A(Y), 
so KH G I. Since Z(H) G M, K Z M. Therefore since I = IM

C, H G L 

Now let P be an ideal of C*(X) which strictly contains Op. We need to find 
a PM*-restricted ideal 7 such that r(7) = J. By 2.5, / is regular, so by 3.5 
there exists 7 G @ such that r(7) = J.UJ = C*(X), then I = A (F) , which 
is PM*-restricted, and we are done. So assume J ^ C*(X). Then since Op C 
r(7), r(7) C -M* and M* is the only maximal ideal of C*(X) that contains 
r(7) [8, Theorem 7.13]. Using the definition of r, one can see that 7 C M 
and i 7 is the only maximal ideal of A(Y) that contains 7. Hence 7 = 7M

C, 
so by 1.4 7 is PM*-restricted. 

(2) Let Op be given by (2.1), and l e t / G C*(X). If / G 0*, we can take 
F = 0; so assume/ g O . Then S = {x G P> : / (*) ^ 0} G M- Define g G C*(X) 
by g(x) = / (x) for x £ 5, g(x) = 1 for x G X — S. Since g is regular, there 
exists F G 4̂ (F) and a unit w of C*(X) such that g = ^P # . Then 

r ( (P)) + C> = (g) + 0 = C 0 + O . 

(3) Suppose that 7 is prime and that fg G r(7). Then (fg) + 0P C r(7). 
Now (/g) + 0* = ((/) + Op)((g) + O ) since 0* = (0P)2 [8, 2B.2], so ((/) + 
0*0 ((g) + 0P) C r(7). Let P, G G 4 (Y) such that r((F)) + Op = (/) + 0P, 
and r((G) + 0P) = (g) + 0P. Then (r((F)) + Op)(r((G)) + Op) C r(7), 
and it follows that r((FG)) C r(7). Since 7 G ^ , FG G 7. Therefore P G 7 
or G G 7, say P G 7. Then we have (/) + 0P = r ( (P)) + Op C r(7), so 
/ G r ( 7 ) . 

Conversely, suppose that r(7) is prime and that FG G 7. Then P#G# G r(7), 
so either F* G r(7) or G# G r(7), say P# G r(7). Then P G 7 since 7 G ^ . 
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The proof that I is primary if, and only if, T(I) is primary is similar. 

Let M and 0P be as in 3.6, and let J(C*(X)/Op) denote the set of ideals of 
C*(X)/Op. Consider J{C*(X)/Op) and the set of PM*-restricted ideals as 
totally ordered semigroups (under multiplication of ideals and inclusion). 
For / G J (A (Y)), set 0(7) = (r(I) + 0P)/0P. 

The next result, which follows easily from 3.5 and 3.6, shows that the ideals 
of C*(X)/Op behave very much like the P^-restr icted ideals. 

3.7. COROLLARY. The map <t>: J(A{Y)) -> J(C*(X)/Op) has the following 
properties: 

(1) « ( / / ) = 4><J)4>(J)forallI,J £ J(A(Y)). 
(2) The restriction of </> to the PM*-restricted ideals of A{Y) is a surjective 

order preserving isomorphism. 
(3) 0 maps the set of principal ideals of A{Y) onto the set of principal ideals 

ofC*(X)/Op. 
(4) If I £ J(A(Y)) and J is a PM*-restricted ideal of A(Y), then I C J 

if and only if </>(/) C </> (J) • 

4. Applications. In this section we use the machinery developed in section 
3 and known results of ideal theory of C*(X) to obtain results about the ideals 
of A (F) . Examples 4.1, 4.2, 4.6, and 4.9 were proved directly in [19], and 4.4 
is essentially contained in [11]. The remaining results appear to be new. We 
include a wide variety of examples to illustrate the power of the transfer 
machinery. 

The first four examples deal with the local ideal theory of A(Y). In [1] a 
result very much like Corollary 3.7 was used to derive a metamathematical 
Transfer Principle, and this device was used to transform results about the 
ideal theory of C*(X)/Op into results about the PM*-restricted ideals of A (F) . 
In this paper, however, we will use the map r directly even in our local examples. 
In addition to the properties of r which are listed in Theorems 3.5 and 3.6, 
we make free use of additional properties of r which follow easily from these 
theorems. Among these latter properties are the following: 

(1) Let I G 2f — {(0)}. I is prime (respectively primary) if and only if 
T(I) is prime (respectively primary). 

(2) Let 1^9. Then r(Im) = [r(/)]1 / 2 . 
(3) Let I, J £ @. Then r(I : J) = r(I) : r(J). 

4.1. Example. Let I be PM*-restricted. / is prime if and only if / = P. 

Proof. We may take I ^ (0). By [18, Corollary 2.2] an ideal / of C*(X) 
that contains a prime ideal is prime if and only if J = J2. If / is prime, so is 
T(I). But then r{I) = [r(7)]2 = r(P), so I = I\ 

If I = D, then r(7) = [r(/)]2 . Hence r(7) is prime, and so I is prime. 
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4.2. Example. Every non-prime primary ideal of A (F) is either an upper or 
a lower primary ideal. 

Proof. The result is obvious for those primary ideals which are powers of 
maximal ideals. Any other primary ideal is PM*-restricted for some M. The 
chain of PM*-restricted primary ideals is order isomorphic to the chain of 
primary ideals of C*(X) that contain 0V. The result follows since every non-
prime primary ideal of C*(X) is either an upper or a lower primary ideal [15, 
Theorem 1]. 

4.3. Example. No proper nonzero PM*-restricted ideal is countably generated. 
(In particular, no nonzero nonmaximal prime ideal of A{Y) is countably 
generated.) 

Proof. Note that for any I Ç J {A (F)) , if I is countably generated, then 
T(I) is countably generated. By [7, Corollary 5.4] and [16, Theorem 2] no 
ideal J of C*(X) such that 0V C J C Mp can be countably generated. 

4.4. Example. The set of all upper prime ideals of A(Y) properly between 
two given ones, P £ Q, is an ^i-set if Q is nonmaximal. 

Proof. The set of all upper prime ideals of C*(X) properly between r (P) 
and T(<2) is an 771-set by [8, Theorem 14.19]. 

The remaining results are of a more global character. Since the restriction 
of r to Qf is 1-1 and preserves nonzero intersections, it is easiest to derive 
results about the differentially closed ideals. The transfer process is somewhat 
less automatic than for local results. For the PM*-restricted ideals behave like 
all the ideals of C*(X) that contain 0P, while the differentially closed ideals 
correspond to the less well studied regular ideals of C*(X). 

4.5. Example. Let I, J £ &. 
(1) If 7 and J are semiprime, then I + J is semiprime. 
(2) If 7 ^ (0) is prime and J is semiprime, then I + / is prime. 

Proof. Recall that an ideal of a ring is semiprime if, and only if, it is an 
intersection of prime ideals. First we show that for an ideal K £ &, K is 
semiprime if, and only if, r(K) is semiprime. Since (0) is semiprime in both 
rings, we may assume K 9^ (0). If K is semiprime, then K = H Pa, where 
the Pa are nonzero prime ideals. Hence T(K) = H r(Pa), so T(K) is semiprime. 
If, conversely, r{K) is semiprime, then T(K) = O Qa, where the Qa are prime 
ideals of C*(X). Since r{K) is regular, each Qa is regular, so Qa = r(Pa), 
where Pa is a nonzero prime ideal of A(Y). We have r{K) = r(PiPa), so 
K = ClPa. 

(1) If I and J are semiprime, then T(I + J) = T(I) + r(J) is a semiprime 
ideal of C*(X) since the sum of two semiprime ideals of C*(X) is semiprime 
[17, Lemma 5.1]. Therefore I + J is semiprime. 
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(2) If I 7e- (0) is prime and J is semiprime, then r(7 + 7) = r(7) + T(J) 
is a prime ideal of C*(X) since the sum of a prime and a semiprime ideal of 
C*{X) is prime [17, Theorem 5.3]. Therefore 7 + J is prime. 

4.6. Example. Let I ^ 3f. 
(1) 7 = 72 if and only if 7 is an intersection of prime ideals. 
(2) If 7 = 7.71/2 or I = I : I1/2

} then 7 is an intersection of primary ideals. 

These results are true for the absolutely convex ideals of C*(X) by [18, 
Theorems 2.1 and 2.8]. They are therefore true for the differentially closed 
ideals of A ( Y) by arguments similar to those given in 4.5. 

4.7. Example. Let 7 Ç 9 and {Ia\ C @. 
(i) i.p/2.(i.ii/2y/2 = i.ii,\ 
(2) (Oh)2 = Hh2. 

Proof. (1) Note that if J £ 0, then J112 £ 3t since it is an intersection of 
nonmaximal prime ideals. Therefore each side of the equation we are considering 
is differentially closed. Now 

r[I.I1/2.(I.P/2)1/2] = r( /) . r( /)1 / 2 . (r( /) .T(/)1 / 2)1 / 2 

= T(I).T(I)1/2 by [18, Theorem 2.4] 

= r(J .P/ 2) , 

and the result follows since r\2f is 1-1. 
(2) The result is true for the absolutely convex ideals of C* (X) [18, Corollary 

2.14]. It therefore holds for the differentially closed ideals of A (F) by an argu­
ment similar to (1). 

4.8. Example. If P)iVa* ^ (0), then C\PMà* is not countably generated. 

Proof. Set J = nPMa*. Then 

r(J) = Hr(PM a*) = f W M*, 

where .4 is some subset of /3X — X, so T(J) is a s-ideal of C*(X). In [4, Corol­
lary, p. 575] the countably generated z-ideals of C*(X) are described. From 
the description it is easy to see that a countably generated z-ideal of C*(X) 
cannot contain a regular element. 

4.9. Example. Let / Ç Sf. If / is an intersection of primary ideals, then 
I2 = / . (7 : 71/2). Conversely, if the intersection of all the minimal primary 
ideals of 7 is irredundant, then the condition 72 = 7.(7 : 71/2) implies that 7 
is an intersection of primary ideals. 

This result is true for the absolutely convex ideals of C*(X) by [18, Theorems 
2.15 and 2.17]. After one observes that the intersection of all the minimal 
primary ideals of 7 is irredundant if and only if the same is true for r(7), the 
transfer argument is similar to arguments used above. 
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4.10. Example. If C\PM* ^ (0), then the Krull dimension of C[PM* is 
infinite. 

Proof. Set L = C\PMà*> We want to show that for every positive integer n 
there exists an ascending chain of prime ideals of L of length n. r(L) = f\p^A 

Mv for some A C &X - X. Call this ideal IA, and set FA = H ^ A OP. Clearly 
FA £ 7A, so by [5, Corollary 3.6] there exists a chain {J\} of prime ideals of 
IA such that 

Now each J^ is Qi C\ IA, for some prime ideal Qt of C*(X) by [5, Lemma 3.3]. 
No Çz is a fixed ideal since FA is contained in no fixed ideal. Furthermore it 
can be shown that no more than one of the Qt can be a free minimal prime 
ideal. Therefore (by tossing the bad one out if necessary) we can assume that 
each Qt strictly contains a free minimal prime ideal. Hence, by 2.5, each Qx is 
T(Pt) for some prime ideal Pt of A (F) . We have 

r ( P i ) H r ( L ) £ T(P2) H T{L) £ . . . ^ r (P B ) C\ r ( L ) f 

so 

Pi n L £ p2 n L £ . . . £ pB n L; 

and each P ^ n L i s a prime ideal of L. 
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