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CHARACTERISATIONS OF QUASICONVEX FUNCTIONS

DINH THE LUC

In this paper we introduce the concept of quasimonotone maps and prove that a
lower semicontinuous function on an infinite dimensional space is quasiconvex if and
only if its generalised subdifferential or its directional derivative is quasimonotone.

1. INTRODUCTION

As far as we know quasiconvex functions were first mentioned by de Finetti in
his work "Sulle Straficazioni Convesse" in 1949, [6]. Since then much effort has been
focused on the study of this class of functions for they have much in common with convex
functions and they are used in several areas of science including mathematics, operations
research, economics et cetera (see [15]). One of the most important properties of
convex functions is that their level sets are convex. This property is also a fundamental
geometric characterisation of quasiconvex functions which sometimes is treated as their
definition. However, the most attractive characterisations of quasiconvex functions are
those which involve gradients (a detailed account of the current state of research on
the topic can be found in [l]). As to generalised derivatives of quasiconvex functions,
very few results exist (see [1,7]). In [7], a study of quasiconvex functions is presented
via Clarke's subdifferential, but the authors restrict themselves to the case of Lipschitz
functions on a finite dimensional space only.

The aim of our paper is to characterise lower semicontinuous quasiconvex functions
in terms of generalised (Clarke-Rockafellar) subdifferentials and directional derivatives
in infinite dimensional spaces. Namely, we shall first introduce a new concept of quasi-
monotone maps; and then we prove the equivalence between the quasiconvexity of a
function and the quasimonotonicity of its generalised subdifferential and its directional
derivative. A modified version of Zagrodny's approximate mean value theorem (Lemma
3.1) and another version of mean value theorem via directional derivatives (Lemma 5.1)
are the main tools we use in establishing the results, thus avoiding the conventional
condition on Lipschitz continuity or differentiability of the function considered.
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394 D.T. Luc [2]

The paper is structured as follows. In the next section we introduce the concept
of quasimonotonicity for set valued maps from a vector space to its dual. We show
that in the case of linear operators there is no difference between this concept and
the monotonicity known in convex analysis. In Section 3 we prove that a function
is quasiconvex if and only if its generalised subdifferential is quasimonotone. It is also
pointed out that quasimonotone subdifferentials are generally not maximal. Section 4 is
devoted to the monotonicity and quasimonotonicity of bifunctions and their relations to
the corresponding notions introduced in Section 2. In Section 5 another characterisation
of quasiconvex functions is given by means of directional derivatives. Here we also
illustrate by two corollaries how to apply our results to derive the characterisations
previously obtained by other authors.

2. QUASIMONOTONE M A P S

Let X be a real topological vector space and F a set valued map from X to its
topological dual X'. The pairing between X and X' is denoted by (.,.).

DEFINITION 2.1 : F is said to be quasimonotone if for every x,y 6 X and x* €
F(x), y* € F(y) one has

min{{x*,y-x),(y*,x - y)} ^ 0.

We recall that F is said to be monotone if for x,y,x* and y* as above,

(x*,y-x) + (y',z-y) < 0.

It is evident that any monotone map is quasimonotone, but the converse is not
true in general. For instance, take X = R and

f -x if x < 0

I 0 otherwise.

Of course, the map F is quasimonotone, but not monotone. The following case is a
useful exception.

PROPOSITION 2 . 2 . Let X be a real Hilbert space and A a linear operator on

X. Then the following conditions are equivalent:

(1) A is monotone;

(2) A is quasimonotone;

(3) t i e symmetric part of A is positive semide&nite.
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[3] Quasiconvex functions 395

PROOF: The implication (1)=^(2) is obvious. For the implication (2)=^(3) we
suppose to the contrary that the symmetric part A, = {A + AT} / 2 , where AT is the
transposition of A, is not positive semidefinite, that is, there exists a vector x £ X
such that (x,A,x) < 0. Taking y = — x and observing that (x,Ax) = (x,A,x), we
have

(Ax,y-x) = -2(x,Ax) > 0,

(Ay, x-y) = -2(x, Ax) > 0.

These inequalities show that A is not quasimonotone. We show finally the implication
(3)=> (1) (see [14] for the finite dimensional case). Suppose that A is not monotone,
that is, there exist two points x,y E X such that

{Ax,y-x) + (Ay,x-y) > 0.

Since A = A, + Aa, where Aa = {A — AT)/2 is the antisymmetric part of A, the above
inequality implies

{A.{x-y),y-x) + (Aa(x-y),x-y) > 0,

or equivalently
(A.(x-y),x-y) < 0.

This means that A, is not positive semidefinite. D

In [7] a definition of quasimonotone maps is also given. A discussion on the relation
between the definition of [7] and that of our paper will be addressed in Penot and
Quang's forthcoming paper [12].

3. SUBDIFFERENTIALS OF QUASICONVEX FUNCTIONS

Throughout this section X will denote a Banach space and / a lower semicontin-
uous function from X to R U {+00}. Assume that the value of the function is finite
at a point x £ X. The generalised (Clarke-Rockafellar) subderivative of / at x in
direction v is defined by

,t/ \ r • r f{y + <u) - a/ ' ( z ; v ) : = s u p km sup inf
e>0(y,a)lfx;tl0u£B(.v<e) *

where {y,a) J,/ x means that y —• x,a —» f(x),a ^ f(y), B(v,e) is the ball in X with
centre at v and radius e (see [3, 13]). The generalised subgradient of / at x is

df(x) := {** 6 X' : (x* ,v) ^ f\x;v) for all v 6 X}.
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We recall also that / is said to be quasiconvex if

/(Ax + (1 - A)y) ^ max{/(x) , / (y)}

for any x,y G X, A G [0,1]. Our aim is to show that / is quasiconvex if and only if df

is quasimonotone. We need the following lemma which was established in [8] by using
the method of [17]. For the convenience of the reader, a detailed proof is given below.

LEMMA 3 . 1 . Assume that f(b) > / ( a ) . Tien there exists a sequence {x*} C X
converging to some XQ € [a, b), xj£ G df(xk) such that for every c = a + t(b — a) with
t ^ 1 and for every k, one has (x£,c — x*) > 0.

PROOF: Assume that f(b) is finite. Following the method of [17], let us consider
the functions gk, k = 1,2, . . . defined by

where d^^x) denotes the distance from x to the interval [a,b]. Sometimes <£(,(x)
is also used to denote ||x — 6|| . Since / is lower semicontinuous, the functions gk are
lower semicontinuous too. In particular, they are bounded from below on some bounded
closed neighborhood, say B of [a,b). By Ekeland's variational principle [3], for every
fixed k, there exists a point x* G B minimising the function gk + dZk/k over B. It
is clear that lim d[Oi(,](xjt) = 0. Hence, one may assume that x* is in the interior of

B. Consequently, the subdifferential of the function gk +dIk/k at x* must contain the
zero vector. Moreover, since the distance functions d[Oi{,],<£&,<izh are convex Lipschitz,
using the calculus rules for generalised subdifferential [3, 14], one has

0 G df(xk) + l^J^-dd^Zk) + kddlaib](xk) + lddXk(xk),

or in other words, there exist

'I e df{xk),u*k e ddb(xk),v*k e dd[aib]{xk),wl e ddXk(xk),

such that

As noticed above, lim d[Oi4](zt) = 0. Furthermore, since [a,b] is compact and </*(&) >

gk(a), we may assume that lim xt = x0 G [a,b],x0 ^ b. There exists then a number
k—•oo

k\ such that

(2) ||xjt — xo|| < - ||x0 — 6||, for fc > k\.
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The aim now is to estimate {x\,c — Xk). Denote by 6* 6 [c,xk] a point minimising i\,
over [c,z*]. It is clear that lim 6jt = b. By this and (2), one may assume that xk / bk

k—>oo

and one can obtain the relation \\b — 6t|| ^ d^a<^{xk). Consequently,

(3) < W 6 * ) < d[aM{xk).

We express c — xk = P(bk — z*) for some /? > 1 depending on k and calculate

(4) <«;,e - z t) = /3«u;,i* - 6) + K , 6 - x*».

Remembering that u£ € d<2b(zfc), we see that (uj,6 — zj.) = — Hit — 6|| . Moreover,
since lim

such that

since lim bk = b and lim ||zjt — 6|| = ||zo — b\\ ^ 0, there exists an integer &2 >
k—»oo X:—»oo

\(ul,bk-b)\<±\\xk-b\\ lork>k2.

Hence (4) can be evaluated as
33

(5) (ul,c-xk) ^ -Ji \\Xh - b\\ , forfc>fc2.
Furthermore, using (3) one has that

(6) (vl,e - xk) = (3{vi,bk - xk) ^ (3{d[aM{bk) - <*[.,*](**)) ^ 0.

Notice that ||t«J|| ^ 1, there can be found £3 > &2 such that

Combine the latter inequality with (1), (5) and (6) to obtain the estimate:

for every k > fc3. The sequence {zjt} with k > £3 will be such as required in the
lemma. The case f(b) = 00 can be manipulated as follows. Set

r / ( * ) n x ^ b
f(x) = I

y f(a) + 1 otherwise.
Then by the above proof the lemma is true for / . Since lim n = z0 =̂  6, we may

k—«oo

assume that Xk ^ b for all k. At these points df and df coincide. Hence the lemma
is also true for / . D
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398 D.T. Luc [6]

THEOREM 3 . 2 . f is quasiconvex if and only if df is quasimonotone.

PROOF: Assume first that / is quasiconvex. Let x and y be two arbitrary points
in X with df(x) and df(y) nonempty. If we can show that

min{/T(z,i/ -x),f\y,x - y)} < 0,

then the quasimonotonicity of df follows. Suppose to the contrary that the above
relation does not hold, that is,

f(x,y-x) >0, and f{y,x - y) > 0.

By the definition of the generalised subderivative, there exist a positive e, two sequences
{xn},{yn} converging to x and y respectively, two sequences of integers {<n}>{sn}
decreasing to 0 such that

(7)

(8)

Take n sufficiently large

inf

inf

so that

Sn

0.

||xn — x]| < -er, and ||yn - y|| < -e.

Then it is evident that xn — yn g B(x — y,e), yn — xn € B(y — x,e). Replacing these
vectors instead of v and u in (7) and (8) we have

(9) f(xn + in(yn - xn)) - f(xn) > 0,

(10) f(yn + sn(xn - yn)) - f(yn) > 0.

Since / is quasiconvex and for n large, tn and sn are smaller than one, we have also

f(xn + tn(yn -xn))^ max (/(xn), f(yn)),

+ sn(xn - yn)) ^ max( / (z n ) , / (y n ) ) .

These inequalities contradict the system (9), (10).

For the converse part suppose to the contrary that / is not quasiconvex, that is,
there exist three points a, b, c G X with b e (a, c) such that f{b) > max{/(a);/(c)}.
Let us apply Lemma 3.1 to the function / on [a, 6]. There exists a sequence {z»}
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converging to xo 6 [a, b), x^ G df(xi) and for every i, one can find a positive e such
that

(11) (x*i,y-xi}>0,

for every y G X with \\y — c\\ < e. Take a point 6< 6 [c,Xi] with | | 6 - bi\\ — d[cx.](b).

It is evident that lim 6,- = b and 6,- ̂  x< when t is large , say i > ii for some positive
i—KX>

integer i i . Moreover, by the lower semicontinuity of / , there exists ii > ii such that
f(bi) > /(c) for all t > t2. Fix an index i > i2 and apply Lemma 3.1 to the function
/ on the interval [c, 6j]. There exists a sequence x^ k € df(xiiic) such that

(12) (xlk,xi - xitk) > 0.

(Note that X{ = c + t(bi — c) for some t > 1 because 6j 6 [c,z;] and 6j ^ x»,6i ^ c).
Furthermore, since lim i i t = ri o 6 [c, 6j], one sees that lim ĉ /t = c, where

k—'oo k—oo

Ci,k = Xi+ —rr (Xiik - Xi).
\\Xi,k - Xi\\

Hence for the given e, there exists an integer ki (depending on t ) such that Hc^i — c\\ <
e, for k > ki. Consequently, if we take an index i > t2 and for this fixed i, another
index k > Jbi, then by (11),

0.

This and (12) show that df is not quasimonotone. The proof is complete. D

COROLLARY 3 . 3 . Let A be a symmetric n x n matrix. Then the following

properties of the quadratic form f(x) = xAx are equivalent:

(i) / is convex;

(ii) / is quasiconvex;

(iii) A is positive semidefinite.

PROOF: By Proposition 2.2 and Theorem 3.2. D

Other corollaries will be given in Section 5. Let us now mention that the subdiffer-
ential of a lower semicontinuous convex function / is maximal monotone (see [8, 14])
in the sense that there exists no monotone map A from X to X' such that A ^ df

and the graph of df is contained in the graph of A. This fact is no longer true for
quasiconvex functions. For instance, the function / on R defined by

• (
1/2 otherwise

is quasiconvex, hence df is quasimonotone. Nevertheless the map A whose graph is
obtained by adding the point (0,0) to the graph of df is quasimonotone and different
from df.
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4 . QUASIMONOTONE BlFUNCTIONS

Let X be a real vector space and h a function from the product space X x X to
R U {±00}. To avoid the confusion between the concept of quasimonotonicity in the
second section and the one defined now, we shall call h a bifunction on X.

DEFINITION 4.1: h is said to be monotone (respectively, quasimonotone) if for
every x,y € X,

h(x,y-x) + h(y,x-y) < 0,

( respectively min{h(x,y - x),h(y,x - y)} ^ 0).

It is clear that every monotone bifunction is quasimonotone, but not vice versa. Sim-
ilarly to Proposition 1.2, an exception can be expected for the linear case. Let A be
a linear bifunction on X . We define the symmetric and antisymmetric parts of A as
follows

M*,V) = ^{A{x,y) + A{y,x))

Aa{x,y) = \{A{x,y)-A{y,x)).

PROPOSITION 4 . 2 . For the linear bifunction A on X, the following properties
are equivalent:

(i) A is monotone;
(ii) A is quasimonotone ;

(iii) A, is positive semidefinite.

PROOF: The proof is similar to Proposition 2.2, so we omit it. 0

Let / be, as in the previous section, a lower semicontinuous function from a Banach
space X to RL){+oo}. The generalised subderivative /* can be regarded as a bifunction
on X. Below we give a link between the monotonicity (respectively, quasimonotonicity)
of the bifunction /^ and that of the subdifferential df.

PROPOSITION 4 . 3 . The bifunction fl is monotone (respectively , quasimono-
tone) if and only if the subdifferential map df is monotone (respectively , quasimono-
tone).

PROOF: The "only if part is straighforward from the definitions of subdifferential
and Definitions 2.1, 4.1. For the "if part , assume that df is monotone. By Theorem
3.1 of [8], / is a convex function. Hence its generalised derivatives coincide with its
directional upper derivatives (see the definition in the next section, or [9]), which by
Proposition 3.2 of [9] is monotone in the sense of Definition 4.1. Now assume that df
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is quasimonotone. By Theorem 3.2 the function is quasiconvex. The proof of Theorem
3.2 also reveals that for any x,y S X where f(x) and f(y) are finite,

min{/T{x,y - x),f{y,x - y)} ^ 0.

Hence the bifunction /T is quasimonotone. D

5. DIRECTIONAL DERIVATIVES

Let X be a real topological vector space and / a lower semicontinuous function
from X to R(J{+oo}. We recall that the directional upper and lower derivatives of
/ at x 6 X, where f(x) is finite, are the maps f'+(x,v) and f'_(x,v) from X to
R U{±°°} defined by

f+(x,v) = hmsup — - ^—-
HO t

and f-(x,v) — hminf — —t-^—-

for every v G X. Whenever these two limits are equal, the common limit is called the
directional derivative of / at x in direction v and denoted by f'(x,v). We shall adopt
the convention /'(z,w) = —oo for every v 6 X if f(x) = +oo. The following result is
a version of the mean value theorem.

LEMMA 5 . 1 . Let a,b e X, a^b, where f(a) is finite. Let f0 denote f(b)-f(a)
if f(b) is finite, or any fixed positive number if f(b) — +oo. TJien tiiere exists a point
c £ [a,b) such that f'_(c,b - a) ^ f0.

PROOF: We consider first the case /(a) = f(b). Since / is lower semicontinuous,
there exists a point c £ [a, 6] minimising / over [a, b]. One may assume c £ [a, b)
because /(a) = f(b). For t small enough, c + t(b — a) € [a, 6], hence /(c + t(b — a)) ^
f(c). It is now evident that f'_{x,b - a) ^ 0. Assume now that /(&) ^ f(a). If /(&)
is infinite, and given a positive /o, define a function

~ = f f(a) + h if * = b

[ f(x) otherwise.

It is clear that if the lemma is true for / , then it is also true for / because the point
c to be found is different from 6. Thus, we may assume that /(6) is finite. Consider
the following function on [0,1]:

g(t) := f(a + t(b - a)) - [/(a) + *(/(&) - /(a))]
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for t £ [0,1]. Since / is lower semicontinuous, so must g be. Moreover g{0) = g(l) = 0.
By the first part, there exists a point t0 € [0,1) such that g'_(to,l) > 0. Let us calculate
gL(to,l)- By the definition

= liminf
no t

= fUc,b-a)-(f{b)-f{a)),

where c — a + to(6 — a). In this way, fL(c,b - a) = gL{to,l) + f{b) - f(a) ^ f0 , and
the proof is complete. D

It is evident that Lemma 5.1 is also true for directional upper derivatives. This
case has been used in [9] to prove that / is convex if and only if f'+ is monotone. Using
Lemma 5.1 instead of Proposition 2.2 of [9] one can improve the above result as follows:
/ is convex if and only if f'_ is monotone. Now we proceed to the main result of this
section.

THEOREM 5 . 2 . The function / is quasiconvex if and only if the bifunction f'_
is quasimonotone. The same is true for f'+.

PROOF: Assume that / is quasiconvex. For every two points x,y € X, say f(y) ^
/ ( i ) , if f(y) — oo, by the definition fL(y',x — y) = —oo. If f(y) is finite, by the
quasiconvexity of / , f(y + t(x - y)) < max{/(:c),/(y)} — f(y) for every t G [0,1].
Hence fL(y,x — y) ^ 0 and indeed f'_ is quasimonotone. Conversely, suppose that /
is not quasiconvex, that is, one can find three points a,b,c £ X with b 6 (ffl>c) such
that f(b) > max{ / ( a ) , / ( c )} . In view of Lemma 5.1, there exists x € [a, 6] and y £ [c, b]
such that /!_(z,b — a) > 0, and fL{y,a — b) > 0. It is evident that y — x = a(b — a)
and x — y = /3(b — a) for some positive numbers a and (3. Since the bifunction f'_ is
positively homogenuous in the second variable, we have

This shows that the bifunction f'_ is not quasimonotone. For the directional upper
derivatives the proof is similar. D

It is to be noted that several existing characterisations of quasiconvex functions
established in [1, 2, 4, 5, 6, 7, 10, 11, 15] can be obtained as direct consequences from
Theorem 3.2 and Theorem 5.2. As an illustration let us derive two relevant results: the
first one is Schaible's concerning quadratic functions, the second one is Crouzeix's on
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[11] Quasiconvex functions 403

second order conditions of quasiconvexity. Let / be a quadratic function of the form

1
JyXJ ^ — XAx ~\~ OX,

where A is a symmetric n x n matrix, 6 is an n-vector. It is known that by an
appropriate affine transform / (x) can be written in a canonical form:

(13) f(x) = — - V*x 2 + — V* x2 +-yx +c
«=1 i=Jb+l

where O ^ f c ^ r ^ n , 7 is either 0 or 1, c is a constant and x = (x i , . . . ,x n ) .

COROLLARY 5 . 3 . [15] Assume that the quadratic function f(x) of the form
(13) is not convex. Then it is quasiconvex on a convex set C with a nonempty interior
if and only if k = 1, 7 = 0 and C is contained either in {x £ R n : q(x) ^ 0, x\ ^ 0}
or in {x £ R n : q(x) ^ 0, Xi ^ 0} , wJiere q(x) = - x 2 / 2 + (x\ + ... + xJ ) /2 .

PROOF: It is obvious that / (x ) is not convex if and only if Jfc ^ 1. Moreover,
the gradient of / is V/ (x) = ( -Xi , . . . , -x j t .x t+i , . . . ,x r ,7 ,0 , . . . ,0) . Hence, f'(x,v) =
(V/(x),v) for every x,v £ Rn.

Assume k ^ 2, and take any point a = (ai , . . . ,an) £ intC with ai 5̂  0. Let
a' = (—02,01,0,...,0) and x = a + ea', y = a — eo', where e is small enough so that
both x,y belong to C. It is evident that f'(x,y - x) = f'(y,x - y) = 2e2(a2 +0?,) > 0.
In view of Theorem 5.1, / is not quasiconvex on C.

Assume further that 7 = 1 and as before take any point a £ int C. Let y =

(!/1)—)2/TI) with j/i — n, for i ^ l , r + l , and yi = i i + e , yr+i — x r + 1 + e x 1 + e 2 / 2 , where
£ is so small that y belongs to C. Again one has / ' (o ,6 — a) = f'(b,a — b) = e2/2 > 0
and / cannot be quasiconvex on C.

Thus, let us now consider the case k — 1 and 7 = 0. We show that if C contains
a point of positive value of q(x), then / is not quasiconvex on C. In fact, let a £ int C
with q(a) > 0. If ax = 0, take x = (e ,o 2 > . . . , o n ) , y = (—e,a2,... , a n ) where e
is positive and so small that x and y belong to C . If ai ^ 0, take x — a and

r
y = («i + a o i , o 2 + (/? + e ) a 2 , . . . , a n + (/? + e)an) with a = £ a2/k, f3 = a\/k, where

1 = 2

k and e > 0 are chosen so that x,y £ C and a2a\ - (/32 + e(/? + 1 + e)) £ o2 > 0.
>=2

The existence of k is evident. The existence of £ follows from the fact that q(a) > 0,
r

hence a2a\ — /32 £) o2 > 0. A direct calculation shows that in both cases f'(x,y — x)
i=2

and f'(y,x — y) are positive, hence / cannot be quasiconvex.
Furthermore, if a point x with the first component Xi nonzero and its first com-

ponentwise opposite point x = (-X!,X2, ...,xn) both are in C, then the middle point
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a = (0,X2,...,xn) is in C too. Moreover, since intC is nonempty, it must contain a
r

point a! = (0,a.2,...,an) with £) a2 > 0 in its interior. At this point q(a') > 0. Hence
»=2

/ cannot be quasiconvex on C. In summary, the conditions given in the corollary are
necessary for /(x) to be quasiconvex on C. They are also sufficient. Indeed, let x,y be
any points in C, say xi ^ 0, 3/1 ^ 0 and q(y) ^ q(x) ^ 0. Using the Cauchy-Schwarz
inequality one has

) , j/ - x) = -

i=2

q(x))1/2 (yj + 2q(y))1/2 - 2q{x)

29(z)) - 2?(x) = 0.

By Theorem 5.2, / is quasiconvex on C. D

Let us remark that the condition k = 1, 7 = 0 amounts to saying that
ranfc (A, b) = rank A and A has exactly one negative eigenvalue.

COROLLARY 5 . 4 . [4, 16] Let / be a real twice differentiate function on an open
set C C Rn. Then / is quasiconvex on C if and only if x € C and (Vf(x),v) = 0
implies either (V2f(x)v,v) > 0 or (V2/(x)v,u) = 0 and the function f(x + tv) is
quasiconvex in f with x + tv E C.

PROOF: Assume that / is quasiconvex and let x € C with (V/(x),r) = 0 for some
v G R". If (V2/(x)i>,v) < 0, one takes a — x — ev, b — x + ev with e small enough.
Then / ' (a , b - a) > 0 and /'(&, a - 6) > 0, which by Theorem 5.2 is impossible. Hence
(V2/(x)w,v) ^ 0. It is dear that/(x +tv) is quasiconvex in t. Conversely, suppose
that the condition of the corollary is fulfilled but f(x) is not quasiconvex on C. In view
of Theorem 5.2, there exist a,b € C such that f'{a,b- a) > 0 and f'(b,a- b) > 0.
Let x £ (a, t) be a point maximising / on [a, 6]. Then f'(x,v) = 0 where « = b — a
and by the condition of the corollary, (V2/(x)i>,u) must be positive. This is impossible
because x is a maximum of / on [a, 6], and the proof is complete. D

We finish this section with the remark that unlike the convex case the directional
upper derivative and the directional lower derivative of a quasiconvex function do not
coincide in general. For instance the function

{ 0 if x ^ 0

x2 sin i - 3x if 0 < x < 1

sin 1—3 otherwise,

is quasiconvex on K but /^_(0,l) = —2 and /L(0,l) = —4. Moreover, as in the case of

convex functions [9, 8], without the lower semicontinuity of /(x) the results presented
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in our paper are not true. The function

_ f 0 if x £ 0

(_ 1 otherwise

is not quasiconvex on R, neverthless its generalised subgradient as well as directional
derivative are monotone (and hence quasimonotone).
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