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INTRODUCTION

The use of regression and variance analysis in population genetics is generally
accepted as a means of predicting genetic gains from selection. When only one
trait is considered these predictions are usually formulated in terms of heritability,
h2, the linear regression of genotype on measured phenotype, in closed populations,
and the selection differential, AP. Thus in the simplest case of mass selection in
large randomly reproducing populations the anticipated response to selection is

AO = AP.h2

Selection usually is by truncation, that is the best of a given generation are retained
as parents.

The use of linear regression of genotype on phenotype for prediction of change
from selection is only justified when such a linear relationship can reasonably be
expected on genetic grounds. This implies, in most instances, the assumption that
genes act additively, that gene effects are small, that parental effects on offspring
are due to such genes only, and that environmental effects are random for individual
offspring. These assumptions will apply throughout this paper.

Heritability estimates based on intraclass correlations have by and large proved
useful for predicting gains from selection (Clayton et al., 1957). In some respects,
however, the conventional concept of heritability has been found wanting.

In actual selection experiments it is often found that response for a given absolute
selection differential is greater in one direction than in the other. Thus for growth
rate in mice it has been found that selection response in the direction of small body
size is greater than in the direction of large size (Falconer, 1960a). Clearly a herit-
ability estimate based on the usual variance analysis is incapable of describing such
situations, while conventional selection experiments used under those circumstances
involve data from at least two generations.

In this paper a method of estimating heritability and genetic correlation is
presented which permits evaluation of genetic gains from selection™ either direction
on the basis of data from a single generation.

HERITABILITY ESTIMATES

Consider a breeding experiment typical for poultry in which sires (s) are each
mated to dams (d), each of which gives rise to offspring (g). The latter are grown
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together and measured for a given production trait, x. The mathematical model
appropriate for analysis of this experiment is:

where xiik is the measured performance of the &th offspring from ith sire and jth
dam mated to that sire;

m the overall mean common to all observations;
st the effect of the ith sire on its progeny, presumed to be mostly genetic;
dtj the effect of the jth. dam on its offspring, due primarily to genetic causes,

but also to non-genetic maternal effects;
fiik the effect of environment and unpredictable genetic factors affecting the

lcth. offspring from dam j and sire i.

On this model the least-squares estimates for sire, dam, and offspring effects
respectively are:

Si = Xi. -x... = estimated sire effect,
dtj = Xy.-Xi.. = estimate of dam effects,
fijh = %ijirxij. = estimate of individual offspring effects.

Small re's denote averages taken over all subscripts represented by a dot.
Assuming that all effects with the exception of m are random samples from given

distributions (Eisenhart Model 2), we have the following variances of these
estimates:

Var (s) = ofldn + ofyd + o*}
Var(d) = ^/n + o§ I (1)
Var(/) = of j

where o%, o% and of are variance components due to sire, dam and individual effects
respectively.

Using these relations and estimates of variance components the geneticist then
proceeds to predict genetic changes from selection in the following generation by
means of heritability estimates (in this case intraclass correlations) and known
selection differentials.

It should be noted that linear prediction equations of the type discussed do not
rely directly on estimates of variance components, but take the general form:

Regression of response
Expected displacement = f Selection 1

I differential J
criterion.

criterion on selection

In the context of the paper the term displacement is used to denote genetic or
phenotypic changes from selection by truncation in either direction.

While variance components are a convenient means of estimating the regressions
involved, it will be shown that they are not necessary for that purpose. Regressions
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can be estimated, in principle, from the expected displacements in component
parts of the selection criterion (a;) as caused by a constant selection differential
(AP) of the latter. To this end we define the following displacements and partial
regressions, within a generation of pedigreed offspring, and in terms of mass
selection on x with selection differential, AP:

AS = AP(o^/o|) = Displacement component due to sire effects,

AD = AP(o%lo%) = Displacement component due to dam effects, (2)

AF = AP(p)\a%) = Displacement component due to individual hen effects,

where CT| is the phenotypic variance of x.
It follows easily that

2(AS + AD) _ 2(o^ + gg) _

f 'AS+AD+AF

the usual heritability estimate based on sire and dam components of variance.
Unfortunately the expected displacements of sire, dam and hen effects are not

directly observable. They can be derived, however, from displacements in respective
least-squares estimates, sit a# and/#A. Thus we have:

CT^ + cft/d + of/nd Expected displacement in estimates of sire
Are = Ar 5 ~

Av(ad~*~crfln) Expected displacement in estimates of dam
= Air — *Air j\ = Air

and
effect (4);

AP(<jj) . _, Expected displacement component due to
F of individual hen effects (/i;fc).

(3)

The regressions in the above equations follow directly from the variances of the
estimates of sire, dam and hen effects respectively as shown in (1). Furthermore,
from (2) and (3) we obtain

AS = APs-APDJd and AD = APD-APF\n.

Heritability can thus be determined as a simple function of APS, APD and APF,
which can be obtained from the data as follows:

« . q

£ (smi-) 2 (smi.. ~ xm.. •) Average of estimates of sire
APS = ^ ^ = -2^ = effects for the q selected indi-

1 1 viduals.

£ (*ij) 2 {xmij. — xmi- •) Average of estimates of dam
APD = -2^ = -2=i = effects for the q selected indi-

viduals.

2 Umijk) 2 (xmVb-xmii.) Average of estimates of indi-
APF = S^ = ^ = vidual hen effects for the

selected individuals.

(4)
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Note the total selection differential from mass selection

AP = 2=1 = APS + APD+APF.
1

As a logical extension of the above development we can define

AG = 2(AD + AS), or AG = 4AS, or AG = 4AD, as the component of total
genetic displacement;

AM = AD — AS as the component of displacement from maternal effects
when the latter can reasonably be assumed; and

AE = AF — AS — AD as the component of displacement due to random
environmental effects acting on individuals.

This is in accordance with similar definitions based on variance components.
It should be noted that the above operations on displacement estimates APS,
APD and APF which lead to heritability and other regressions are identical with the
calculations applied to corresponding variances, in the usual estimation procedures
using variance components.

The present approach to estimation of heritability can easily be extended to
cases where selection is on family means or some other known functions of observed
performance data. Because the present estimates are simple linear functions of
observations it appears appropriate to call them linear heritability estimates. In
order for such a linear heritability estimate to be equivalent to one obtained by
variance component techniques it would be necessary that the regression of geno-
type on phenotype be linear. In practice this assumption may not be met. In that
case the estimates proposed here are likely to be more realistic than conventional
ones in the sense that they are defined directly on changes from selection. They may
be visualized as an attempt at fitting a straight line through the origin on one hand
and the expected genotype of selected parents on the other.

The present approach to the problem of selection response also has the advantage
of relatively few assumptions. Furthermore, we may use it to investigate the
symmetry of selection response with data from only one generation of pedigreed
individuals.

ESTIMATES OF GENETIC CORRELATION BETWEEN TRAITS

The same method, as applied to one characteristic, lends itself in principle to an
investigation of correlated responses in two or more traits. Suppose we are con-
cerned with selection on trait x and wish to predict the consequences of such action
for trait y. This can be done by applying mass selection, by truncation, to x at an
intensity and direction for which correlation estimates are of interest. For the
selected individuals one can then determine average displacement components of
y, the correlated trait.

Accordingly we denote the total phenotypic displacement in y due to selection
on a; as APV.X, and partition it into average displacements from sire effects (APSy.x),
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dam effects (APDyx) and individual effects (APFyx) respectively, based on least-
squares estimates of sire, dam and individual effects, in y, for the breeders selected.
As in the case of direct response for a single trait we have for the correlated dis-
placement :

APy.x = APSy.x + APDy.x+APFy.x,

and correlated displacement components derived by operations identical to those
used for direct response in x thus are:

AFV.X = APV.X = APFv.x,

ADV-x „„•- n

and ASy.x = APSy.x-^f^.

Also the total correlated displacement in the genotype of y may be denned as

AGy.x = 2(ASy.x + ADy.x)

and the correlated response due to non-genetic factors

AEy.x = AFv.x-ADy.x-ASy.x.

By this procedure we thus obtain directly the expected genetic change in y as
induced by selection on x or vice versa. These estimates may be all that is required
in actual experimentation. In order to compare results from different populations,
however, one may proceed to calculate genetic correlations. In case of response in
y due to selection on x we define the genetic correlation as

ra =

We now express genetic variances and covariances as functions of selection
differentials and genetic displacements. For normally distributed x we have for the
selection differential

APX = l.ax, (5)

where I is the selection differential for truncation in the standard normal distribution.
The genetic displacement in x due to selection on x,

AGX = ^APX,

where a^. is the genetic variance in x.
Substituting o^ in (5) we then have

, AGXAPT.

j • i i 2 AGUAP,,

and similarly a^y = — ^ —
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For the genetic displacement in y due to selection on x we have

hence cov £„..,. =

and r

Alternately we can define genetic correlation on the basis of genetic change in x
due to selection on y as

rGx.y =

From what has been said earlier it should be clear that this definition further depends
on the direction hi which the primary variable is selected.

The present method of estimating genetic correlations deals with a problem for
which adequate statistical tools have not been provided by genetic theory so far.
According to the conventional statistical formulation of correlated response the
genetic correlation between characters is symmetrical, that is, independent of the
fact which of the two traits is subjected to selection. With the present method we
may subject this assumption to an empirical test, by comparing a given correlation
estimate, when obtained from genetic changes in y as induced by selection on x,
with comparable changes hi x brought about by selection on y. Again limited
empirical information from selection experiments suggests that such alternate
correlations may be different from each other (Falconer, 1960).

The present method of estimating selection response with data from one genera-
tion can readily be extended to other experimental designs than the one considered
here, provided such selection has operational meaning. In general this would imply
the assumption of selection on unknown random effects for which the experiment is
capable of providing least-squares estimates. The present estimation technique
can also be adapted to situations where dominance is assumed, in a manner
analogous to corresponding analyses of variance.

It should be noted, however, that the present method of partitioning the selection
differential (dPx) according to assumed genetic effects breaks down, when the total
selection differential becomes small. Empirical results obtained so far suggest that
selection differentials of about one standard deviation (ax) are giving results com-
parable to those obtained from conventional variance components techniques.
Clearly the method of estimation proposed here is only of interest, when the assump-
tion of linear regression of genotype on phenotype is violated. Under such circum-
stances non-linearity of regressions would bias predictions, primarily with large
selection differentials. But, for relatively weak selection, the conventional intraclass
correlations and offspring parent regressions might be preferable to the ones proposed
here.*

* I t has been pointed out by a referee that the optimum selection intensity of estimating
linear heritability for a given set of data must be close to 0-27, the known optimum selection
intensity for an ordinary selection programme. (See Robertson, 1957.)
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Nothing has been said so far about the statistical properties of the proposed
estimates. A derivation of exact distribution functions for either heritability or
genetic correlation estimates has not been possible, so far. However, approximate
sampling distributions for population structures of particular interest might be
obtained on high-speed computers. So far, we have derived heritability estimates
from a number of small populations. The results indicate relatively good agreement
for heritability based on intraclass correlations and the present estimates, as
illustrated by the numerical example given below. Genetic correlations based on
populations of only few parents, however, have shown large sampling variance.
Thus, in case of relatively small populations there remains the question as to the
usefulness of the proposed estimation technique for correlation analysis. However,
in case of poultry populations where data are often available from many and large
populations it may be desirable to gain further insight into the genetic situation at
the expense of some precision of estimates. In such situations the present method of
estimation may be useful. Also it requires much less computational work than
comparable variance analyses and can thus serve for a quick appraisal of the
genetic situation.

A NUMERICAL EXAMPLE

From a large population of pedigreed SCWL hens a random sample of records
was drawn so that twenty mated dams were each represented by five offspring.
The dams themselves had been mated to individual sires in five groups of four,
respectively. We shall now consider part-time egg production records to 40 weeks
of age (x) and 40 week egg weight (y) for the 100 hens sampled.

Table 1 shows egg production and egg-weight records of the twenty hens with
highest egg number (x), ranked according to the latter. Also given are least-squares
estimates of sire effects (s), dam effects (d) and individual hen effects (/) for both
traits, based on the entire sample of 100 hens. Average phenotypic displacements
in sire effects, dam effects and individual effects are shown in the bottom row of the
table; thus, for example,

APSx = 2-13 eggs, etc.,

and correlated displacements in y due to selection on x are

APsy.x — —0*13 grams egg weight, etc.

Results comparable to those shown in Table 1 were also computed (but are not
shown here) for the twenty hens with highest egg weights from which average
phenotypic displacements for egg weight (y) and correlated phenotypic displace-
ments in egg number (x) were obtained.

We may now calculate displacement components due to sires, dams and indi-
viduals respectively for both direct response to selection and correlated responses.
For egg number we thus have the sire component

A8X = APSx-APDx\d = 2-13-4-91/4 = 0-90 = JG/4,
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the dam component

ADX = APDx-APFxjn = 4-91-15-60/5 = 1-79 = <d(?/4,

and the individual component

AFX = APFx = 15-60 = AG/2 + AE.

Finally we obtain the total genetic displacement AOX = 2(ASX+ADX) = 5-38; and
the displacement due to environmental effects AEX = 12-91; from which we can
calculate a heritability

_ 2(A8X+ADX) _ 5-38 _
* * " AGX+AEX - 1 8 ^ 2 9 - 0 2 9 '

A summary of results obtained for the present example is given in Table 2. Also
included in the summary are heritabilities and genetic correlations for selection of
either x or y in the downward direction at a selection intensity of one in five.

A comparison of the heritabilities and genetic correlation estimates in Table 2
with corresponding estimates derived from variances shows them in good agree-
ment, in the sense that the variance estimates he between the two displacement
estimates derived for up and down selections respectively. Thus heritability based
on variance components is 0-25 for egg number, and 0-31 for egg size, and the
genetic correlation is — 0-97.

SUMMARY

A method for obtaining linear estimates of heritability and genetic correlation is
given. I t is based, essentially, on selecting, from a pedigreed population, prospective
parents for which estimates of average genotype and phenotype values are obtained;
a regression of genotype on phenotype value is then determined from a straight line
fitted through points representing the population mean genotype and phenotype
on one hand and the mean genotype and phenotype of selected parents on the
other.

The method permits an evaluation of asymmetry in response for a trait selected
in both directions, as well as asymmetry in correlated response to selection of two
different traits, with data from a single pedigreed population.
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