
SOME REGULAR [F, dn] MATRICES WITH 
COMPLEX ELEMENTS 

CHESTER L. MIRACLE 

1. Introduction. Let A = (ank) and {sn} (n, k = 0, 1, 2, . . .) be a 
matrix and a sequence of complex numbers, respectively. Let the members 
of the sequence {<rn\ be defined by 

Vn = ]C a 
nk $kj 

k=0 

then we say {an\ is the A -transform of \sn\. The matrix A = (awA;) is called 
regular if 

lim an = lim sn 

whenever the second limit exists. Necessary and sufficient conditions for a 
matrix A = (ank) to be regular are the well-known Silverman-Toeplitz con­
ditions: 

oo 

(1.1) lim X ank = 1, 

oo 

(1.2) X k * | <2S: (» = 0 , 1 , 2 , . . . ) , 

(1.3) limaBjt = 0 (jfe = 0, 1,2, . . . ) , 
n->co 

where K is a constant independent of n. 
In this paper we shall be concerned with the [F, dn]-matrix that was first 

introduced by Jakimovski (4). Given a sequence \dn} (n = 1, 2, 3, . . .), we 
shall throughout this paper define the [F, dn]-matrix corresponding to this 
sequence to be the matrix with elements Pnk {n, k = 0, 1, 2, . . .) defined by 

Poo = 1, Pok = 0 (* 5* 0), 

<"> n(ir|) = £ ^ 
Note that Pnk — 0 for k > n. Jakimovski (4) proves that the [F, dra]-matrix 
is regular if dn > 0 for n sufficiently large and if 
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504 CHESTER L. MIRACLE 

He then asks the question: Is the condition dn > 0 necessary? This question 
was answered in the negative by Meir (6) using a sequence of real numbers. 
In (3) it is shown that dn need not be real in order for the [F, d^-matrix to 
be regular, but it was required that the sequence jarg dn] approach zero with 
a certain rapidity in order to give regularity. The next logical problem, then, 
is to try and construct regular matrices for which the sequence {arg dn) has 
no limit-points that are integral multiples of IT. In Section 2 of this paper we 
shall give three regular [F, dw]-matrices that satisfy this condition. 

It has long been a problem in summability to find matrices which sum the 
geometric series to its analytic continuation for all z except z real and z > 1. 
The Taylor matrix found in (2) sums the geometric series to its analytic 
continuation for s in a small finite portion of the half-plane Re (z) > 1. How­
ever, in Section 3 we show that each of the [F, dj-matrices given in Section 2 
sums the geometric series to its analytic continuation for all z in an infinite 
portion of the half-plane Re (2) > 1, and as much in one case as two-thirds 
of this half-plane. 

We shall use the following notation throughout this paper: 

(1.5) dn = pne
i9n, 

(1.6) *(* ,» , X0 = £ X^Xf . . . X * , 
si+S2+.. .+sn+k=n 

where st is either 0 or 1 and the sum is taken over all possible products of the 
X's such that Si + s2 + • . . + sn — n — k. The above summation symbolism 
will be used throughout the paper and will always denote a sum of the same 
type as the sum in (1.6). Also when the subscripts of P are complicated, we 
shall use Pn%lc to mean Pnlc. 

2. Three regular [F, dj-matrices. 

THEOREM 2.1. Suppose that {\n} (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

Let the terms of the sequence {dn} be defined by 

(2.1) d2n-i = WK and d2n = —iVK (n = 1, 2, . . .). 

Then the [F, dn]-matrix corresponding to this sequence {dn\ is regular. 

Proof. Setting 6 = 1 in (1.4), we get 

(2.2) D P«* = £ Pm - 1 
k=0 k=0 

for any sequence {dn\. Hence any [F, dn]-matrix satisfies (1.1). 
The proof that (1.2) is satisfied is divided into two cases. 
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Case 1. Suppose that n — 2m (m = 1, 2, . . .). Then using the definition 
of dn from (2.1) in the Cauchy integral formula for the coefficients Pnk in 
(1.4), we have 

(2.3a) ^«-âàJ.nCfr^M-
where c is any circle about the origin. Expanding the numerator of the product 
under the integral sign as a sum, we obtain 

(2.3b) Pim,u — m I 2-f Xi X2 . . . Xw
 m £ dt. 

2iri Et (1 + X,) c •!+».+ ..•+*^-*i 

Upon integrating in (2.3b) we see that Pnk = 0 if k is odd. If k is even, let 
k = 2a (a = 0, 1, . . . , m). Then integrating in (2.3b), we get 

/

m 

Since the Xn's are by hypothesis positive, it follows that yj/(a, m, X*) > 0 from 
(1.6). Thus, from (2.4), we have that PimM = \P2mMV Using this fact and 
(2.2), we can easily show that 

(2.5) É \P2mA = 1 (m = 0, 1, . . .). 

Case 2. Suppose that n = 2m + 1 [m = 1, 2, . . .). Using the definition of 
*4 from (2.1) in the Cauchy integral formula for the coefficients Pnk in (1.4), 
we get 

Expanding the numerator product as a sum, we have 

(2 .6b ) P2m+l,k = ?; :~n" 

n a+<y 

x I 2 ^ Xi X 2 2 . . . xm
 m t (t + ^2w+i) pfc+r • 

** C Si + S2+...+ Sm+P=m t 

Suppose k = 2a + 1, where a = 0, 1, . . . , m; then, integrating in (2.6b), we 
obtain 

(2.7) 

Now let & = 2a, where a = 0, 1, . . . , m; then, integrating (2.6b), we get 

(2.8) t(a,m,\t)/ FI (1+<*,). 
/ ,=1 
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506 CHESTER L. MIRACLE 

Since all the Xn's are real and since (2.1) implies that 
2w+l 

f l (l + dj) = (l + d2m+l) J! (l + X;), 

it follows from (2.7) that 

P - U + d2m+l\ | p , 
2w+l,2a+l — /-, , 7 \ K 2m+l ,2a+l | , 

U "T &2m+l) 

and from (2.8) that 

2-2m+l II+ d 2m+l 
^ 2ra+l,2a| 

| ^2m+l | ( 1 + ^2ra+l) 

Summing both sides of these equations over a from 0 to m and adding the 
resulting sums together, we obtain 

dn| TT^ IT) I . dn 
-Lnk — /-, , 7 x Z-f K 2m+l,2o+l | i I J I / i _i J \ Z ^ K 2m+l,2a|, 

A;=0 U T" #rcj a=0 |#rc| U "f- a-nj a = 0 

where n = 2m + 1. Using (2.2) and the definitions of dn from (2.1), this 
equation reduces to 

m m 

/ j | -P2m+l,2o+l| + i jLf |-f>2m4-l,2«| = ^ " \ 
a=0 a=0 

where cj>m — arg(l + ^2w+i)- This equation implies that 
m m 

S l^2m+i,2«+i| < 1 and XI |-TWi,2«| < 1. 
a=0 a=0 

After adding these two inequalities together we see that 
n 

£ \Pnk\ < 2 (» = 1, 3, 5, . . .) since |P10 | + \Pn\ < 2. 
£=0 

From this inequality and (2.5) we conclude that 
CO 

£ |P»*I < 2 

independent of w. Hence (1.2) is satisfied. 
Since 1 + w < ew for w real, we have 

(2.9) r + x, < exp^ — 1 + 
11 + X,| 

Now if t = x + iy and |/| = 2_1, we get 

* 2 + A ; 

1 + A, 

-1 + r + x, 
1 + A, 

(x2 + y 2 ) 2 - l + 2 X . , ( x 2 - y 2 - l ) 
(1 + X,)' 

Since (x2 + y2)2 < § and x2 — y2 — 1 < —f when |/| = 2_1 , this equation 
implies that 

-1 + 
* +X, 

| i + x,| < -
3X, + 1 

2(1 + X,)2 U = 1 , 2 , . . .). 
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Using this inequality in (2.9) and taking positive square roots of both sides, 
we get 

(2.10) r + h 
i + h 

/ - 3 X 3 - . 

$ • 

Inserting absolute values on both sides of (2.3a) and making use of the in­
equality (2.10), it follows that 

(2.11) l^!<^xp{-Ê^}. 
Using the definition of d2m+i given by (2.1), we have 

•1 + 
1 + ^2m+l 

x + y i + 2y(\m+1y (\m+1y l 
1 + 

if / = x + iy and \t\ = 2_1. Since 1 + w < ew for w real it follows, after 
taking square roots, that 

t ~f~ ^2m+l 

1 + <^2m+l 
< el" < 2. 

Inserting absolute values on both sides of (2.6a), and making use of the 
above inequality and the inequality (2.10), it follows that 

(2.12) 

But by hypothesis 

Pim+iA < 2*+1 exp-l h 4(i + x,)2j • 

This implies that if 

4(1 + X, 

n = l 

£ Xœ(l + xB)-2< +œ, 

then zero is a limit-point of the set of numbers X„. Hence 

^ -3Xre - 1 
= 00 . 

ZA 4(1 + \nf 

Using this fact, (2.11) implies that 

lim \P2m,k\ = 0, 

and (2.12) implies that 

independent of k. Therefore 

and (1.3) is satisfied. 

lim |P 2 T O + 1 , * = 0, 

lim Pnlc = 0, 
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There are several ways that one might try to get a simple extension of 
this theorem. One is to assume arg \n = 7, but 7 ^ 0 . However, if |XW| > 77 > 0, 
(3, Theorem 2.4) implies that this does not yield a regular [F> <iw]-matrix. 

THEOREM 2.2. Suppose that {\n\ (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

Ê x>r1 = + - -

Define the terms of the sequence {dn) by 

(2.13) ^ - 2 = 2 - % j ( - l + *V3), 

d%n-l — X n
3 , 

and 

d2n = 2~1Xn*(-l - iV3) (n = 1, 2, . . .). 

Then the [F, dn]-matrix formed using this sequence is regular. 

Proof. From (2.2), (1.1) is satisfied. 
We divide the proof that (1.2) is satisfied into three cases. 
Case 1. Suppose that n = 3m (m = 1, 2, . . .). Then, using the Cauchy 

integral formula in (1.4) to evaluate Pnk and the definition of dn from (2.13), 
we have 

where c is any circle with centre at the origin. Suppose k = 3a 
(a = 0, 1, . . . , m). Then expanding the numerator of the product in (2.14) 
in a sum of the same type as the sum in (2.3b) and integrating, we get 

/

m 

n (i + -̂)-
Since \n > 0 and since from (1.6) \f/(a, m, X*) > 0, it follows from this equation 
that PzmM = \Pzm,za\- If & *s n o t °f the f ° r m & = 3a (a = 0, 1, . . . , w), then 
integrating in (2.14), we get Pzm,k = 0. Therefore, PSTOf* = \PhmA (k = 0 , 1 , . . .)• 
It now follows, using (2.2), that 

(2.15) Ë 1^1 = 1 (» = 0 , 3 , 6 , . . . ) . 

Case 2. Suppose n = 3m + 1 (w = 1, 2, . . .). Then, using the Cauchy 
integral formula to evaluate Pnk in (1.4) and the definition of dn from (2.13), 
we have 

Pim+i* - 2« ic n (rr t /v ïS dzm+i\ dt 

I dzm+1/ t 

where c is any circle about the origin. Expanding the numerator of the product 
inside the integral, we obtain 
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/* 2-4 Xi X2 . . • Xw
 m / (/ + dzm+i) dt 

(O -\n\ T> I S1+S2 + . • .+ Sm+P=m  
( / . l O j Jrton+l,k = I m • 

2«(i+^+ i ) n a + ^)/fc+i 
i - i 

Suppose k takes on successively the values k = 3a, & = 3a + 1, and & = 3 a + 2 , 
where a = 0, 1, . . . , m. Then , integrating in (2.16) for each successive value 
of k, we have 

P _ dzm+i \l/(a,m, \j) 
•L 3m4-l .3a /-. • 7 \ m > 

( l + < W i ) n ( 1 + x f ) 

p TA(a, m, X<) 
3ra+l,3a+l — 

(1 + dtm+1) n (i + x,) 

and 

^3m+l,3a+2 = 0 . 

Since Xn > 0 and ̂ ( a , m, X*) > 0, it easily follows from these three equations 
t h a t 

/ O 1 7 o \ p _ ^ 3 m + l | l + ^3m+l] i p i 
^ Z . l / a j i 3m+l,3a ~~ I J I / I 1_ ,7 \ l r 3w+l ,3a | ) 

/ 9 I 7 L \ p [1 + dzm+i\ , « 
^ Z . l / D J ^ 3 ^ + i ^ a + i — / 1 • 7 \ -*3m+l,3a+l » 

(̂ 1 -+- azm+i) 

(2.17C) P3W+l,3a+2 = 0. 

Summing both sides of (2.17a), (2.17b), and (2.17c) over a from 0 to m and 
adding the resulting sums together, we get 

(2.18) £ Pnk = j , T /m+1[ E jrr^ I | ^3w+l ,3a | + |P3TO+l,3a+l| ( • 
jc=0 (,-L -f" #3m+lj a=0 V|^3m+l| / 

Using the value of dzm+\ from (2.13), we have 

dzm+l I^Sm+ll""1 = 2 _ 1 ( - 1 + i \ / 3 ) . 

Let 1 + d3m+i = rmei<l>m; then, subst i tut ing the value of dzm+i\dzm+i\~l into 
(2.18) and using (2.2), we obtain 

m 

e*m = D { 2 - 1 ( - l +»V3)|Pfari-i .*, | + | iWi ,*H- i | } . 
a = 0 

Equat ing real and imaginary par ts in this equation, we get 

^ K3»H-l,3a| — ""T^" Sin <j)m 

a=0 V*J 

and 
m m 

— £^ |-P3m+l,3a| + 2 /^i \Pzm+l,la+M = 2 COS <j>m. 
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Multiplying the first equation through by 3 and then adding the two equations 
together, we have 

n 

2 l-Psm+i,*! = 31/2 sin (j)m + cos 4>m < 2 (w = 1, 2, . . .). 

Since |P10 | + |Pn | < 2, it follows that 
<x> 

(2.19) £ | P 3 m + M | < 2 (m = 0, 1, 2, . . .)• 
/fc=0 

Case 3. Suppose n = 3m + 2 {m = 1, 2, . . .)• Let 

gm = dzm+l + dZm+2 = 2-1(^m+l)1/3(l + W$) 
and 

hm = dzm+idsm+2 = 2 " 1 (XOT+i)2/3 ( - 1 + n / 3 ) . 

Using the Cauchy integral formula for Pnk in (1.4) and then expanding the 
numerator product under the integral sign, we get 

r E ^ ^ . . . \m
Sm * V + gj + hm) dt 

/O OH\ T> I S1+S2+ •. .+Sm+0=m  
(Z.ZV) rzm+2,k = I m • 

UZm+2) 

n (i + xy+i 

Let k take on successively the values k = 3a, k = Sa. + 1, and k = 3a + 2, 
where a = 0, 1, . . . , m. Integrating in succession in (2.20) using these values 
of ky we get 

p ftm^(ce, m, \t)  
-* 3m+2,3a — m > 

(1 + (1 + IT (l + X,) 
p gmt(a,m, X<)  
i 3m+2,3a+l — m , 

(1 + (1 + I l (l + x,) 
p ^(a,m, \<)  
i 3m+2,3a+2 — m 

n (i + h) 
Since Xw > 0 and \[/(a, m, \t) > 0, these equations imply, respectively, that 

(2.21) Pzm+2,Za = e - ' ^ A » ! * » ! - 1 | P 3 w + 2 , 3 a | , 

(2.22) P3m+2,3a+l = e~i<i,mgm \gm\-1 |P 3 O T + 2 ,3a+l | , 

( 2 . 2 3 ) P3w+2,3a+2 = e~l<i>m |P3m+2,3a+2|, 

where (1 + d3m+i) (1 + dzm+2) = rme^m. Summing both sides of (2.21), (2.22), 
and (2.23) from a = 0 to a = m, adding the resulting equations together, 
and making use of (2.2), we get 

2^1 J TT" \ |^3m+2,3a| + "j T |P3w+2,3a+l| + |-t37»+2t3a+2| ( = 6 * \ 
a=0 l p T O | \gm\ J 
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Substituting the values of gm and hm into this equation and equating real 
and imaginary parts, we get 

m m c% 

(2 .24a ) 2 ^ |P3m+2,3a| + 2 ^ |P3m+2,3a+l| = —JZ Sin </>m, 
a=0 a=0 V 3 

m m m 

(2.24b) - £ |-P3m+2,3a| + E |P 3m+2,3a+l| + 2 ^ J |P3OT+2,3a+2| = 2 COS 0 m . 
a=0 a=0 a=0 

Equation (2.24a) implies that 
m m 

E I ^ W s - l < 2(3)"1/2 and £ l-P3m+2,3a+i| < 2(3)-1/2. 
a=0 a=0 

Adding (2.24a) and (2.24b), we obtain an equation which implies that 
m 

I < 2(3)"1". 
a=0 

Adding these last three inequalities together, we get 

(2.25) E \Pzm+2*\ < 6(3)"1/2 < 4 (m = 1, 2, . . .). 

Since |P2o| + |P2i| + IP22I < 4, the inequalities (2.15), (2.19), and (2.25) 
imply that 

00 

£ \Pnk\ < 4 (n = 0, 1, 2, . . .)• 

Hence (1.2) is satisfied. 
If t = x + iy and |/| = 2_1, then 

•1 + r + x. 
1 + X, 

- (63 /64) + 2X3(x
3 - 3xy2 - 1) 

1 + 2X, + X/ 

If y2 = 4 _ 1 — x2, then x3 — 3xy2 — 1 < — (7/8). Using this inequality in the 
above equation, we get 

- 1 + / + h 
1 + X3 

< 
7X̂  + 3 

4(1 + X,)2 • 

Using the fact that 1 + w < ew for real w, we obtain, after taking positive 
square roots of both sides, 

(2.26) l + x, < exp 
, / - 7 X , - 3\ 
(8(1 + X,)2/ • 18(1 + \j 

If w > 0, cos 6n > - (1/2), and x2 + y2 = 4"1, then 

(x — 1) cos 6n + y sin 0„ < 1 

and w(l + 2wcos0„ + w2) - 1 < 1. Hence, if \t\ = 2_1, then 

- 1 + 
t + in 
1 + 4 < 

2p„ 
1 + 2pB COS Bn + Pn 

< 2 . 
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Since 1 + w < ew for real w, we obtain, after taking square roots of both 
sides, 

\t + 4 
11 + 41 

Let m denote the greatest integer in n/3. Using the values of dn from (2.13) 
and the inequality (2.27) it then follows that 

(2.27) <e ( n = 1 ,2 , . . . ) . 

n 
t + dj 
l+d] < 2 3 n r + h 

If we use (2.26) in this inequality, it follows that 

\t + dj 
(2.28) n <23exp(S8ir+^} 

Inserting absolute value bars on both sides of the Cauchy integral formula 
for the Pnk in (1.4) and applying the inequality (2.28), we obtain 

(2.29) 

But 

\Pnk\<2k+3exp< E -7\, 
U 8(1 + X,)' 

implies that if 

£ X»(l + XK)-2 < + » , then (7X„ + 3) (1 + X,,)"2 > 1 

must hold for infinitely many integers. Hence (2.29) implies that 

l i m P ^ = 0 (k = 0 , 1 , 2 , . . . ) , 
W->oo 

and so Condition (1.3) is satisfied. 

THEOREM 2.3. Suppose that {\n\ (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

oo 

Define the sequence [dn] by 

(2.30) 4 , -3 = 2-*(l + *)QO*. 
4 , -2 = 2 - * ( - l + i)(\n)K 
4 , - i = 2 - ^ - 1 - 0(Xn)*, 

4 , = 2-*(l -*)(Xn)* (» = 1 ,2 , . . . ) . 

r/^en /Ae [F, dn]-matrix is regular. 

The proof of this theorem is similar to the proofs of the two previous 
theorems. 
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3. Analytic continuation of geometric series. In considering a new 
regular sequence-to-sequence matrix method of summability, it is of interest 
to determine the region in which it sums the geometric series to its analytic 
continuation. The terms of the sequence of partial sums {sn(z)} of the geometric 
series are given by 

(3.1) sn(z) = Ê z* = (1 - z)-1 - zn+\l - z)-\ 

The analytic continuation of the geometric series is given by (1 — z) - 1 . If 
{an(z)} denotes the [F, ̂ - t ransform of [sn(z)}, then using (2.1) we have 

an(z) = (1 - z)-1 - z{\ - z)-1 Z Pnkz\ 
k=0 

Using (1.4) with 6 = z, this becomes 

(3.2) cn(z) = (1 - z)-1 - 2(1 - z)'1 0 (y^f) (n > 0). 

The [F, Jw]-matrix sums the geometric series to its analytic continuation if 
and only if 

lim an(z) = (1 — z)'1. 
tt-»co 

Let us use the notation 

(3.3) Qn{z) = n (j^f) (n > 0)-

Then the [F, <^]-matrix sums the geometric series to its analytic continuation 
(1 — z)~l if and only if z is such that 

lim Qn(z) = 0. 

First we shall discuss the regular [F, dj-transform given in Theorem 2.1 
to determine the region in which it sums the geometric series to its analytic 
continuation. We shall determine this region for two special cases of this 
particular [F, dj-transform. First, we consider the case in which the sequence 
{\n\ satisfies 

lim \n = + oo. 

In this case the [F, dw]-matrix is, roughly speaking, a generalization of the 
Lototsky matrix (see 5). Second, we consider the case in which 

lim \n = X 

is finite. In this case the [F, ̂ J-matrix is, roughly speaking, a generalization 
of the Euler matrix (see 1). The case in which {\n\ is bounded but not con­
vergent cannot be handled neatly. However, certain of these cases can be 
handled fairly easily by using sub-sequences if one is interested. For instance, 
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the case in which the set of points \n has two limit-points is only slightly 
more difficult than the case in which {Xn} is convergent to a finite limit. In 
general, the greater the number of limit-points in the set of numbers 
\n(n = 1,2,...) the more difficult the theorem becomes in statement and proof. 

THEOREM 3.1. Suppose {\n} (n = 1, 2, . . .) satisfies the conditions 
oo 

\n > 0, lim \n = + oo , and ^ Xn
_JL = + oo. 

ft->CO 7 1 = 1 

Let dn be given by (2.1). Then the corresponding [F, dn]-matrix sums the geometric 
series to its analytic continuation for all z such that Re(z2) < 1. 

Proof. This theorem is proved if we show that 

lim Qn(z) = 0 

for Re(z2) < 1, where Qn{z) is given by (3.3). To accomplish this we shall 
first show that 

lim Q2n(z) = 0, 

and then that 
lim Q2n+i(z) = 0. 

Let z = x + iy\ then 

(3.4) - 1 + 
1 + X, 

(x2 + yY- 1 + 2A,Qc2 - y2 
1) 

(1 + X,V 

Suppose z is such that Re (s2) < 1 is given ; then there exists 8 > 0 such that 
x2 — y2 < 1 — 8. Since 1 + w < ew for w real, it follows from (3.4), after 
taking the positive square root of both sides, that 

z + X, 
1 + A, 

This inequality implies that 

/ < (*2 + y2)2 - i - 23\ , 
< e x p 1 2 ( 1 + x^ ) 3  

11 + A, 
where 8 > 0. Now since 

n < exp 
/ 2 , 2 N 2 

(x + y ) 1 - 23X, 
2(1 + XJY 

lim Xw = + oo and ^ Aw
 x = + », 

w->oo n = 1 

it follows from this inequality that 

<«•> fl (rrt) " ° 
for z such that Re(z2) < 1. Using the defining relation (3.3) for Qn(z), we see, 
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after a short computation using the values of dj given in (2.1), that (3.5a) 
is equivalent to 

(3.5b) 

Let us now consider 

lim Q2n(z) = 0. 
tt->oo 

•1 + 
z + d2n+i 2

 = °°2 + y2 ~ 1 + 2yp2n+i 
1 + P2n+1 I 1 + d2n+l I 

Since 1 + w < ew for real u>, we have, after taking square roots, 

Z + ^2n+l 

1 ~f~ dzn+l 
< exp 

x + y - I + 2yp2tt+i 
2(1 + P|w+i) 

Since 
lim \n = + oo or lim pn = + oo , 

this inequality implies that there exists a constant M, independent of w, such 
that 

I 1 + d2n+i I 

It follows from this inequality and (3.3) that 

\Q,n+1(z)\ <M\Qin(z)\. 

This inequality, with (3.5b), implies that 

lim Q2n+i(z) = 0. 
re-»oo 

THEOREM 3.2. Suppose that {\n} (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

lim \n — X. 

Suppose the numbers dn are given by (2.1). Then the [F, dn]-matrix sums the 
geometric series to its analytic continuation for all z such that \z2 + X| < 1 + X. 

Proof. This theorem is proved using the same approach that was used to 
prove Theorem 3.1. Let z = x + iy; then 

(3.6) - 1 + 

Notice that 

* +X, 
1 + A, 

- l + ( x 2 + y 2 ) 2 - 2 X ( l - x 2 + y2) , e , xx 

lim €j = 0 since lim X̂  = X. 
.?-Xx> ,7->oo 

Let z = x + iy be given such that (x2 + y2)2 — 1 < 2X(1 — #2 + y2); then 
there exists 8 > 0 such that 

(x2 + y ) 2 - 1 - 2X(1 - x2 + y2) < -20(1 + X)2. 
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Since 

lim 6j(x, y, X) = 0, 
J->oo 

there exists N(xf y, X) such that if j > iV, then |e;(x, y,\)\ < 6. Using these 
inequalities in (3.6), it follows that 

•1 + 
g + X, < -Ô for j > iV. 
i + x;-! 

Since 1 + w < ew for real w, it follows, after taking the positive square root 
of both sides, that 

2 + X 3 

1 + h 
< exp( -8 /2 ) forj > iV. 

If we use the definition of dj from (2.1) in (3.3), we see that this inequality 
implies that 

(3.7) lim Qin{z) = u, 

for all z such that \z2 + X| < 1 + X. 
Since {\n} is a convergent sequence, there exists a constant M(z), independ­

ent of n, such that 

\z + dn\ 
< M. 

1 + 4 1 

Using this inequality, it follows from (3.3) that K?2n+i(s)| < M K?2n0&)|. This 
inequality and (3.7) imply that 

lim Q2n+i(z) = 0 

whenever \z2 + X| < 1 + X, and the theorem is proved. 
It is now of some interest to know what sort of region in the z-plane is 

defined by \z2 + X| < 1 + X. It is the region inside the closed curve 

(x2 + y2)2 - 1 = 2X(1 - x2 + y2). 

This curve has ^-intercepts equal to db (2X + 1)* and x-intercepts equal to 
± 1 . It has horizontal tangents at x = 0, and vertical tangents at y = 0 and 
y* = (3X/4) - (1/2) - (1/4X). Notice also that as X -» œ the region 
(x2 + 3>2)2 — 1 < 2X(1 — x2 + y2) approaches the region x2 — y2 < 1 of 
Theorem 3.1. This is in a certain sense an extension of a well-known analogous 
relationship concerning the Euler matrix and the Lototsky matrix. The Euler 
matrix Er sums the geometric series to its analytic continuation inside a circle 
of radius r~l (see 1). The Lototsky matrix sums the geometric series to its 
analytic continuation for all z such that Re(z) < 1 (see 4). As r —> 0 the 
circle of the Euler matrix approaches the half-plane of the Lototsky matrix. 
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In Theorem 3.2 we showed that a certain [F, dn]-matrix sums the geometric 
series to its analytic continuation for all z such that Re(z2) < 1. One might 
then ask the following question. Do there exist any values of z for which 
Re(s2) > 1 and such that the [F, dn]-matrix of Theorem 3.1 sums the geometric 
series to its analytic continuation? This question is essentially answered by 
the following theorem. 

THEOREM 3.3. Suppose that {Xn} in = 1, 2, 3, . . .) is a sequence such that 
oo 

l im \n = oo f \n > 0, and 23 ^n_1 = + °°. 

Suppose that the terms of the sequence {dn} are given by (2.1), and that <rn(z) is 
given by (3.2). Then \crn(z)} diverges to infinity for all z such that Re(z2) > 1. 

Proof. To prove this theorem it is sufficient to show that the sequence 
{Qn(z)}y where Qn(z) is given by (3.3), diverges to infinity. 

Let z = x + iy be given such that x2 — y2 > 1 ; then there exists 8 > 0 
such that x2 — 3 1 > <5. It now follows from (3.4) that 

(3.8) 

Since 

•1 + 
s + K 
1 + K 

> 
2XKÔ 

(1 + Xn)' >o, 

E x,r1 = +< 

by hypothesis, (3.8) implies that the series 

(3.9) -1 + 
1 + h 

diverges to infinity. Since (3.8) is satisfied, we can now make use of a well-known 
theorem (see 7, p. 14). It follows from this theorem that as n becomes infinite 

«-M - Û (frt) 
diverges to infinity if and only if the series (3.9) diverges to infinity. Since 
the series (3.9) does diverge, 

l im Q2n(z) = 00 

for all z such that Re (s2) > 1. 
Using the values of d2n+i from (2.1), a short computation shows that 

> 2" •r l 

II X y> 1. Z + d2n+l 

I 1 + d2n+l I 

From this inequality and (3.3), we have 2 |Ç2»+i(z)| > K?2W(z)|. Thus 

lim Q2n+i(z) 
W->oo 

GO since lim 02^(2) = °° . 
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Theorem 3.3 answers a certain question regarding the [F, <4]-matrix given 
in Theorem 3.1. If we ask this same question regarding the [F, dj-matrix 
in Theorem 3.2, we get the following theorem. 

THEOREM 3.4. Let the [F, dn]-matrix of Theorem 3.2 be given and let <rn(z) be 
given by (3.2). Then {(rn(z)} diverges to infinity for all z such that 

\z2 + X| > 1 + X. 

Proof. Let z be given such that \z2 + X| > 1 + X; then there exists ô > 0 
such that 

(X2 + 3,2)2 __ i __ 2X(1 - x2 + y2) > 25(1 + X)2. 

Since 
lim en = 0 
W->oo 

in (3.6), there exists N(x, y, X), such that if n > N, then \en(x, y, X)| < ô. 
Now, using these inequalities in (3.6), we have 

- 1 + 
z2+\> 
1 + X, 

2 

>S iij>N. 

It now follows that the series (3.9) diverges. The remainder of the proof of 
this theorem is very similar to the proof of Theorem 3.3. 

We shall now look at the regular sequence-to-sequence [F, dn]-transform 
given in Theorem 2.2 to determine the region in which it sums the geometric 
series. We shall again consider only two cases. First, the case in which the 
sequence {\n} satisfies 

lim Xn = 4- oo . 
W->co 

Second, the case in which 
lim \n = X 
W-Xo 

is finite. 

THEOREM 3.5. Suppose that {\n} (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

oo 

lim Xn = oo and ^ \n~ = + oo. 

Let the terms of the sequence \dn) be given by (2.13). Then the [F> dn]-matrix 
sums the geometric series to its analytic continuation for all z such that Re(s3) < 1. 

Proof. To prove this theorem it is sufficient to show that 

lim Qn(z) = 0 
W->oo 

for Re(z3) < 1, where Qn(z) is given by (3.3). To accomplish this we show 
in turn that 
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lim Quiz) = 0, lim Qzn+i(z) = 0, and lim Qu+*{?) = 0. 

If z = x + iy, then 

(3.10) - 1 + 
z + Xj 

1 + X, 
•1 + (*2 + y2)3 + 2\ j (s ' - 3xy2 - 1) 

(1 + X,)' 

Let 2 be given such that Re(z3) < 1, i.e., x3 — Sxy2 < 1. Then there exists 
5 > 0 such that xz — 3xy2 — 1 < 8. Using this inequality, (3.10) becomes 

- 1 + 
z + \j 

1 + \, 
< 

-l + (x2 + y2)3 2ÔX,-
(1 + X,)2 

Since 1 + w < ew for real w, it follows from this inequality, after taking 
square roots of both sides, that 

(3.11) 

Since 
n 

z + Xj 

1 + \, 
. { , f - 1 + (x2 + y2)3 - 25xA 

< expl S 27ÏTX7 f 

lim Xn = + oo, 

we h a v e — 1 + (x2 + y2)3 < 8\n for w sufficiently large. Since 

CO 

7 1 = 1 

it is easy to show that the series in (3.11) approaches negative infinity as n 
becomes infinite. Hence 

(3.12) s(i^)-* 
Using the values of dj as given by (2.13), we find that (3.12) is equivalent to 

(3.13) lim Qin(z) = 0 
W->oo 

for all z such that x3 — Zxy*- < 1. 
We have 

(3.14) - 1 + 

Since 

Z + dn 

1 + 4 
- 1 + (x2 + y2) + 2pn[(x - 1) cos 6n + y sin 6n] 

1 + 2pn COS 6n + Pn 

lim pw = + oo , 

it follows that the right member of (3.14) approaches zero as n becomes 
infinite. Therefore, the left member of (3.14) is a bounded function of n. 
Hence, there exists a constant M, independent of n, such that 

(3.15) U + dj 
I l + 4 I 

< M. 
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Using the definition of Qn(z) given by (3.3) and (3.15), it easily follows that 

\QSn+t{z)\ < M'\Qin{z)\ (̂  = 1,2). 

This inequality taken together with (3.13) implies that 

lim Qzn+,{z) = 0 (v = 1, 2). 
W->oo 

This completes the proof of the theorem. 

The region defined by x3 — Sxy2 < 1 is the region inside the curve 
x3 — 3xy2 = 1, i.e., the simply connected region containing the origin and 
bounded by x3 — 3xy2 = 1. The curve x3 — Sxy2 = 1 has three branches. One 
branch goes through the point (1, 0) and is asymptotic to the two lines 
y = ± [ tan (w/6)]x and symmetric about the x-axis. The other two branches 
are exact replicas of this branch except they pass through the points (cos 2TT/3, 

sin 27r/3) and (cos 47r/3, sin 47r/3) and are symmetric, respectively, to the 
lines y = (tan 27r/3)x and y = (tan 47r/3)x. 

If we follow the pattern used in the case of Theorem 2.1 in studying the 
region in which the [F, dj-transform sums the geometric series to its analytic 
continuation, then the next theorem to be proved would be the following. 

THEOREM A. Suppose \n > 0, 
lim \n = X, 
n^co 

and the numbers dn are defined by (2.13). Then the [F, dn]-matrix sums the 
geometric series to its analytic continuation for all z such that \zz + X| < 1 + X. 

Theorem A is indeed true. The proof follows using equations and ideas 
found in the proofs of Theorems 2.2 and 3.5 in a manner similar to the manner 
in which Theorem 3.2 follows from equations and ideas found on the proofs 
of Theorems 2.1 and 3.1. However, instead of actually proving Theorem A 
here, we shall prove the following theorem. 

THEOREM 3.6. Let X > 0 be given. Define the numbers dn by 

d^2 = 2~1XH-1 +*'3è), 
dzn-2 = X*, 

d3» = 2"1X*(-1 - Ï3*) (n = 1 ,2 , . . . ) . 

This [F} dn]-matrix sums the geometric series to its analytic continuation if and 
only if z is such that \zz + X| < 1 + X. 

We are considering this special case for two reasons. First, even though 
Theorem 3.6 is much shorter and easier to prove, it is an "if and only if" 
theorem. When we used the general approach similar to Theorem A for the 
matrix of Theorem 2.1, we had to prove two theorems, i.e., Theorems 3.2 and 
3.4, to determine just exactly those values of z for which we had analytic 
continuation of the geometric series, and still the situation was in doubt for 
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z such that \zz + X| = 1 + X. If we use this general approach again we would 
need to prove Theorem A and also a Theorem B, which says that we do not 
get analytic continuation for z such that \zz + X| > 1 + X. Incidently, this 
Theorem B is true and can be proved in a manner similar to the way Theorem 
3.4 was proved. The second reason is that the [F, dj-matrix given in Theorem 
3.6 sums the geometric series to its analytic continuation for z in the same 
region as does the [F, i ]-matrix given in Theorem A except possibly for some 
z such that |s3 + X| = 1 + X. Hence, in the problem of summing the geometric 
series to its analytic continuation, the [F, (/J-matrix of Theorem 3.6 is of 
almost as much interest as the [F, <iw]-matrix of Theorem A. It seems, then, 
that we should point this fact out and give some attention to the simpler 
matrix of Theorem 3.6. 

We should perhaps remark at this point that if X is replaced by \n = \ei6n 

in Theorem 3.6, then one may arrive at a theorem of the same general type 
as (3; Corollary 4.3). Such a theorem would give an [F, dj-matrix which sums 
the geometric series to its analytic continuation for some z such that 

\zs + X| = 1 + X. 

Proof of Theorem 3.6. A short computation using the values of dn as given 
in the statement of the theorem shows that 

«*« - n m - (m)-
Therefore 

lim Qin(z) = 0 
W->oo 

if and only if z is such that \z3 + X| < 1 + X. Since 

08»+, M = C,(z,\)Qsn(z) (v = 1,2), 

where C\(z> X) and Ci{z, X) are independent of n, it follows that 

KmQa^OO = 0 ( ? = 1,2) 

if and only if z satisfies |s3 + Xj < 1 + X. 

THEOREM 3.7. Suppose we are given the [F, dn]-matrix of Theorem 3.5 and 
that an(z) is given by (3.2). Then 

lim <rn(z) = oo 

for all z such that Re (s3) > 1. 

Proof. It follows from (3.2) and (3.3) that this theorem will be proved if 
we can show that 

lim Qn(z) = oo 

for all z such that Re(s3) > 1. 
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Let z = x + iy be given such that Re (z3) > 1 ; then there exists 5 > 0 such 
that x3 — 3xy2 — 1 > d. Since 

lim \n = + oo , 
W->oo 

there exists N such that if n > iV, then — 1 + (x2 + y2)3 > — 5X„. Using 
x3 - 3xy2 - 1 > 8 and - 1 + (x2 + ;y2)3 > -5X> in (3.10), we have 

(3.16) •1 + * +X, 
1 + X, 

> 
ÔX, 

(1 + h) 
3 > 0 ( j > TV). 

M Vi + \,J 

It now follows from a well-known theorem (see 7, p. 14) that 

lim Qi„(z) = lim 

if the series 

(3.17) 

diverges to infinity. Since 

3=1 

Z + X, 
1 + X, 

E xr^+oo, 
(3.16) implies that the series (3.17) does indeed diverge to infinity. Hence 

(3.18) lim QZn(z) = oo 
W->oo 

if Re(z3) > 1. 
From (3.14) it follows that 

lim 
ra->oo 

z + dn = 1. 
1 + 4 1 

Using this together with (3.3) and (3.18), it is easy to show that 

lim Qzn+V(z) = co (y = 1,2). 
W->oo 

When considering the problem of where the [F, rfn]-matrix of Theorem 2.3 
sums the geometric series to its analytic continuation, we shall again look at 
the two most important special cases. First, there is the case where 

Second, the case where 

is finite. 

THEOREM 3.8. Suppose that {\n} (n = 1, 2, . . .) is a sequence of positive 
numbers such that 

lim \n = + co. 
W->oo 

lim \n = X 
W->oo 

lim \n = + oo and ^ Xn
 1 = + oo. 
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Suppose the terms of the sequence \dn} are given by (2.30). Then the [F, dn]-
matrix sums the geometric series to its analytic continuation for all z such that 
Re(s4) < 1. 

Proof. To prove this theorem, it is sufficient to show that if z is given such 
that Re(js4) < 1, then 

lim Qn(z) = 0, 

where Qn(z) is given by (3.3). 
If z = x + iy, then 

(3.19) -1 + 
s4 + X, 2 _ - 1 + (x2 + y2)4 + 2Xn(x

4 - 6x2y2 + y4 - 1) 
1 + A. I (1 + Xn)2 

Suppose 2 is given such that Re (z4) < 1 ; then there exists 8 > 0 such that 
xi — Qx2y2 + y4 — 1 < —5. Since 

lim Xn = + co, 
W->co 

there exists N such that if n > iV, then — 1 + (x2 + y2)4 < 5Xn. Using these 
two inequalities in (3.19), it follows that 

- 1 + 
z + K 
1 + X, < 

-Xnô 

(i + x„r 
Since 1 + w < ew for real w, it follows from this inequality, after taking 
square roots, that 

(3.20) z + K 
< AwTT^f {n>N)-i + xj 

Using the values of dn as given by (2.30) in (3.3) we easily show that 

e*w-ft(îrt)-
It now follows from (3.20) that 

| &»(*)! <exp^- 2 
ÔX7-

Since 

^ 2(i + x,y 

S x.-1=+. 

|Ç«r-4(*)| (n>N). 

by hypothesis, this inequality implies that 

(3.21) lim Q4 B(2) = 0. 

Since 
lim Pn = +oo, 
W-»co 
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it follows from (3.14) that (3.15) is satisfied. It follows from (3.15) and (3.3) 
that 

\Qin+v(z)\ <M>\Q*n(z)\ (v = 1,2,3). 

This inequality and (3.21) imply that 

lim Qin+V{z) = 0 (v= 1,2,3). 
W->oo 

This completes the proof of the theorem. 

In view of the conclusion of Theorem 3.8, there is some interest in the 
region defined by x4 — 6x2y2 + y* < 1. This is the region inside the curve 
x4 — 6x23>2 + yA — 1, i.e., the simply connected region containing the origin 
and bounded by x4 — 6x2y2 + yA = 1. The curve x4 — 6x2y2 + yA = 1 has 
four branches. One branch goes through the point (1, 0), is symmetric to the 
x-axis, and is asymptotic to the lines y = =b (tan ir/8)x. The other three 
branches are replicas of this branch except they go through the points z = iy 

z = — 1, and z = — i; and are symmetric, respectively, to the positive imag­
inary, negative real, and negative imaginary axis. 

THEOREM 3.9. Suppose that {\n} in = 1, 2, . . .) is a sequence of positive 
numbers such that 

lim \n = X 
W->oo 

and suppose that the terms of the sequence {dn) are defined by (2.30). Then the 
[F, dn]-matrix sums the geometric series to its analytic continuation for all z such 
that |z4 + X| < 1 + X. 

The proof of this theorem is similar to the proof of Theorem 3.2. 

THEOREM 3.10. Suppose the [F, dn]-matrix of Theorem 3.8 is given and that 
an(z) is then given by (3.2). Then 

lim an(z) = oo 
n-$oo 

for all z such that Re(s4) > 1. 

THEOREM 3.11. Suppose the [F, dn]-matrix of Theorem 3.9 is given and that 
crn(z) is then given by (3.2). Then 

l im <rn(z) = oo 
n->co 

for all z such that \zé + X| > 1 + X. 

The proofs of Theorems 3.10 and 3.11 are similar to the proofs of Theorems 
3.3 and 3.4, respectively* 

4. Conclusion. In this paper we have considered three classes of regular 
[F, dw]-matrices. These [F, dw]-matrices are defined in terms of a sequence 
{dn} which in turn is defined in terms of a real sequence {\n}. The three 
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sequences {dn\ were obtained by taking successively the square roots of — \n, 
the cube roots of Xn, the fourth roots of — \n. Then why not continue this 
process and obtain a new [F, in]-matrix using the fifth roots of An? One can, 
of course, do this, but there seems little point in continuing this process unless 
we can prove regularity for the [F, dj-matrix obtained from the i/th roots 
of ( — l ) " - ^ where v is a positive integer. We use the vXh roots of ( — l ) ' " ^ 
and not the roots of \fl in order that the product of the v roots thus obtained 
will be \n. We should like to conjecture that a regular [F, dw]-matrix can be 
obtained by using the successive yth roots of ( — 1)"_1X« as the values for 
dn. The difficulty in proving this conjecture is in managing the manipulation 
involved in proving that the matrix satisfies (1.2). 
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