A THEOREM ON k-SATURATED GRAPHS

A. HAJNAL

1. Introduction. In this paper we consider finite graphs without loops and multiple edges. A graph \mathfrak{G} is considered to be an ordered pair $\langle G, \mathfrak{G}^* \rangle$ where G is a finite set the elements of which are called the *vertices* of \mathfrak{G} while \mathfrak{G}^* is a subset of $[G]^2$ (where $[G]^2$ is the set of all subsets of two elements of G). The elements of \mathfrak{G}^* are called the *edges* of \mathfrak{G} . If $\{P, Q\} \in \mathfrak{G}^*$, we say that Q is *adjacent* to P. The *degree* of a vertex is the number of vertices adjacent to it. Let k be an integer. We say that \mathfrak{G} is the complete k-graph if G has k elements and $\mathfrak{G}^* = [G]^2$. If $G \subseteq H$ and $\mathfrak{G}^* \subseteq \mathfrak{H}^*$ we say that \mathfrak{H} of a set H will be denoted by |H|.

Let k be an integer. The graph \mathfrak{G} is said to be k-saturated if it does not contain a complete (k + 1)-graph, but every graph \mathfrak{G}' obtained from it with the addition of a new edge contains a complete (k + 1)-graph. (This concept was first defined by Zykov (5).) The vertex P is said to be a *conical vertex* of \mathfrak{G} if it is adjacent to all vertices of \mathfrak{G} different from P.

The aim of this paper is to prove the following conjecture of T. Gallai.

THEOREM 1. Assume \mathfrak{G} is k-saturated. Then either \mathfrak{G} has a conical vertex or the degree of every vertex of \mathfrak{G} is at least 2(k-1).

Let *n* denote the number of vertices of \mathfrak{G} and assume that 2k - n > 0, $k \ge 2$. Theorem 1 implies immediately that \mathfrak{G} has a conical vertex provided \mathfrak{G} is *k*-saturated. Instead of this we can give a short proof of the following slightly stronger result.

THEOREM 2. Assume \mathfrak{G} is k-saturated, |G| = n. Then \mathfrak{G} contains at least 2k - n conical vertices.

Theorem 2 is equivalent to a theorem of P. Erdös and T. Gallai (1). To state this theorem we need some definitions. A set of vertices is said to *represent* the edges of a graph if each edge contains at least one of these vertices. A graph is said to be *edge p-critical* if the minimal number of vertices necessary to represent the edges of the graph is p, but if any edge is omitted, the remaining edges can be represented by p - 1 vertices. The following theorem is essentially the same as Theorem 3.10 of (1):

Received May 8, 1964. This paper was prepared in part during the period when the author was at the University of California, Berkeley, working on a research project in the foundations co-directed by Alfred Tarski and Leon Henkin and supported by the U.S. National Science Foundation (Grant GP-1395).

THEOREM 3. Assume \mathfrak{G} is edge p-critical, |G| = n. Then \mathfrak{G} has at least n - 2p isolated vertices.

Theorem 3 follows trivially from Theorem 2 when one considers that the complementary graph of an edge *p*-critical graph is (n - p)-saturated and that the isolated vertices of a graph \mathfrak{G} are just the conical vertices of the complementary graph of \mathfrak{G} .

In a joint paper with P. Erdös and J. W. Moon (2), we recently proved that the minimal number of edges of a k-saturated graph \mathfrak{G} of n vertices is $n(k-1) - \binom{k}{2}$. This result also follows immediately from Theorem 1 by induction on k. (Our result remains valid if we replace the assumption that \mathfrak{G} is k-saturated by the weaker assumption that the addition of a new edge increases the number of (k + 1)-graphs contained in the graph. It is to be remarked that Theorems 1 and 2 are no longer true under this weaker assumption.) Considering that our extreme graphs contain conical vertices, the following problem remains open.

Problem. Let $2 \le k \le n$ be integers. What is the minimal number of edges of the k-saturated graphs \emptyset of n vertices which do not contain conical vertices?

A conical vertex has degree n - 1. More generally, we can ask: What is the minimal number of edges of k-saturated graphs 0 of n vertices which do not contain vertices of degree $\ge n - t$ for $t = 1, 2, \ldots$? The special case k = 2 of this problem is treated in a paper of P. Erdös and A. Rényi (3), but the answer in the general case seems to be very complicated.

2. Proof of the theorems. We need the following lemma.

LEMMA. Let \mathfrak{G} be a graph, k an integer. Assume \mathfrak{G} does not contain a complete (k + 1)-graph. Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_v$ be a system of complete k-graphs contained in \mathfrak{G} . Let n_v denote the number of elements of the set $\bigcup_{m=1}^{v} A_m$. Then this set has at least $2k - n_v$ elements.

Proof (by induction on v): We can assume that $k \ge 2$, $n_v < 2k$. For v = 1 the statement is trivial. Assume that it is true for v - 1 (v > 1). Put

$$A = \bigcup_{m=1}^{v-1} A_m, \quad B = \bigcup_{m=1}^{v} A_m, \quad C = \bigcap_{m=1}^{v-1} A_m, \quad D = \bigcap_{m=1}^{v} A_m,$$
$$|A| = n_{v-1}, \quad |B| = n_v.$$

By the induction hypothesis we have

(1)
$$|C| \ge 2k - n_{v-1} > 0.$$

Each vertex of *C* is adjacent to each vertex of *A*. Hence the vertices of the set $(A \cap A_n) \cup C$ are all adjacent to each other. Since \emptyset does not contain a complete (k + 1)-graph, we therefore have

(2)
$$|(A \cap A_v) \cup C| \leq k.$$

A. HAJNAL

Considering that $|A \cap A_v| = k - |B - A| = k - (n_v - n_{v-1})$, it follows from (2) that

$$|C - A_v| \leq n_v - n_{v-1}$$

Comparing (1) and (3), we obtain the desired result

$$|D| = |A_v \cap C| \ge 2k - n_{v-1} - (n_v - n_{v-1}) = 2k - n_v.$$

Proof of Theorem 2. We may assume that $n < 2k, k \ge 2$. Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_v$ be the system of all complete k-graphs contained in (9). Put

$$A = \bigcap_{m=1}^{\circ} A_m.$$

Since the union of the sets A_m has at most n elements, it follows from the lemma that $|A| \ge 2k - n$.

We prove that all the vertices in A are conical vertices of the graph \mathfrak{G} . Let $P \in A$ and $Q \in G$, $P \neq Q$. Suppose P is not adjacent to Q. Then, by the assumption that \mathfrak{G} is k-saturated, if we join the edge $\{P, Q\}$ to \mathfrak{G} , the new graph thus obtained contains a complete (k + 1)-graph. This means that there exists a complete (k - 1)-graph \mathfrak{B} contained in \mathfrak{G} all the vertices of which are adjacent to both P and Q. But then adding Q to \mathfrak{B} we obtain a complete k-graph contained in \mathfrak{G} which does not contain P. This contradicts the definition of A. Hence P must be adjacent to Q. This proves Theorem 2.

Proof of Theorem 1. Let 0 be a k-saturated graph which has no conical vertices. We assume that there exists a vertex P_0 of degree $\leqslant 2k - 3$. This will yield a contradiction.

Let H denote the set of vertices of \mathfrak{G} adjacent to P_0 and let K denote the set of the remaining vertices different from P_0 . Thus

$$(4) G = \{P_0\} \cup H \cup K.$$

We can assume that n > 1. Then H and K are non-empty and, by our assumption,

$$|H| \leqslant 2k - 3.$$

Let $\mathfrak{A}_1, \ldots, \mathfrak{A}_v$ be the system of all those complete *k*-graphs contained in \mathfrak{G} which contain P_0 . Put

$$A = \bigcup_{m=1}^{v} A_{m}.$$
Obviously
(6)
$$A \subseteq H \cup \{P_{0}\}$$

Put u = |H - A|. Then by (5) and (6), $|A| \leq 2k - 2 - u$. It follows from the lemma that the set $\bigcap_{m=1}^{v} A_m$ has at least u + 2 elements. Since P_0 belongs to it, we can write it in the form

(7)
$$\bigcap_{m=1}^{v} A_m = \{P_0\} \cup B,$$

https://doi.org/10.4153/CJM-1965-072-1 Published online by Cambridge University Press

722

where $B \subseteq H$ and $|B| \ge u + 1$. For an arbitrary $X \subseteq G$ we denote by $\phi(X)$ the set of those $P \in G$ for which there exists a $Q \in X$ not adjacent to P. Now we prove that

(8)
$$\phi(B) \subseteq H - A$$

We have to prove that if $P \notin H - A$, then P is adjacent to all vertices of B. If $P \notin K$, this is trivial by the definition of A and B. If $P \in K$, then by the definition of K, P_0 is not adjacent to P. Since \mathfrak{G} is k-saturated, there exists a complete (k - 1)-graph \mathfrak{G} contained in \mathfrak{G} and such that all the vertices of \mathfrak{G} are adjacent to both P_0 and P. Now if we add P_0 to \mathfrak{G} , we obtain a complete k-graph contained in \mathfrak{G} which contains P_0 . Thus, by (7), C contains B and P is adjacent to all the vertices in B in this case too.

Comparing (6), (7), and (8), we obtain

(9)
$$\phi(B) \cap B = \emptyset, \quad |\phi(B)| < |B|.$$

On the other hand we prove that whenever $X \subseteq G$, $\phi(X) \cap X = \emptyset$, then

$$(10) |\phi(X)| \ge |X|.$$

This obviously contradicts (9) and proves our theorem.

To prove (10) we put |X| = v and proceed by induction on v. If v = 1, (10) follows directly from the assumption that \mathfrak{G} has no conical vertices. Assume that (10) is true for all sets Y with |Y| < v + 1. Let X be a set of v + 1 elements such that $X \cap \phi(X) = \emptyset$. Put

$$X = \{P_1, \ldots, P_v, P_{v+1}\}, \qquad X_0 = \{P_1, \ldots, P_v\}.$$

We are going to prove that the assumption $|\phi(X)| < v + 1$ leads to a contradiction. By our induction hypothesis $|\phi(X_0)| \ge v$. Hence

(11)
$$|\phi(X_0)| = |\phi(X)| = v$$
 and $|\phi(Y)| \ge |Y|, \phi(Y) \subseteq \phi(X_0)$

for an arbitrary subset Y of X_0 .

Using a well-known theorem of König, or more precisely a formulation of it given by Ore (4), (11) implies that there exists an ordering

$$\boldsymbol{\phi}(\boldsymbol{X}_0) = \{\boldsymbol{Q}_1, \ldots, \boldsymbol{Q}_v\}$$

of $\phi(X_0)$ such that

(12) P_i is not adjacent to Q_i for i = 1, ..., v.

Since P_{v+1} is not a conical vertex, there is a vertex Q not adjacent to it. Q must be one of the vertices Q_i , since $\phi(X) = \phi(X_0)$ by (11). We may assume that P_{v+1} is not adjacent to Q_1 .

Because \mathfrak{G} is k-saturated, there exists a complete (k-1)-graph $\mathfrak{D} \subseteq \mathfrak{G}$ all of whose vertices are adjacent to both P_{v+1} and Q_1 . By (12), D does not

A. HAJNAL

contain P_1 and Q_1 and for each *i*, *D* contains at most one of the vertices P_i , Q_i ; $i = 2, \ldots, v$. Hence

$$|D \cap (X \cup \phi(X))| \le v - 1.$$

Put $E = D - (X \cup \phi(X))$. Then

$$|E| \ge (k-1) - (v-1) = k - v$$
 and $|E \cup X| \ge k + 1$.

Any two distinct vertices of $E \cup X$ are adjacent. If both belong to E, this follows from $E \subseteq D$; if both belong to X, it is a consequence of $X \cap \phi(X) = \emptyset$; finally if one belongs to E and the other to X, it follows from $E \cap \phi(X) = \emptyset$. This contradicts the assumption that \mathfrak{G} is *k*-saturated and thus does not contain a complete (k + 1)-graph.

References

- P. Erdös and T. Gallai, On the minimal number of vertices representing the edges of a graph, Publ. Math. Inst. Hung. Acad. Sci., 6 (1961), 181-203.
- 2. P. Erdös, A. Hajnal, and J. W. Moon, *A problem in graph theory*, Amer. Math. Monthly, to appear.
- P. Erdös and A. Rényi, Egy gráfelméleti problémáról, Publ. Math. Inst. Hung. Acad. Sci., 7B (1962), 623–641.
- 4. O. Ore, Graphs and matching theorems, Duke Math. J., 22 (1955), 615-639.
- 5. A. A. Zykov, On some properties of linear complexes (Mat. Sb., N.S., 24 (66) (1949), 163–188 (in Russian).

University of California, Berkeley