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Pretraining

My strongest memory of the class is the very beginning, when he started, not with
some deep principle of nature, or some experiment, but with a review of Gaussian
integrals. Clearly, there was some calculating to be done.

Joe Polchinski, reminiscing about Richard Feynman’s quantum mechanics class [5].

The goal of this book is to develop principles that enable a theoretical understanding
of deep learning. Perhaps the most important principle is that wide and deep neural
networks are governed by nearly-Gaussian distributions. Thus, to make it through the
book, you will need to achieve mastery of Gaussian integration and perturbation theory.
Our pretraining in this chapter consists of whirlwind introductions to these toolkits
as well as a brief overview of some key concepts in statistics that we’ll need. The
only prerequisite is fluency in linear algebra, multivariable calculus, and rudimentary
probability theory.

With that in mind, we begin in §1.1 with an extended discussion of Gaussian integrals.
Our emphasis will be on calculational tools for computing averages of monomials against
Gaussian distributions, culminating in a derivation of Wick’s theorem.

Next, in §1.2, we begin by giving a general discussion of expectation values and
observables. Thinking of observables as a way of learning about a probability distribution
through repeated experiments, we’re led to the statistical concepts of moment and cumu-
lant and the corresponding physicists’ concepts of full M -point correlator and connected
M -point correlator. A particular emphasis is placed on the connected correlators as they
directly characterize a distribution’s deviation from Gaussianity.

In §1.3, we introduce the negative log probability or action representation of a prob-
ability distribution and explain how the action lets us systematically deform Gaussian
distributions in order to give a compact representation of non-Gaussian distributions.
In particular, we specialize to nearly-Gaussian distributions, for which deviations from
Gaussianity are implemented by small couplings in the action, and show how perturba-
tion theory can be used to connect the non-Gaussian couplings to observables such as
the connected correlators. By treating such couplings perturbatively, we can transform
any correlator of a nearly-Gaussian distribution into a sum of Gaussian integrals; each
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12 1 Pretraining

integral can then be evaluated by the tools we developed in §1.1. This will be one of our
most important tricks, as the neural networks we’ll study are all governed by nearly-
Gaussian distributions, with non-Gaussian couplings that become perturbatively small
as the networks become wide.

Since all these manipulations need to be at our fingertips, in this first chapter we’ve
erred on the side of being verbose – in words and equations and examples – with the
goal of making these materials as transparent and comprehensible as possible.

1.1 Gaussian Integrals

The goal of this section is to introduce Gaussian integrals and Gaussian probability
distributions, and ultimately derive Wick’s theorem (1.45). This theorem provides an
operational formula for computing any moment of a multivariable Gaussian distribution
and will be used throughout the book.

Single-Variable Gaussian Integrals

Let’s take it slow and start with the simplest single-variable Gaussian function,

e−
z2
2 . (1.1)

The graph of this function depicts the famous bell curve, symmetric around the peak
at z = 0 and quickly tapering off for large |z| � 1. By itself, (1.1) cannot serve as
a probability distribution since it’s not normalized. In order to find out the proper
normalization, we need to perform the Gaussian integral

I1 ≡
∫ ∞

−∞
dz e−

z2
2 . (1.2)

As an ancient object, there exists a neat trick to evaluate such an integral. To begin,
consider its square

I2
1 =
(∫ ∞

−∞
dz e−

z2
2

)2
=
∫ ∞

−∞
dx e−

x2
2

∫ ∞

−∞
dy e−

y2
2 =

∫ ∞

−∞

∫ ∞

−∞
dxdy e−

1
2(x2+y2) ,

(1.3)

where in the middle we just changed the names of the dummy integration variables. Next,
we change variables to polar coordinates (x, y) = (r cosφ, r sinφ), which transforms the
integral measure as dxdy = rdrdφ and gives us two elementary integrals to compute:

I2
1 =
∫ ∞

−∞

∫ ∞

−∞
dxdy e−

1
2(x2+y2) =

∫ ∞

0
rdr

∫ 2π

0
dφ e−

r2
2 (1.4)

= 2π
∫ ∞

0
dr re−

r2
2 = 2π

∣∣∣∣−e−
r2
2

∣∣∣∣r=∞

r=0
= 2π.
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1.1 Gaussian Integrals 13

Finally, by taking a square root we can evaluate the Gaussian integral (1.2) as

I1 =
∫ ∞

−∞
dz e−

z2
2 =

√
2π. (1.5)

Dividing the Gaussian function with this normalization factor, we define the Gaussian
probability distribution with unit variance as

p(z) ≡ 1√
2π

e−
z2
2 , (1.6)

which is now properly normalized, i.e.,
∫∞
−∞ dz p(z) = 1. Such a distribution with zero

mean and unit variance is sometimes called the standard normal distribution.
Extending this result to a Gaussian distribution with variance K > 0 is super-easy.

The corresponding normalization factor is given by

IK ≡
∫ ∞

−∞
dz e−

z2
2K =

√
K

∫ ∞

−∞
du e−

u2
2 =

√
2πK, (1.7)

where in the middle we rescaled the integration variable as u = z/
√
K. We can then

define the Gaussian distribution with variance K as

p(z) ≡ 1√
2πK

e−
z2
2K . (1.8)

The graph of this distribution again depicts a bell curve symmetric around z = 0, but
it’s now equipped with a scale K characterizing its broadness, tapering off for |z| �

√
K.

More generally, we can shift the center of the bell curve as

p(z) ≡ 1√
2πK

e−
(z−s)2

2K , (1.9)

so that it is now symmetric around z = s. This center value s is called the mean of the
distribution, because it is:

E [z] ≡
∫ ∞

−∞
dz p(z) z = 1√

2πK

∫ ∞

−∞
dz e−

(z−s)2
2K z (1.10)

= 1
IK

∫ ∞

−∞
dw e−

w2
2K (s + w)

= sIK
IK

+ 1
IK

∫ ∞

−∞
dw

(
e−

w2
2Kw

)
= s ,

where in the middle we shifted the variable as w = z − s and in the very last step
noticed that the integrand of the second term is odd with respect to the sign flip of the
integration variable w ↔ −w and hence integrates to zero.

Focusing on Gaussian distributions with zero mean, let’s consider other expectation
values for general functions O(z), i.e.,

E [O(z)] ≡
∫ ∞

−∞
dz p(z)O(z) = 1√

2πK

∫ ∞

−∞
dz e−

z2
2KO(z) . (1.11)
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14 1 Pretraining

We’ll often refer to such functions O(z) as observables, since they can correspond to
measurement outcomes of experiments. A special class of expectation values are called
moments and correspond to the insertion of zM into the integrand for any integer M :

E
[
zM
]

= 1√
2πK

∫ ∞

−∞
dz e−

z2
2K zM . (1.12)

Note that the integral vanishes for any odd exponent M , because then the integrand
is odd with respect to the sign flip z ↔ −z. As for the even number M = 2m of z
insertions, we will need to evaluate integrals of the form

IK,m ≡
∫ ∞

−∞
dz e−

z2
2K z2m. (1.13)

As objects almost as ancient as (1.2), again there exists a neat trick to evaluate them:

IK,m =
∫ ∞

−∞
dz e−

z2
2K z2m =

(
2K2 d

dK

)m ∫ ∞

−∞
dz e−

z2
2K =

(
2K2 d

dK

)m
IK (1.14)

=
(

2K2 d

dK

)m√
2πK

1
2 =

√
2πK

2m+1
2 (2m− 1)(2m− 3) · · · 1 ,

where in going to the second line we substituted in our expression (1.7) for IK . Therefore,
we see that the even moments are given by the simple formula1

E
[
z2m
]

= IK,m√
2πK

= Km (2m− 1)!!, (1.15)

where we have introduced the double factorial

(2m− 1)!! ≡ (2m− 1)(2m− 3) · · · 1 = (2m)!
2mm! . (1.16)

The result (1.15) is Wick’s theorem for single-variable Gaussian distributions.
There’s actually another nice way to derive (1.15), which can much more naturally

be extended to multivariable Gaussian distributions. This derivation starts with the
consideration of a Gaussian integral with a source term J , which we define as

ZK,J ≡
∫ ∞

−∞
dz e−

z2
2K +Jz. (1.17)

Note that when setting the source to zero, we recover the normalization of the Gaussian
integral, giving the relationship ZK,J=0 = IK . In the physics literature ZK,J is sometimes
called a partition function with source and, as we will soon see, this integral serves
as a generating function for the moments. We can evaluate ZK,J by completing the
square in the exponent,

− z2

2K + Jz = −(z − JK)2

2K + KJ2

2 , (1.18)

1This equation with 2m = 2 makes clear why we called K the variance, since for zero-mean Gaussian
distributions with variance K, we have var(z) ≡ E

[
(z − E [z])2

]
= E
[
z2]− E [z]2 = E

[
z2] = K.

https://doi.org/10.1017/9781009023405.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023405.003


1.1 Gaussian Integrals 15

which lets us rewrite the integral (1.17) as

ZK,J = e
KJ2

2

∫ ∞

−∞
dz e−

(z−JK)2
2K = e

KJ2
2 IK = e

KJ2
2

√
2πK, (1.19)

where in the middle equality we noticed that the integrand is just a shifted Gaussian
function with variance K.

We can now relate the Gaussian integral with a source ZK,J to the Gaussian integral
with insertions IK,m. By differentiating ZK,J with respect to the source J and then
setting the source to zero, we observe that

IK,m =
∫ ∞

−∞
dz e−

z2
2K z2m =

[(
d

dJ

)2m ∫ ∞

−∞
dz e−

z2
2K +Jz

] ∣∣∣∣∣
J=0

=
[(

d

dJ

)2m
ZK,J

] ∣∣∣∣∣
J=0

.

(1.20)

In other words, the integrals IK,m are simply related to the even Taylor coefficients of
the partition function ZK,J around J = 0. For instance, for 2m = 2 we have

E
[
z2
]

= IK,1√
2πK

=
[(

d

dJ

)2
e

KJ2
2

] ∣∣∣∣∣
J=0

=
[
e

KJ2
2
(
K + K2J2

)] ∣∣∣∣∣
J=0

= K, (1.21)

and for 2m = 4 we have

E
[
z4
]

= IK,2√
2πK

=
[(

d

dJ

)4
e

KJ2
2

] ∣∣∣∣∣
J=0

=
[
e

KJ2
2
(
3K2 + 6K3J2 + K4J4

)] ∣∣∣∣∣
J=0

= 3K2.

(1.22)

Notice that any terms with dangling sources J vanish upon setting J = 0. This obser-
vation gives a simple way to evaluate correlators for general m: Taylor-expand the
exponential ZK,J/IK = exp

(
KJ2

2

)
, and keep the term with the right amount of sources

such that the expression doesn’t vanish. Doing exactly that, we get

E
[
z2m
]

= IK,m√
2πK

=
[(

d

dJ

)2m
e

KJ2
2

] ∣∣∣∣∣
J=0

=
{(

d

dJ

)2m [ ∞∑
k=0

1
k!

(
K

2

)k
J2k
]} ∣∣∣∣∣

J=0
(1.23)

=
(

d

dJ

)2m [ 1
m!

(
K

2

)m
J2m
]

= Km (2m)!
2mm! = Km(2m− 1)!! ,

which completes our second derivation of Wick’s theorem (1.15) for the single-variable
Gaussian distribution. This derivation was much longer than the first neat derivation
but can be very naturally extended to the multivariable Gaussian distribution, which we
turn to next.
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16 1 Pretraining

Multivariable Gaussian Integrals

Picking up speed, we are now ready to handle multivariable Gaussian integrals for an
N -dimensional variable zμ with μ = 1, . . . , N .2 The multivariable Gaussian function is
defined as

exp

⎡⎣−1
2

N∑
μ,ν=1

zμ(K−1)μν zν

⎤⎦ , (1.24)

where the variance or covariance matrix Kμν is an N -by-N symmetric positive definite
matrix, and its inverse (K−1)μν is defined so that their matrix product gives the N -by-N
identity matrix

N∑
ρ=1

(K−1)μρKρν = δμν . (1.25)

Here we have also introduced the Kronecker delta δμν , which satisfies

δμν ≡
{

1 , μ = ν,

0 , μ �= ν.
(1.26)

The Kronecker delta is just a convenient representation of the identity matrix.
Now, to construct a probability distribution from the Gaussian function (1.24), we

again need to evaluate the normalization factor

IK ≡
∫

dNz exp

⎡⎣−1
2

N∑
μ,ν=1

zμ(K−1)μν zν

⎤⎦ (1.27)

=
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 · · ·

∫ ∞

−∞
dzN exp

⎡⎣−1
2

N∑
μ,ν=1

zμ(K−1)μν zν

⎤⎦ .
To compute this integral, first recall from linear algebra that, given an N -by-N
symmetric matrix Kμν , there is always an orthogonal matrix3 Oμν that diagonalizes
Kμν as (OKOT )μν = λμδμν with eigenvalues λμ=1,...,N and diagonalizes its inverse as
(OK−1OT )μν = (1/λμ) δμν . With this in mind, after twice inserting the identity matrix
as δμν = (OTO)μν , the sum in the exponent of the integral can be expressed in terms of
the eigenvalues as

2Throughout this book, we will explicitly write out the component indices of vectors, matrices, and
tensors as much as possible, except on some occasions when it is clear enough from context.

3An orthogonal matrix Oμν is a matrix whose transpose
(
OT
)
μν

equals its inverse, i.e., (OTO)μν = δμν .
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1.1 Gaussian Integrals 17

N∑
μ,ν=1

zμ(K−1)μνzν =
N∑

μ,ρ,σ,ν=1
zμ (OTO)μρ(K−1)ρσ(OTO)σν zν (1.28)

=
N∑

μ,ν=1
(Oz)μ(OK−1OT )μν(Oz)ν

=
N∑

μ=1

1
λμ

(Oz)2μ,

where to reach the final line we used the diagonalization property of the inverse covari-
ance matrix. Remembering for a positive definite matrix Kμν that the eigenvalues are all
positive λμ > 0, we see that the λμ sets the scale of the falloff of the Gaussian function
in each of the eigendirections. Next, recall from multivariable calculus that a change
of variables uμ ≡ (Oz)μ with an orthogonal matrix O leaves the integration measure
invariant, i.e., dNz = dNu. All together, this lets us factorize the multivariable Gaussian
integral (1.27) into a product of single-variable Gaussian integrals (1.7), yielding

IK =
∫ ∞

−∞
du1

∫ ∞

−∞
du2 · · ·

∫ ∞

−∞
duN exp

(
− u2

1
2λ1

− u2
2

2λ2
− · · · − u2

N

2λN

)
(1.29)

=
N∏

μ=1

[∫ ∞

−∞
duμ exp

(
−

u2
μ

2λμ

)]
=

N∏
μ=1

√
2πλμ =

√√√√ N∏
μ=1

(2πλμ).

Finally, recall one last fact from linear algebra: that the product of the eigenvalues of a
matrix is equal to the matrix determinant. Thus, compactly, we can express the value
of the multivariable Gaussian integral as

IK =
∫

dNz exp

⎡⎣−1
2

N∑
μ,ν=1

zμ(K−1)μνzν

⎤⎦ =
√
|2πK|, (1.30)

where |A| denotes the determinant of a square matrix A.
Having figured out the normalization factor, we can define the zero-mean multivari-

able Gaussian probability distribution with variance Kμν as

p(z) = 1√
|2πK|

exp

⎡⎣−1
2

N∑
μ,ν=1

zμ(K−1)μν zν

⎤⎦ . (1.31)

While we’re at it, let us also introduce the conventions of suppressing the superscript
“−1” for the inverse covariance (K−1)μν , instead placing the component indices
upstairs as

Kμν ≡ (K−1)μν . (1.32)

This way, we distinguish the covariance Kμν and the inverse covariance Kμν by whether
or not component indices are lowered or raised. With this notation, inherited from general
relativity, the defining equation for the inverse covariance (1.25) is written instead as
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18 1 Pretraining

N∑
ρ=1

KμρKρν = δμν , (1.33)

and the multivariable Gaussian distribution (1.31) is written as

p(z) = 1√
|2πK|

exp

⎛⎝−1
2

N∑
μ,ν=1

zμK
μνzν

⎞⎠ . (1.34)

Although it might take some getting used to, this notation saves us some space and saves
you some handwriting pain.4 Regardless of how it’s written, the zero-mean multivariable
Gaussian probability distribution (1.34) peaks at z = 0, and its falloff is direction-
dependent, determined by the covariance matrix Kμν . More generally, we can shift the
peak of the Gaussian distribution to sμ:

p(z) = 1√
|2πK|

exp

⎡⎣−1
2

N∑
μ,ν=1

(z − s)μK
μν (z − s)ν

⎤⎦ , (1.35)

which defines a general multivariable Gaussian distribution with mean E [zμ] = sμ and
covariance Kμν . This is the most general version of the Gaussian distribution.

Next, let’s consider the moments of the mean-zero multivariable Gaussian distribu-
tion

E [zμ1 · · · zμM ] ≡
∫

dNz p(z) zμ1 · · · zμM (1.36)

= 1√
|2πK|

∫
dNz exp

⎛⎝−1
2

N∑
μ,ν=1

zμK
μνzν

⎞⎠ zμ1 · · · zμM =
IK,(μ1,...,μM )

IK
,

where we introduced multivariable Gaussian integrals with insertions

IK,(μ1,...,μM ) ≡
∫

dNz exp

⎛⎝−1
2

N∑
μ,ν=1

zμK
μνzν

⎞⎠ zμ1 · · · zμM . (1.37)

Following our approach in the single-variable case, let’s construct the generating function
for the integrals IK,(μ1,...,μM ) by including a source term Jμ as

ZK,J ≡
∫

dNz exp

⎛⎝−1
2

N∑
μ,ν=1

zμK
μνzν +

N∑
μ=1

Jμzμ

⎞⎠ . (1.38)

4If you like, in your notes you can also go full general-relativistic mode and adopt Einstein summation
convention, suppressing the summation symbol any time indices are repeated in upstairs-downstairs
pairs. For instance, if we adopted this convention, we would write the defining equation for the inverse
simply as KμρKρν = δμν and the Gaussian function as exp

(
− 1

2zμK
μνzν
)
.

Specifically for neural networks, you might find the Einstein summation convention helpful for sample
indices but sometimes confusing for neural indices. For extra clarity, we won’t adopt this convention in
the text of the book, but we mention it now since we do often use such a convention to simplify our own
calculations in private.
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1.1 Gaussian Integrals 19

As the name suggests, differentiating the generating function ZK,J with respect to the
source Jμ brings down a power of zμ such that after M such differentiations, we have[

d

dJμ1

d

dJμ2
· · · d

dJμM
ZK,J

] ∣∣∣∣∣
J=0

(1.39)

=
∫

dNz exp

⎛⎝−1
2

N∑
μ,ν=1

zμK
μνzν

⎞⎠ zμ1 · · · zμM = IK,(μ1,...,μM ).

So, as in the single-variable case, the Taylor coefficients of the partition function ZK,J

expanded around Jμ = 0 are simply related to the integrals with insertions IK,(μ1,...,μM ).
Therefore, if we knew a closed-form expression for ZK,J , we could easily compute the
values of the integrals IK,(μ1,...,μM ).

To evaluate the generating function ZK,J in a closed form, again we follow the lead
of the single-variable case and complete the square in the exponent of the integrand in
(1.38) as

− 1
2

N∑
μ,ν=1

zμK
μνzν +

N∑
μ=1

Jμzμ (1.40)

= −1
2

N∑
μ,ν=1

⎛⎝zμ −
N∑
ρ=1

KμρJ
ρ

⎞⎠Kμν

(
zν −

N∑
λ=1

KνλJ
λ

)
+ 1

2

N∑
μ,ν=1

JμKμνJ
ν

= −1
2

N∑
μ,ν=1

wμK
μνwν + 1

2

N∑
μ,ν=1

JμKμνJ
ν ,

where we have introduced the shifted variable wμ ≡ zμ − ∑N
ρ=1 KμρJ

ρ. Using this
substitution, the generating function can be evaluated explicitly:

ZK,J = exp

⎛⎝1
2

N∑
μ,ν=1

JμKμνJ
ν

⎞⎠∫ dNw exp

⎡⎣−1
2

N∑
μ,ν=1

wμK
μνwν

⎤⎦ (1.41)

=
√
|2πK| exp

⎛⎝1
2

N∑
μ,ν=1

JμKμνJ
ν

⎞⎠ ,

where at the end we used our formula for the multivariable integral IK , (1.30). With
our closed-form expression (1.41) for the generating function ZK,J , we can compute the
Gaussian integrals with insertions IK,(μ1,...,μM ) by differentiating it, using (1.39). For an
even number M = 2m of insertions, we find a really nice formula

E [zμ1 · · · zμ2m ] =
IK,(μ1,...,μ2m)

IK
= 1

IK

[
d

dJμ1
· · · d

dJμ2m
ZK,J

] ∣∣∣∣∣
J=0

(1.42)

= 1
2mm!

d

dJμ1

d

dJμ2
· · · d

dJμ2m

⎛⎝ N∑
μ,ν=1

JμKμνJ
ν

⎞⎠m

.

https://doi.org/10.1017/9781009023405.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023405.003


20 1 Pretraining

For an odd number M = 2m + 1 of insertions, there is dangling source upon setting
J = 0, and so those integrals vanish. You can also see this by looking at the integrand
for any odd moment and noticing that it is odd with respect to the sign flip of the
integration variables zμ ↔ −zμ.

Now, let’s take a few moments to evaluate a few moments using this formula. For
2m = 2, we have

E [zμ1zμ2 ] = 1
2

d

dJμ1

d

dJμ2

⎛⎝ N∑
μ,ν=1

JμKμνJ
ν

⎞⎠ = Kμ1μ2 . (1.43)

Here, there are 2! = 2 ways to apply the product rule for derivatives and differentiate
the two J ’s, both of which evaluate to the same expression due to the symmetry of the
covariance, Kμ1μ2 = Kμ2μ1 . This expression (1.43) validates in the multivariable setting
why we have been calling Kμν the covariance, because we see explicitly that it is the
covariance.

Next, for 2m = 4 we get a more complicated expression:

E [zμ1zμ2zμ3zμ4 ] = 1
222!

d

dJμ1

d

dJμ2

d

dJμ3

d

dJμ4

⎛⎝ N∑
μ,ν=1

JμKμνJ
ν

⎞⎠⎛⎝ N∑
ρ,λ=1

JρKρλJ
λ

⎞⎠
= Kμ1μ2Kμ3μ4 + Kμ1μ3Kμ2μ4 + Kμ1μ4Kμ2μ3 . (1.44)

Here we note that there are now 4! = 24 ways to differentiate the four J ’s, though only
three distinct ways to pair the four auxiliary indices 1, 2, 3, 4 that sit under μ. This gives
24/3 = 8 = 222! equivalent terms for each of the three pairings, which cancels against
the overall factor 1/(222!).

For general 2m, there are (2m)! ways to differentiate the sources, of which 2mm!
of those ways are equivalent. This gives (2m)!/(2mm!) = (2m − 1)!! distinct terms,
corresponding to the (2m− 1)!! distinct pairings of 2m auxiliary indices 1, . . . , 2m that
sit under μ. The factor of 1/(2mm!) in the denominator of (1.42) ensures that the
coefficient of each of these terms is normalized to unity. Thus, most generally, we can
express the moments of the multivariable Gaussian with the following formula:

E [zμ1 · · · zμ2m ] =
∑

all pairing
Kμk1μk2

· · ·Kμk2m−1μk2m
, (1.45)

where, to reiterate, the sum is over all the possible distinct pairings of the 2m auxiliary
indices under μ such that the result has the (2m − 1)!! terms that we described above.
Each factor of the covariance Kμν in a term in sum is called a Wick contraction,
corresponding to a particular pairing of auxiliary indices. Each term then is composed of
m different Wick contractions, representing a distinct way of pairing up all the auxiliary
indices. To make sure you understand how this pairing works, look back at the 2m = 2
case (1.43) – with a single Wick contraction – and the 2m = 4 case (1.44) – with three
distinct ways of making two Wick contractions – and try to work out the 2m = 6 case,
which yields (6 − 1)!! = 15 distinct ways of making three Wick contractions:
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E [zμ1zμ2zμ3zμ4zμ5zμ6 ] = Kμ1μ2Kμ3μ4Kμ5μ6 + Kμ1μ3Kμ2μ4Kμ5μ6 + Kμ1μ4Kμ2μ3Kμ5μ6

+ Kμ1μ2Kμ3μ5Kμ4μ6 + Kμ1μ3Kμ2μ5Kμ4μ6 + Kμ1μ5Kμ2μ3Kμ4μ6

+ Kμ1μ2Kμ5μ4Kμ3μ6 + Kμ1μ5Kμ2μ4Kμ3μ6 + Kμ1μ4Kμ2μ5Kμ3μ6

+ Kμ1μ5Kμ3μ4Kμ2μ6 + Kμ1μ3Kμ5μ4Kμ2μ6 + Kμ1μ4Kμ5μ3Kμ2μ6

+ Kμ5μ2Kμ3μ4Kμ1μ6 + Kμ5μ3Kμ2μ4Kμ1μ6 + Kμ5μ4Kμ2μ3Kμ1μ6 .

The formula (1.45) is Wick’s theorem. Put a box around it. Take a few moments
for reflection.

. . .

. . .

. . .

Good. You are now a Gaussian sensei. Exhale, and then say, as Neo would say, “I know
Gaussian integrals.”

Now that the moments have passed, it is an appropriate time to transition to the
next section, where you will learn about more general probability distributions.

1.2 Probability, Correlation and Statistics, and All That
In introducing the Gaussian distribution in the last section, we briefly touched upon the
concepts of expectation and moments. These are defined for non-Gaussian probability
distributions too, so now let us reintroduce these concepts and expand on their defini-
tions, with an eye toward understanding the nearly-Gaussian distributions that describe
wide neural networks.

Given a probability distribution p(z) of an N -dimensional random variable zμ, we
can learn about its statistics by measuring functions of zμ. We’ll refer to such measurable
functions in a generic sense as observables and denote them as O(z). The expectation
value of an observable

E [O(z)] ≡
∫

dNz p(z)O(z) (1.46)

characterizes the mean value of the random function O(z). Note that the observable
O(z) need not be a scalar-valued function, e.g., the second moment of a distribution is
a matrix-valued observable given by O(z) = zμzν .

Operationally, an observable is a quantity that we measure by conducting exper-
iments in order to connect to a theoretical model for the underlying probability dis-
tribution describing zμ. In particular, we repeatedly measure the observables that are
naturally accessible to us as experimenters, collect their statistics, and then compare
them with predictions for the expectation values of those observables computed from
some theoretical model of p(z).

With that in mind, it’s very natural to ask: what kind of information can we learn
about an underlying distribution p(z) by measuring an observable O(z)? For an a priori
unknown distribution, is there a set of observables that can serve as a sufficient probe
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of p(z) such that we could use that information to predict the result of all future
experiments involving zμ?

Consider a class of observables that we’ve already encountered, the moments or
M -point correlators of zμ, given by the expectation5

E [zμ1zμ2 · · · zμM ] =
∫

dNz p(z) zμ1zμ2 · · · zμM . (1.47)

In principle, knowing the M -point correlators of a distribution lets us compute the
expectation value of any analytic observable O(z) via Taylor expansion:

E [O(z)] = E

⎡⎣ ∞∑
M=0

1
M !

N∑
μ1,...,μM=1

∂MO
∂zμ1 · · · ∂zμM

∣∣∣∣∣
z=0

zμ1zμ2 · · · zμM

⎤⎦ (1.48)

=
∞∑

M=0

1
M !

N∑
μ1,...,μM=1

∂MO
∂zμ1 · · · ∂zμM

∣∣∣∣∣
z=0

E [zμ1zμ2 · · · zμM ] ,

where on the last line we took the Taylor coefficients out of the expectation by using
the linearity property of the expectation, inherited from the linearity property of the
integral in (1.46). As such, it’s clear that the collection of all the M -point correlators
completely characterizes a probability distribution for all intents and purposes.6

However, this description in terms of all the correlators is somewhat cumbersome and
operationally infeasible. To get a reliable estimate of the M -point correlator, we must
simultaneously measure M components of a random variable for each draw and repeat
such measurements many times. As M grows, this task quickly becomes impractical. In
fact, if we could easily perform such measurements for all M , then our theoretical model
of p(z) would no longer be a useful abstraction: from (1.48) we would already know
the outcome of all possible experiments that we could perform, leaving nothing for us
to predict.

To that point, essentially all useful distributions can be effectively described in terms
of a finite number of quantities, giving them a parsimonious representation. For instance,

5In the rest of this book, we’ll often use the physics term M-point correlator rather than the statistics
term moment, though they mean the same thing and can be used interchangeably.

6In fact, the moments offer a dual description of the probability distribution through either the Laplace
transform or the Fourier transform. For instance, the Laplace transform of the probability distribution
p(z) is given by

ZJ ≡ E

[
exp

(∑
μ

Jμzμ

)]
=
∫ [∏

μ

dzμ

]
p(z) exp

(∑
μ

Jμzμ

)
. (1.49)

As in the Gaussian case, this integral gives a generating function for the M -point correlators of p(z),
which means that ZJ can be reconstructed from these correlators. The probability distribution can then
be obtained through the inverse Laplace transform.
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consider the zero-mean n-dimensional Gaussian distribution with the variance Kμν . The
nonzero 2m-point correlators are given by Wick’s theorem (1.45) as

E [zμ1zμ2 · · · zμ2m ] =
∑

all pairing
Kμk1μk2

· · ·Kμk2m−1μk2m
(1.50)

and are determined entirely by the N(N +1)/2 independent components of the variance
Kμν . The variance itself can be estimated by measuring the two-point correlator

E [zμzν ] = Kμν . (1.51)

This is consistent with our description of the distribution itself as “the zero-mean N -
dimensional Gaussian distribution with the variance Kμν” in which we only had to
specify these same set of numbers, Kμν , to pick out the particular distribution we had in
mind. For zero-mean Gaussian distributions, there’s no reason to measure or keep track
of any of the higher-point correlators as they are completely constrained by the variance
through (1.50).

More generally, it would be nice if there were a systematic way to learn about non-
Gaussian probability distributions without performing an infinite number of experiments.
For nearly-Gaussian distributions, a useful set of observables is given by what statis-
ticians call cumulants and physicists call connected correlators.7 As the formal
definition of these quantities is somewhat cumbersome and unintuitive, let’s start with
a few simple examples.

The first cumulant or the connected one-point correlator is the same as the full
one-point correlator:

E [zμ]
∣∣
connected ≡ E [zμ] . (1.52)

This is just the mean of the distribution. The second cumulant or the connected two-
point correlator is given by

E [zμzν ]
∣∣
connected ≡ E [zμzν ] − E [zμ]E [zν ] (1.53)

= E [(zμ − E [zμ]) (zν − E [zν ])] ≡ Cov[zμ, zν ] ,

which is also known as the covariance of the distribution. Note how the mean is sub-
tracted from the random variable zμ before taking the square in the connected version.
The quantity Δ̂zμ ≡ zμ−E [zμ] represents a fluctuation of the random variable around
its mean. Intuitively, such fluctuations are equally likely to contribute positively as they
are likely to contribute negatively, E

[
Δ̂zμ
]

= E [zμ]−E [zμ] = 0, so it’s necessary to take
the square in order to get an estimate of the magnitude of such fluctuations.

7Outside of this chapter, just as we’ll often use the term M -point correlator rather than the term
moment, we’ll use the term M -point connected correlator rather than the term cumulant. When we want
to refer to the moment and not the cumulant, we might sometimes say full correlator to contrast with
connected correlator.
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At this point, let us restrict our focus to distributions that are invariant under a sign-
flip symmetry zμ → −zμ, which holds for the zero-mean Gaussian distribution (1.34).
Importantly, this parity symmetry will also hold for the nearly-Gaussian distributions
that we will study in order to describe neural networks. For all such even distributions
with this symmetry, all odd moments and all odd-point connected correlators vanish.

With this restriction, the next simplest observable is the fourth cumulant or the
connected four-point correlator, given by the formula

E [zμ1zμ2zμ3zμ4 ]
∣∣
connected (1.54)

= E [zμ1zμ2zμ3zμ4 ]
− E [zμ1zμ2 ]E [zμ3zμ4 ] − E [zμ1zμ3 ]E [zμ2zμ4 ] − E [zμ1zμ4 ]E [zμ2zμ3 ] .

For the Gaussian distribution, recalling Wick’s theorem (1.50), the last three terms
precisely subtract off the three pairs of Wick contractions used to evaluate the first
term, meaning

E [zμ1zμ2zμ3zμ4 ]
∣∣
connected = 0. (1.55)

Essentially by design, the connected four-point correlator vanishes for the Gaussian
distribution, and a nonzero value signifies a deviation from Gaussian statistics.8 In fact,
the connected four-point correlator is perhaps the simplest measure of non-Gaussianity.

Now that we have a little intuition, we are as ready as we’ll ever be to discuss the
definition for the M -th cumulant or the M -point connected correlator. For completeness,
we’ll give the general definition before restricting again to distributions that are symmet-
ric under parity zμ → −zμ. The definition is inductive and somewhat counterintuitive,
expressing the M -th moment in terms of connected correlators from degrees 1 to M :

E [zμ1zμ2 · · · zμM ] (1.56)
≡ E [zμ1zμ2 · · · zμM ]

∣∣
connected

+
∑

all subdivisions
E

[
zμ

k
[1]
1

· · · zμ
k
[1]
ν1

] ∣∣∣∣∣
connected

· · ·E
[
zμ

k
[s]
1

· · · zμ
k
[s]
νs

] ∣∣∣∣∣
connected

,

where the sum is over all the possible subdivisions of M variables into s > 1 clusters of
sizes (ν1, . . . , νs) as (k[1]

1 , . . . , k
[1]
ν1 ), . . . , (k[s]

1 , . . . , k
[s]
νs ). By decomposing the M -th moment

into a sum of products of connected correlators of degree M and lower, we see that
the connected M -point correlator corresponds to a new type of correlation that cannot
be expressed by the connected correlators of a lower degree. We saw an example of
this above when discussing the connected four-point correlator as a simple measure of
non-Gaussianity.

8In statistics, the connected four-point correlator for a single random variable z is called the excess
kurtosis when normalized by the square of the variance. It is a natural measure of the tails of the
distribution, as compared to a Gaussian distribution, and also serves as a measure of the potential for
outliers. In particular, a positive value indicates fatter tails while a negative value indicates thinner tails.
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To see how this abstract definition actually works, let’s revisit the examples. First, we
trivially recover the relation between the mean and the one-point connected correlator:

E [zμ]
∣∣
connected = E [zμ] , (1.57)

as there is no subdivision of an M = 1 variable into any smaller pieces. For M = 2, the
definition (1.56) gives

E [zμ1zμ2 ] = E [zμ1zμ2 ]
∣∣
connected + E [zμ1 ]

∣∣
connectedE [zμ2 ]

∣∣
connected (1.58)

= E [zμ1zμ2 ]
∣∣
connected + E [zμ1 ]E [zμ2 ] .

Rearranging to solve for the connected two-point function in terms of the moments, we
see that this is equivalent to our previous definition for the covariance (1.53).

At this point, let us again restrict to parity-symmetric distributions invariant under
zμ → −zμ, remembering that this means that all the odd-point connected correlators
will vanish. For such distributions, evaluating the definition (1.56) for M = 4 gives

E [zμ1zμ2zμ3zμ4 ] = E [zμ1zμ2zμ3zμ4 ]
∣∣
connected (1.59)

+ E [zμ1zμ2 ]
∣∣
connectedE [zμ3zμ4 ]

∣∣
connected

+ E [zμ1zμ3 ]
∣∣
connectedE [zμ2zμ4 ]

∣∣
connected

+ E [zμ1zμ4 ]
∣∣
connectedE [zμ2zμ3 ]

∣∣
connected.

Since E [zμ1zμ2 ] = E [zμ1zμ2 ]
∣∣
connected when the mean vanishes, this is also just a rear-

rangement of our previous expression (1.54) for the connected four-point correlator for
such zero-mean distributions.

In order to see something new, let us carry on for M = 6:

E [zμ1zμ2zμ3zμ4zμ5zμ6 ] = E [zμ1zμ2zμ3zμ4zμ5zμ6 ]
∣∣
connected (1.60)

+ E [zμ1zμ2 ]
∣∣
connectedE [zμ3zμ4 ]

∣∣
connectedE [zμ5zμ6 ]

∣∣
connected

+ [14 other (2, 2, 2) subdivisions]
+ E [zμ1zμ2zμ3zμ4 ]

∣∣
connectedE [zμ5zμ6 ]

∣∣
connected

+ [14 other (4, 2) subdivisions] ,

in which we have expressed the full six-point correlator in terms of a sum of products
of connected two-point, four-point, and six-point correlators. Rearranging the above
expression and expressing the two-point and four-point connected correlators in terms
of their definitions, (1.53) and (1.54), we obtain the following expression for the connected
six-point correlator:

E [zμ1zμ2zμ3zμ4zμ5zμ6 ]
∣∣
connected (1.61)

= E [zμ1zμ2zμ3zμ4zμ5zμ6 ]
− {E [zμ1zμ2zμ3zμ4 ]E [zμ5zμ6 ] + [14 other (4, 2) subdivisions]}
+ 2 {E [zμ1zμ2 ]E [zμ3zμ4 ]E [zμ5zμ6 ] + [14 other (2, 2, 2) subdivisions]} .
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The rearrangement is useful for computational purposes, in that it’s simple to first
compute the moments of a distribution and then organize the resulting expressions in
order to evaluate the connected correlators.

Focusing back on (1.60), it’s easy to see that the connected six-point correlator van-
ishes for Gaussian distributions. Remembering that the connected four-point correlator
also vanishes for Gaussian distributions, we see that the fifteen (2, 2, 2) subdivision terms
are exactly equal to the fifteen terms generated by the Wick contractions resulting from
evaluating the full correlator on the left-hand side of the equation. In fact, applying the
general definition of connected correlators (1.56) to the zero-mean Gaussian distribution,
we see inductively that all M -point connected correlators for M > 2 will vanish.9 Thus,
the connected correlators are a very natural measure of how a distribution deviates from
Gaussianity.

With this in mind, we can finally define a nearly-Gaussian distribution as a
distribution for which all the connected correlators for M > 2 are small.10 In fact,
the non-Gaussian distributions that describe neural networks generally have the prop-
erty that, as the network becomes wide, the connected four-point correlator becomes
small and the higher-point connected correlators become even smaller. For these nearly-
Gaussian distributions, a few leading connected correlators give a concise and accurate
description of the distribution, just as a few leading Taylor coefficients can give a good
description of a function near the point of expansion.

1.3 Nearly-Gaussian Distributions
Now that we have defined nearly-Gaussian distributions in terms of measurable devi-
ations from Gaussian statistics, i.e., via small but nonzero connected correlators, it’s
natural to ask how we can link these observables to the actual functional form of the
distribution, p(z). We can make this connection through the action.

The action S(z) is a function that defines a probability distribution p(z) through
the relation

p(z) ∝ e−S(z). (1.62)

In the statistics literature, the action S(z) is sometimes called the negative log probability,
but we will again follow the physics literature and call it the action. In order for (1.62)
to make sense as a probability distribution, p(z) needs be normalizable so that we can
satisfy ∫

dNz p(z) = 1. (1.63)

9To see this, note that if all the higher-point connected correlators vanish, then the definition (1.56)
is equivalent to Wick’s theorem (1.50), with nonzero terms in (1.56) – the subdivisions into clusters of
sizes (2, . . . , 2) – corresponding exactly to the different pairings in (1.50).

10As we discussed in §1.1, the variance sets the scale of the Gaussian distribution. For nearly-Gaussian
distributions, we require that all 2m-point connected correlators be parametrically small when compared
to an appropriate power of the variance, i.e., |E [zμ1 · · · zμ2m ] |connected| � |Kμν |m, schematically.
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That’s where the normalization factor or partition function

Z ≡
∫

dNz e−S(z) (1.64)

comes in. After computing the partition function, we can define a probability distribution
for a particular action S(z) as

p(z) ≡ e−S(z)

Z
. (1.65)

Conversely, given a probability distribution, we can associate an action, S(z) =
− log [p(z)], up to an additive ambiguity: the ambiguity arises because a constant
shift in the action can be offset by the multiplicative factor in the partition function.11

The action is a very convenient way to approximate certain types of statistical
processes, particularly those with nearly-Gaussian statistics. To demonstrate this, we’ll
first start with the simplest action, which describes the Gaussian distribution, and then
we’ll show how to systematically perturb it in order to include various non-Gaussianities.

Quadratic Action and the Gaussian Distribution

Since we already know the functional form of the Gaussian distribution, it’s simple to
identify the action by reading it off from the exponent in (1.34),

S(z) = 1
2

N∑
μ,ν=1

Kμνzμzν , (1.66)

where, as a reminder, the matrix Kμν is the inverse of the variance matrix Kμν . The
partition function is given by the normalization integral (1.30) that we computed in §1.1:

Z =
∫

dNz e−S(z) = IK =
√
|2πK|. (1.67)

This quadratic action is the simplest normalizable action and serves as a starting point
for defining other distributions.

As we will show next, integrals against the Gaussian distribution are a primitive
for evaluating expectations against nearly-Gaussian distributions. Therefore, in order
to differentiate between a general expectation and an integral against the Gaussian
distribution, let us introduce a special bra-ket, or 〈·〉 notation for computing Gaussian
expectation values. For an observable O(z), define a Gaussian expectation as

〈O(z)〉K ≡ 1√
|2πK|

∫ ⎡⎣ N∏
μ=1

dzμ

⎤⎦ exp

⎛⎝−1
2

N∑
μ,ν=1

Kμνzμzν

⎞⎠O(z). (1.68)

11One convention is to pick the constant such that the action vanishes when evaluated at its global
minimum.

https://doi.org/10.1017/9781009023405.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009023405.003


28 1 Pretraining

In particular, with this notation we can write Wick’s theorem as

〈zμ1zμ2 · · · zμ2m〉K =
∑

all pairing
Kμk1μk2

· · ·Kμk2m−1μk2m
. (1.69)

If we’re talking about a Gaussian distribution with variance Kμν , then we can use the
notations E [ · ] and 〈·〉K interchangeably. If instead we’re talking about a nearly-Gaussian
distribution p(z), then E [ · ] indicates expectation with respect to p(z), (1.46). However,
in the evaluation of such an expectation, we’ll often encounter Gaussian integrals, for
which we’ll use this bra-ket notation 〈·〉K to simplify expressions.

Quartic Action and Perturbation Theory

Now, let’s find an action that represents a nearly-Gaussian distribution with a connected
four-point correlator that is small but nonvanishing,

E [zμ1zμ2zμ3zμ4 ]
∣∣
connected = O(ε) . (1.70)

Here we have introduced a small parameter ε � 1 and indicated that the correlator
should be of order ε. For neural networks, we will later find that the role of the small
parameter ε is played by 1/width.

We should be able to generate a small connected four-point correlator by deforming
the Gaussian distribution through the addition of a small quartic term to the quadratic
action (1.66), giving us a quartic action

S(z) = 1
2

N∑
μ,ν=1

Kμνzμzν + ε

4!

N∑
μ,ν,ρ,λ=1

V μνρλzμzνzρzλ, (1.71)

where the quartic coupling εV μνρλ is an (N ×N ×N ×N)-dimensional tensor that is
completely symmetric in all of its four indices. The factor of 1/4! is conventional in order
to compensate for the overcounting in the sum due to the symmetry of the indices. While
it’s not a proof of the connection, note that the coupling εV μνρλ has the right number of
components to faithfully reproduce the four-point connected correlator (1.70), which is
also an (N ×N ×N ×N)-dimensional symmetric tensor. At least from this perspective
we’re off to a good start.

Let us now establish this correspondence between the quartic coupling and connected
four-point correlator. Note that in general it is impossible to compute any expectation
value in closed form with a non-Gaussian action – this includes even the partition
function. Instead, in order to compute the connected four-point correlator, we’ll need to
employ perturbation theory to expand everything to first order in the small parameter
ε, each term of which can then be evaluated in a closed form. As this is easier done than
said, let’s get to the computations.
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To start, let’s evaluate the partition function:

Z =
∫ [∏

μ

dzμ

]
e−S(z) (1.72)

=
∫ [∏

μ

dzμ

]
exp
(
−1

2
∑
μ,ν

Kμνzμzν −
ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4zρ1zρ2zρ3zρ4

)

=
√
|2πK|

〈
exp
(
− ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4zρ1zρ2zρ3zρ4

)〉
K

.

In the second line we inserted our expression for the quartic action (1.71), and in the last
line we used our bra-ket notation (1.68) for a Gaussian expectation with variance Kμν .
As advertised, the Gaussian expectation in the final line cannot be evaluated in closed
form. However, since our parameter ε is small, we can Taylor-expand the exponential
to express the partition function as a sum of simple Gaussian expectations that can be
evaluated using Wick’s theorem (1.69):

Z =
√
|2πK|

〈
1 − ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4zρ1zρ2zρ3zρ4 + O
(
ε2
)〉

K

(1.73)

=
√
|2πK|

[
1 − ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 〈zρ1zρ2zρ3zρ4〉K + O
(
ε2
)]

=
√
|2πK|

[
1 − ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 (Kρ1ρ2Kρ3ρ4 +Kρ1ρ3Kρ2ρ4 +Kρ1ρ4Kρ2ρ3)+O
(
ε2
)]

=
√
|2πK|

[
1 − 1

8ε
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kρ1ρ2Kρ3ρ4 + O
(
ε2
)]

.

In the final line, we were able to combine the three K2 terms together by using the total
symmetry of the quartic coupling and then relabeling some of the summed-over dummy
indices.

Similarly, let’s evaluate the two-point correlator:

E [zμ1zμ2 ] = 1
Z

∫ [∏
μ

dzμ

]
e−S(z) zμ1zμ2 (1.74)

=
√
|2πK|
Z

〈
zμ1zμ2 exp

(
− ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4zρ1zρ2zρ3zρ4

)〉
K

=
√
|2πK|
Z

[
〈zμ1zμ2〉K − ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 〈zμ1zμ2zρ1zρ2zρ3zρ4〉K + O
(
ε2
)]
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=
[
1 + 1

8ε
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kρ1ρ2Kρ3ρ4

]
Kμ1μ2

− ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 (3Kμ1μ2Kρ1ρ2Kρ3ρ4 + 12Kμ1ρ1Kμ2ρ2Kρ3ρ4) + O
(
ε2
)

= Kμ1μ2 −
ε

2
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kμ1ρ1Kμ2ρ2Kρ3ρ4 + O
(
ε2
)
.

Here, to go from the first line to the second line we inserted our expression for the quartic
action (1.71) and rewrote the integral as a Gaussian expectation. Then, after expanding
in ε to first order, in the next step we substituted (1.73) for the partition function
Z in the denominator and expanded 1/Z to the first order in ε using the expansion
1/(1 − x) = 1 + x + O

(
x2). In that same step, we also noted that, of the fifteen terms

coming from the Gaussian expectation 〈zμ1zμ2zρ1zρ2zρ3zρ4〉K , there are three ways in
which zμ1 and zμ2 contract with each other but twelve ways in which they don’t. Given
again the symmetry of V ρ1ρ2ρ3ρ4 , this is the only distinction that matters.

Finally, let’s compute the full four-point correlator:

E [zμ1zμ2zμ3zμ4 ] = 1
Z

∫ [∏
μ

dzμ

]
e−S(z) zμ1zμ2zμ3zμ4 (1.75)

=
√
|2πK|
Z

[
〈zμ1zμ2zμ3zμ4〉K− ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 〈zμ1zμ2zμ3zμ4zρ1zρ2zρ3zρ4〉K+O
(
ε2
)]

=
[
1 + 1

8ε
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kρ1ρ2Kρ3ρ4

]
[Kμ1μ2Kμ3μ4 + Kμ1μ3Kμ2μ4 + Kμ1μ4Kμ2μ3 ]

− ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4

×
(
3Kμ1μ2Kμ3μ4Kρ1ρ2Kρ3ρ4 + 12Kμ1ρ1Kμ2ρ2Kμ3μ4Kρ3ρ4 + 12Kμ3ρ1Kμ4ρ2Kμ1μ2Kρ3ρ4

+ 3Kμ1μ3Kμ2μ4Kρ1ρ2Kρ3ρ4 + 12Kμ1ρ1Kμ3ρ2Kμ2μ4Kρ3ρ4 + 12Kμ2ρ1Kμ4ρ2Kμ1μ3Kρ3ρ4

+ 3Kμ1μ4Kμ2μ3Kρ1ρ2Kρ3ρ4 + 12Kμ1ρ1Kμ4ρ2Kμ2μ3Kρ3ρ4 + 12Kμ2ρ1Kμ3ρ2Kμ1μ4Kρ3ρ4

+ 24Kμ1ρ1Kμ2ρ2Kμ3ρ3Kμ4ρ4

)
+ O
(
ε2
)
.

To go from the first line to the second line, we inserted our expression for the quartic
action (1.71), expanded to first order in ε, and rewrote in the bra-ket notation (1.68). On
the third line, we again substituted in the expression (1.73) for the partition function
Z, expanded 1/Z to first order in ε, and then used Wick’s theorem (1.69) to evalu-
ate the fourth and eighth Gaussian moments. (Yes, we know that the evaluation of
〈zμ1zμ2zμ3zμ4zρ1zρ2zρ3zρ4〉K is not fun. The breakdown of the terms depends again on
whether or not the μ-type indices are contracted with the ρ-type indices or not.) We
can simplify this expression by noticing that some terms cancel due to 1

8 − 3
24 = 0, and

some other terms can be nicely regrouped once we notice through the expression for the
two-point correlator (1.74) that
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Kμ1μ2Kμ3μ4−
ε

24
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4 (12Kμ1ρ1Kμ2ρ2Kμ3μ4Kρ3ρ4 +12Kμ3ρ1Kμ4ρ2Kμ1μ2Kρ3ρ4)

= E [zμ1zμ2 ]E [zμ3zμ4 ] + O
(
ε2
)
, (1.76)

yielding in the end

E [zμ1zμ2zμ3zμ4 ] (1.77)
= E [zμ1zμ2 ]E [zμ3zμ4 ] + E [zμ1zμ3 ]E [zμ2zμ4 ] + E [zμ1zμ4 ]E [zμ2zμ3 ]

− ε
∑

ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kμ1ρ1Kμ2ρ2Kμ3ρ3Kμ4ρ4 + O
(
ε2
)
.

Given the full four-point correlator (1.75) and the two-point correlator (1.74), we can
finally evaluate the connected four-point correlator (1.54) as

E [zμ1zμ2zμ3zμ4 ]
∣∣
connected = −ε

∑
ρ1,...,ρ4

V ρ1ρ2ρ3ρ4Kμ1ρ1Kμ2ρ2Kμ3ρ3Kμ4ρ4 + O
(
ε2
)
. (1.78)

This makes explicit the relationship between the connected four-point correlator and
the quartic coupling in the action, when both are small. We see that for the nearly-
Gaussian distribution realized by the quartic action (1.71), the distribution is – as
promised – nearly Gaussian: the strength of the coupling εV ρ1ρ2ρ3ρ4 directly controls the
distribution’s deviation from Gaussian statistics, as measured by the connected four-
point correlator. This also shows that the four-index tensor V ρ1ρ2ρ3ρ4 creates nontrivial
correlations between the components zρ1zρ2zρ3zρ4 that cannot otherwise be built up by
the correlation Kμν in any pair of random variables zμzν .

Finally, note that the connected two-point correlator (1.74) – i.e., the covariance of
this nearly-Gaussian distribution – is also shifted from its Gaussian value of Kμ1μ2 by
the quartic coupling εV ρ1ρ2ρ3ρ4 . Thus, the nearly-Gaussian deformation not only creates
complicated patterns of four-point correlation as measured by the connected four-point
correlator (1.78), but it also can modify the details of the Gaussian two-point correlation.

Now that we see how to compute the statistics of a nearly-Gaussian distribution, let’s
take a step back and think about what made this possible. We can perform these per-
turbative calculations any time there exists in the problem a dimensionless parameter ε
that is small ε � 1, but nonzero ε > 0. This makes perturbation theory an extremely
powerful tool for theoretical analysis any time a problem has any extreme scales, small
or large.

Importantly, this is directly relevant to theoretically understanding neural networks
in practice. As we will explain in the following chapters, real networks have a parameter
n – the number of neurons in a layer – that is typically large n � 1, but certainly
not infinite n<∞. This means that we can expand the distributions that describe such
networks in the inverse of the large parameter as ε = 1/n. Indeed, when the parameter n
is large – as is typical in practice – the distributions that describe neural networks become
nearly-Gaussian and thus theoretically tractable. This type of expansion is known as the
1/n expansion or large-n expansion and will be one of our main tools for learning
the principles of deep learning theory.
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Aside: Statistical Independence and Interactions

The quartic action (1.71) is one of the simplest models of an interacting theory. We
showed this explicitly by connecting the quartic coupling to the non-Gaussian statistics
of the nonvanishing connected four-point correlator. Here, let us try to offer an intuitive
meaning of interaction by appealing to the notion of statistical independence.

Recall from probability theory that two random variables x and y are statistically
independent if their joint distribution factorizes as

p(x, y) = p(x)p(y). (1.79)

For the Gaussian distribution, if the variance matrix Kμν is diagonal, there is no cor-
relation at all between different components of zμ; they are manifestly statistically
independent from each other.

Even if Kμν is not diagonal, we can still unwind the correlation of a Gaussian
distribution by rotating to the right basis. As discussed in §1.1, there always exists
an orthogonal matrix O that diagonalizes the covariance as (OKOT )μν = λμδμν . In
terms of the variables uμ ≡ (Oz)μ, the distribution looks like

p(z) = 1√
|2πK|

exp

⎛⎝− N∑
μ=1

u2
μ

2λμ

⎞⎠ =
N∏

μ=1

⎛⎜⎝ e
− u2

μ
2λμ√

2πλμ

⎞⎟⎠ = p(u1) · · · p(uN ). (1.80)

Thus, we see that in the u-coordinate basis, the original multivariable Gaussian distri-
bution factorizes into N single-variable Gaussians that are statistically independent.

We also see that in terms of the action, statistical independence is characterized
by the action breaking into a sum over separate terms. This unwinding of interaction
between variables is generically impossible when there are nonzero non-Gaussian cou-
plings. For instance, there are ∼ N2 components of an orthogonal matrix Oμν to change
basis, while there are ∼ N4 components of the quartic coupling εV μνρλ that correlate
random variables, so it is generically impossible to re-express the quartic action as a
sum of functions of N different variables. Since the action cannot be put into a sum
over N separate terms, the joint distribution cannot factorize, and the components will
not be independent from each other. Thus, it is impossible to factor the nearly-Gaussian
distribution into the product of N statistically independent distributions. In this sense,
what is meant by interaction is the breakdown of statistical independence.12

12An astute reader might wonder if there is any interaction when we consider a single-variable
distribution with N = 1, since there are no other variables to interact with. For nearly-Gaussian
distributions, even if N = 1, we saw in (1.74) that the variance of the distribution is shifted from
its Gaussian value, K, and depends on the quartic coupling εV . In physics, we say that this shift is
due to the self-interaction induced by the quartic coupling εV , since it modifies the value of observables
from the free Gaussian theory that we are comparing to, even though there’s no notion of statistical
independence to appeal to here.

Said another way, even though the action just involves one term, such a non-Gaussian distribution
does not have a closed-form solution for its partition function or correlators; i.e., there’s no trick that
lets us compute integrals of the form e−S(z) exactly, when S(z) = z2

2K + 1
4! εV z4. This means that we still

have to make use of perturbation theory to analyze the self-interaction in such distributions.
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Nearly-Gaussian Actions

Having given a concrete example in which we illustrated how to deform the quadratic
action to realize the simplest nearly-Gaussian distribution, we now give a more general
perspective on nearly-Gaussian distributions. In what follows, we will continue to require
that our distributions are invariant under the parity symmetry that takes zμ → −zμ. In
the action representation, this corresponds to including only terms of even degree.13

With that caveat in mind, though otherwise very generally, we can express a non-
Gaussian distribution by deforming the Gaussian action as

S(z) = 1
2

N∑
μ,ν=1

Kμνzμzν +
k∑

m=2

1
(2m)!

N∑
μ1,...,μ2m=1

sμ1···μ2mzμ1 · · · zμ2m , (1.81)

where the factor of 1/(2m)! is conventional in order to compensate for the overcounting
in the sum due to the implied symmetry of the indices μ1, . . . , μ2m in the coefficients
sμ1···μ2m , given the permutation symmetry of the product of variables zμ1 · · · zμ2m . The
number of terms in the non-Gaussian part of the action is controlled by the integer k. If
k were unbounded, then S(z) would be an arbitrary even function, and p(z) could be any
parity-symmetric distribution. The action is most useful when the expanded polynomial
S(z) truncated to reasonably small degree k – like k = 2 for the quartic action – yields
a good representation for the statistical process of interest.

The coefficients sμ1···μ2m are generally known as non-Gaussian couplings, and
they control the interactions of the zμ.14 In particular, there is a direct correspondence
between the product of the specific components zμ that appear together in the action
and the presence of connected correlation between those variables, with the degree of
the term in (1.81) directly contributing to connected correlators of that degree. We saw
an example of this in (1.78), which connected the quartic term to the connected four-
point correlator. In this way, the couplings give a very direct way of controlling the
degree and pattern of non-Gaussian correlation, and the overall degree of the action
offers a way of systematically including more and more complicated patterns of such
correlations.

If you recall from §1.2, we defined nearly-Gaussian distributions as ones for which
all these connected correlators are small. Equivalently, from the action perspective, a
nearly-Gaussian distribution is a non-Gaussian distribution with an action of the form
(1.81) for which all the couplings sμ1···μ2m are parametrically small for all 1 ≤ m ≤ k:

|sμ1···μ2m | � |Kμν |m, (1.82)

13The imposition of such a parity symmetry, and thus the absence of odd-degree terms in the action,
means that all of the odd moments and hence all of the odd-point connected correlators will vanish.

14In a similar vein, the coefficient Kμν in the action is sometimes called a quadratic coupling since
the coupling of the component zμ with the component zν in the quadratic action leads to a nontrivial
correlation, i.e., Cov[zμ, zν ] = Kμν .
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where this equation is somewhat schematic given the mismatch of the indices.15 Impor-
tantly, the comparison is with an appropriate power of the inverse variance or quadratic
coupling Kμν since, as we already explained, the variance sets the scale of the Gaussian
distribution to which we are comparing these nearly-Gaussian distributions.

As we will see in §4, wide neural networks are described by nearly-Gaussian distri-
butions. In particular, we will find that such networks are described by a special type
of nearly-Gaussian distribution where the connected correlators are hierarchically small,
scaling as

E [zμ1 · · · zμ2m ]
∣∣
connected = O(εm−1), (1.83)

with the same parameter ε controlling the different scalings for each of the 2m-point
connected correlators. Importantly, the non-Gaussianities coming from higher-point con-
nected correlators become parametrically less important as ε becomes smaller.

This means that for a nearly-Gaussian distribution with hierarchical scalings (1.83),
we can consistently approximate the distribution by truncating the action at some fixed
order in ε. To be concrete, we can use an action of the form (1.81) to faithfully represent
all the correlations up to order O(εk−1), neglecting connected correlations of order O(εk)
and higher. The resulting action offers a useful and effective description for the statistical
process of interest, as long as ε is small enough and k is high enough that O(εk) is
negligible.

In practice, a quartic action (1.71) truncated to k = 2 will let us model realistic finite-
width neural networks. This quartic action captures the important qualitative difference
between nearly-Gaussian distributions and the Gaussian distribution, incorporating non-
trivial interactions between the different components of the random variable. In addition,

15This schematic equation is, nonetheless, dimensionally consistent. To support that remark, let us
give a brief introduction to dimensional analysis: let the random variable zμ have dimension ζ, which we
denote as [zμ] = ζ1. By dimension, you should have in mind something like a unit of length, so, e.g., we
read the expression [zμ] = ζ1 as “a component of z is measured in units of ζ.” The particular units are
arbitrary: e.g., for length, we can choose between meters or inches or parsecs as long as we use a unit
of length but not, say, meters2, which instead would be a unit of area. Importantly, we cannot add or
equate quantities that have different units: it doesn’t make any logical sense to add a length to an area.
This is similar to the concept of type safety in computer science: e.g., we should not add a type str
variable to a type int variable.

Now, since the action S(z) is the argument of an exponential p(z) ∝ e−S(z), it must be dimensionless;
otherwise, the exponential e−S = 1−S+ S2

2 + · · · would violate the addition rule that we just described.
From this dimensionless requirement for the action, we surmise that the inverse of the covariance matrix
has dimension [Kμν ] = ζ−2 and that the covariance itself has dimension [Kμν ] = ζ2. Similarly, all the
non-Gaussian couplings in (1.81) have dimensions [sμ1···μ2m ] = ζ−2m. Thus, both sides of (1.82) have
the same dimension, making this equation dimensionally consistent.

Even more concretely, consider the quartic action (1.71). If we let the tensorial part of the quartic
coupling have dimensions [V μνρλ] = ζ−4, then the parameter ε is dimensionless, as claimed. This means
that we can consistently compare ε to unity, and its parametric smallness ε � 1 means that the full
quartic coupling εV μνρλ is much smaller than the square of the quadratic coupling and that the connected
four-point correlator (1.78) is much smaller than the square of the connected two-point correlator (1.74).
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the difference between the statistics (1.83) of a nearly-Gaussian distribution truncated
to O(ε) versus one truncated to O

(
ε2
)

is mostly quantitative: in both cases there are
nontrivial non-Gaussian correlations, but the pattern of higher-order correlation differs
only in a small way, with the difference suppressed as O

(
ε2
)
. In this way, the distri-

bution represented by the quartic action is complex enough to capture the most salient
non-Gaussian effects in neural networks while still being simple enough to be analytically
tractable.
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