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Abstract

Exploring space is one of the most attractive goals that humanity ever set, notwithstanding, there
are some psychological and psychopathological risks that should be considered. Several studies
identified some possible hazards of space travels and related physical and psychological
consequences on astronauts. If some psychological reactions are obviously inherent to the
characteristics of the spaceships (habitability, confinement, psychological, and interpersonal
relationships), other (disturbances of sleep-wake cycle, personality changes, depression, anxiety,
apathy, psychosomatic symptoms, neurovestibular problems, alterations in cognitive function,
and sensory perception) represent a clear warning of possible central nervous system (CNS)
alterations, possibly due to microgravity and cosmic radiation. Such conditions and eventual
CNS changes might compromise the success of missions and the ability to cope with unexpected
events and may lead to individual and long-term impairments. Therefore, further studies are
needed, perhaps, requiring the birth of a novel branch of psychology/psychiatry that should not
only consider the risks related to space exploration, but the implementation of targeted
strategies to prevent them.

Introduction

The history of human beings is accompanied by a constant drive to overcome the limits
intrinsic to their nature, like the possibility to fly. As such, it is paved by continuous attempts
to accomplish this goal throughout the millennia, from the Icarus’ myth to the flying
machines of Da Vinci until the first airplane built by Wright brothers. The 20th century
was a unique century for the extraordinary developments of flying aircrafts for both war and
civil use, as well as for the beginning of space exploration that started in 1944 with the V2
rocket. The soviet cosmonaut Yuri Gagarin was the first man to be launched into the space on
the 12th of April 1961, a date that gave birth to the space race.'Soviet Union was soon
followed by the United States with the renowned Mercury, Gemini, and Apollo programs that
led Neil Armstrong and Buzz Aldrin to land on the Moon. Different dates in the following
years mark some relevant milestones in the history of space missions, important for present
and future space travels. In 1970, the U.S. Apollo 13 mission aimed to land on the Moon for
the third time, but during the trip, the spacecraft was damaged and the purpose of the mission
was to bring the three astronauts back. In 1971, the USSR launched its first space station,
Salyut-1, as a short-lived space laboratory that laid the foundations for subsequent stations
and medical investigations of astronauts, followed by the U.S. first space station, Skylab, a top
of a Saturn V rocket, in 1973. This served as a solar and terrestrial observatory and as a
microgravity and medical laboratory.” In 1981, the shuttle Columbia orbiter left its pad at
Kennedy space center during the transportation system (STS-1) mission, while heraldeing the
beginning of a new era of spaceships that could be reused.” The next STS missions played an
important role in implementing biological studies.” The base block of MIR, a Soviet modular
space station, was put in orbit in 1986 and about a month later was joined by its first crew.
Although it served primarily as a test for space hardware, more than 100 astronauts from
different nations carried out extensive scientific research, especially on the effects of micro-

gravity on living organisms.” The two nations ended up forming a successful collaboration
over the years that still continues on the international space station (ISS) that represents a
unique environment for the study of long-term space missions.

Several countries have then rapidly shown a keen interest in space missions, so that the
National Aeronautics and Space Administration (NASA), in collaboration with space agencies
from all over the world, is currently planning the Artemis program that is the return of men to the
Moon and, in particular, of the first woman. These and other space missions will provide
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additional foundations to missions primarily planned to reach
Mars, included in the NASA projects for the next decade.’

Space has long been considered a hostile environment able to
provoke several detrimental consequences on human physiology
that may lead not only to medical diseases, but also to
psycho(patho)logical conditions.””'” Maintaining an adequate psy-
chological well-being is, therefore, a crucial and untold task for
astronauts, as several factors can hinder it. These can be grouped in
physical, habitability factors, and individual or interpersonal psy-
chological factors, and will be briefly reviewed herein.'*'”

Physical factors

Microgravity, radiation, and habitability stand among the most
studied physical parameters with evidence of their potentially
negative consequences.

Microgravity

Although the full effects of microgravity on human physiology are
still unclear and mainly derived from simulation studies, evidence
suggests that it might impact cell structure and differentiation, and
both the immune and central nervous system (CNS).'>"” Indeed,
the CNS needs to adapt to microgravity since different somatosen-
sory, visual, and vestibular informations have to be elaborated.'® A
syndrome known as space adaptation syndrome may occur as a
consequence of a sensory conflict between inputs from visual and
tactile senses and vestibular organs.'” Furthermore, microgravity
can lead to some changes in cognitive functioning, as demonstrated
by a reduction in some motor functions (ie, dual-tasking, motion
perception, and manual dexterity) in a small sample of eight
astronauts following a 6-month period spent on ISS that, however,
disappeared four days after landing.”

Radiation

There is now a general agreement that space radiation represents a
further risk during space missions and, interestingly, NASA shows
a huge concern on this matter.”’ The global radiation dose for
astronauts is deeply affected by galactic cosmic rays (GCR) origi-
nating from outside the solar system and including alpha particles,
protons, and high-energy, heavier nuclei components of the former
that are called high atomic number and energy (HZE).**** As GCR
interact with the shielding material of a space shuttle, a large
emission of secondary neutrons may follow, thus potentially
impinging on the bodies of cosmonauts.”* Furthermore, pulses of
heavy ion and energetic proton radiation may be the result of solar
particle events, including coronal mass ejections and solar flares.””
Along with electromagnetic field and weightlessness, radiation may
lead to several CNS changes, such as shifts in brain fluids, altered
sensory perception, and neurovestibular problems.”® Data from
rodent models reported modifications of the CA1 superficial layer
pyramidal neurons in the dorsal hippocampus, that may persist
after 6 months from the irradiation.”” This caused learning and
memory impairment, as well as increased anxiety behaviors also
indicating damage of the amygdala and of some cortical neu-
rons.”**” Moreover, astronauts may undergo deficits in executive
functions and decision-making due to a functional loss in the
medial prefrontal cortex, posterior and anterior cingulate, and
basal forebrain.”””" Indeed, it is a common assumption that one
out of five astronauts taking part in a long space mission would
experience similar behaviors, and out of three would instead face
struggles in memory processes.”” Radiation exposure may also be
one of the determinants of visual disturbances. During the Apollo,
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Skylab, and MIR missions, astronauts observed flashes of light, of
different shapes, moving across the visual field.”" Such flashes were
more often present before sleep, predominantly white, with elon-
gated shapes and often accompanied by senses of movement
perceived as lateral, diagonal or in-out.”” It has been suggested that
these phosphenes can be a consequence of an alteration in percep-
tion caused by ionizing radiation on the eye.”

Habitability
Several factors of “habitability”, a term used with reference to the
main characteristics of the spacecraft, may contribute to the overall
well-being of astronauts, while including light, noise, vibration, and
temperature. " The light represents the main stimulus of the
circadian rhythms that can be deeply affected by changes in lumi-
nosity. Therefore, it has been suggested to remove the light from the
settings and the spaces dedicated to sleep, or to create an environ-
ment with alternating light and dark in the spaces shared by the
astronauts.’” Excessive exposure to noise, mainly due to the equip-
ment and the crew activities, may represent another stressor
compromising wakefulness and sleeping, so that cosmonauts have
been instructed to wear protection devices.’®

Whole-body vibration may represent another harmful factor
due to the risk of spinal and extremity injuries.’” Finally, habitabil-
ity includes the need for privacy that may not be always sufficiently
respected.’®

Psychological factors

The peculiarities of life during long space missions, specifically
isolation and interpersonal relationships may represent stressors
leading to psychological/psychosocial problems or even to psycho-
pathological symptoms or disorders.

Individual issues

Isolation from family, friends, and the life on the Earth, coupled
with hard work continuously monitored, represent some factors of
potential psychological distress.'” During isolation, memory and
concentration deficits may occur, along with an increase in the
likelihood of making errors and a decrease in reaction times.”” Long
space missions can also induce cosmonauts to monotony that may
worsen other psychological stressors, thus potentially leading to
impaired performance and behaviors.” Furthermore, since crew
activities become progressively part of a routine, an increase in free
time and a greater likelihood of asthenia, withdrawal, and territo-
rial behavior may follow."’

Interpersonal issues

During a space mission, the mental well-being of an astronaut can
be affected by factors related to the relationships with other crew
members, especially when they are heterogeneous. These may
provoke tension, loosening of the team cohesion, subgrouping,
scapegoating, communication issues, the creation of a competitive
environment and uncertainty regarding individual roles.” The
relationships between cosmonauts and ground control are also
important, as conflicts may arise for disparate reasons, such as
delays in communication, ranging from minimal delays to around
24 minutes from the most distant planets, caused by the distance
from Earth.*>*’

Psychopathological issues
The presence of loss of or reduced sleep quality is a critical issue
among astronauts, as it may provoke fatigue, concentration
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problems and possible drop in overall performance levels leading
to potentially damaging errors."**” The duration of astronauts’
sleep seems to be reduced to around 6 to 6.5 hours/day during
missions,’*™*® in parallel with a decreased amount of both slow-
wave and rapid eye movement (REM) sleep, and a shortening of
REM latency."® The impact of sleep is highlighted by the results of
a ground-based simulation of a mission to Mars involving six
individuals isolated for 520 days. Most subjects experienced
recurrent reductions in perceived sleep quality, interrupted
sleep-wake periodicity, performance deficits associated with
chronic partial sleep deprivation, and increased sleep displace-
ment in the daytime period.”” Not surprisingly, the use of hyp-
notics during flight is common, as demonstrated in a study on the
crew of a shuttle’’: approximately three quarters of the crew
reported taking hypnotics, mainly zolpidem and its extended-
release formulation or temazepam.’"*”* Although, while compar-
ing nights with and without a sleeping pill, no difference was
present in total sleep time and night-time alertness, significant
differences were found in sleep efficiency, latency and, albeit
slightly, subjective quality.”’

It has been hypothesized that extreme environments, like the
space, despite their diversity, are a similar potential threat to
mental conditions, and specific factors have been proposed that
could play a role in the occurrence of psychological and psychic
problems among astronauts. A review of data on Arctic confine-
ment showed that personality traits, coping styles, and interper-
sonal needs are important predictors of depressed mood.””
During space missions, prolonged and severe isolation seems to
correlate with the onset of reduced resilience, apathy, boredom,
depression, anxiety, and declines in initiative, general activity
and desire.”*”” Several psychosomatic symptoms have been also
described among astronauts during missions, such as headaches,
gastroenteric problems, genitourinary symptoms, and fear of
illness.”*® The issue of asthenia as a problematic syndrome
during space missions is quite common, but still unresolved.””
Despite the fact that abundant nutritional resources are available
during missions and there is no increase in energy consumption,
astronauts may experience a reduction in their food intake, a
phenomenon known as anorexia in space. The cosmonauts’
weight loss and reduction in body mass appear to be linked to
the influence of microgravity and to changes in the sleep-wake
cycle on appetite, food intake, and the functioning of the gastro-
intestinal system. However, after returning to Earth, the crew
members will regain their preflight levels of body mass and caloric
intake.’” It has been suggested that the continuous light environ-
ment of space missions is the cause of the reduction in caloric
intake to 70% of that recommended.”'

Finally, the isolation occuring during the missions seems to
provoke some psychopathological disorders in the astronauts, such
as illusions, hallucinations, and reductions in consciousness. In
fact, in situations of sensory deprivation, misrecognition can be a
consequence of lack of training and incorrect perception of a
stimulus.”* It is interesting to note that in 2011, the Russian
newspaper Pravda reported the presence of olfactory hallucinations
among the crew who took part in the 1984 Soyuz T-10 to Salyut-7
missions, but the presence of toxins in the station’s atmosphere was
cited as the main cause of this phenomenon.®

It should be, however, mentioned that space missions do not
necessarily may lead to negative consequences, as they may repre-
sent personal growth experiences for many individuals, so that they
might promote the overall sense of well-being, similarly to other
isolation experiences.' >’

https://doi.org/10.1017/51092852921000535 Published online by Cambridge University Press

D. Marazziti et al.

Psychological aftermath following return on Earth

The evidence of psychological or mental disorders after space
missions is weak, if compared with current knowledge about
problems arising during the space missions. The careful selection
and the psychological screening of cosmonauts operated in the
initial phases may explain the apparent lack of evidence. However,
it should be noted that up to 5% of the crews of Antarctic
expeditions, an environment that shares similar characteristics
with the space, may experience psychiatric disorders, including
mood disorders.”* Further, the careful psychological and psychi-
atric screening performed on astronauts does not predict the
absence of behavioral and psychological problems after the mis-
sions.””

In any case, return on Earth can be stressful and demanding for
reasons such as re-joining to an open society and to the family after
a period in a small environment.”® The first 2 weeks after returning
to Earth represent a particularly critical period in which negative
effects on mood and performance can be expected, induced by
changes in gravity and general living conditions, that is, readjust-
ment to Earth.”” Interestingly, confrontations in the form of either
aggressive or assertive interactions in order to resolve a situation
have been more frequently reported after space flight, albeit seldom
indicated in the course of the mission in a research involving a
group of retired cosmonauts.”®

The most frequent psychological and psychosocial issues
reported include depressive symptoms, substance abuse, jealousy
and conjugal problems, and divorces.” "

Conclusions

Space exploration is a fascinating human goal that, however, entails
a series of hazards with detrimental physical and psychological
consequences. Therefore, the issue of psychological well-being and
mental health of astronauts has been included in the Human
Research Program at NASA that, in 2016, delivered some general
guidelines on this topic. The stringent selection criteria of candi-
dates are considered the most important prevention countermea-
sure during both prelaunch and training phases. The
psychotherapeutic support during the mission and upon return
to the Earth is also suggested to represent another valid instrument
to be provided not only to the the crews, but even to their families/
relatives. The possibility of psychiatric emergencies has also been
considered, and antidepressants, anxiolytics, antipsychotics, and
even physical restraint tools are now available on the ISS.

Although it should be underlined that the available data are still
limited and mainly deriving from studies from Earth environments
similar to space, nevertheless the mounting interest and implemen-
tation of future and long-lasting space missions warn and require
appropriate awareness of all the risks that these flights pose to the
CNS of the crews, that have been documented in a few magnetic
resonance studies.””””"

Further studies are urgently needed in this field given the
renewed interest and fundings of space exploration, including the
Moon landing of the first woman in 2024 (Artemis Project of
NASA), and the exploration of Mars and beyond. These exciting
programs represent a challenge possibly requiring the birth of a
novel branch of psychology/psychiatry devoted to the implemen-
tation of targeted strategies to possibly prevent risks related to space
exploration and to ensure the maintenance of well-being among
astronauts during and after their missions.
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