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1. Introduction

In [1] the concept of completeness of a functor was introduced and,
in the case of additive * categories # and 2 and an additive functor T:
#->.©, a criterion for T (supposed surjective) to be complete was given
in terms of the kernel Jf oi T: this was that for each object A of # the
ideal CfA should be contained in the (Jacobson) radical of *€ A. (The meaning
of this notation and nomenclature is recalled in § 2 below). The question
arises whether in any additive category ^ there is a greatest ideal JT with
this property, so that the canonical functor T : <& -> ^ / J f is in some sense
the coarsest that faithfully represents the objects (but not the maps) of c&.

This question is answered affirmatively in § 3 below; if 0t is the ideal
in question, it turns out that 9tA is not enly contained in, but is in fact
equal to, the radical of <€A. The relation of 0t to # is entirely analogous
to the relation of the radical of a ring to that ring, and we shall call 01 the
radical of the category e&. On the one hand the existence and properties
of Si are but simple translations of well-known properties of the radical
in a ring; on the other hand the "category" point of view, without adding
anything essentially new to the theory of the radical in a ring, may be
said to exhibit some of its properties in a new light.

The notion of completeness in no way requires the additivity of the
categories and functors in question, and so we can ask similar questions
for a general category. A functor can still be said to have a kernel, which
is no longer an ideal but a congruence, that is, an equivalence relation
compatible with the operation of composition of maps. We prove in § 4
that in any category # there is a greatest congurence r such that # -> <?/t

* What we call additive categories are commonly called pre-additive, the epithet additive
being reserved for those categories which also admit finite direct sums. There is not yet a
uniform, rational scheme for describing various types of categories, and we suggest ten-
tatively that the description should first say what extra structure, if any, the sets of mor-
phisms (= maps) possess — additive category, graded differential category, etc. — and
then describe the existential hypotheses made — existence of direct sums, of kernels, etc.
Thus what others call an additive category we shall call a direct addttive category, shortened
to direct category when none but additive categories are in question.
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is complete. If *$ happens to be additive, it may happen that r strictly
exceeds the (congruence corresponding to the) radical 31 of # , and so
we need a name for t different from "radical"; we shall call it the radix
of W. If the category % contains only a single object A, r is a congruence
in the monoid ^A, and we shall also call t the radix of this monoid, in
analogy with the radical of a ring. But now, in distinction to the additive
case, if # is a general category and r its radix, tA may be strictly less than
the radix of 1fA. We illustrate some of the possibilities by calculating the
radices of various categories in § 5.

2. Definitions and general considerations

If A and B are objects in the category *£ we denote the set of maps
(sometimes called morphisms) f : A -> B in & by <# (A, B), and we abbre-
viate 'if (A, A) to 1f(A) or<&A.Iff:A-+B and g : B ->• C we write gf (and
not fg) for the composed map A -*• C, and we use 1 indifferently for the
identity maps of various objects. We call feitf^A, B) an equivalence if
there is a g e ^(B, A) with fg = 1 and gf = 1; g is then unique and we
write g = f~1. We shall also call an equivalence / 61SA a unit of the monoid

By a congruence I on the category If we mean the selection, for each pair
of objects A, B'va.'€,oi an equivalence relation l(A, B) on the set 'if (A, B),
subject to the requirement that, whenever he^{A, B), f, f e^(B, C),
ge<g{C,D), and f = f'[l{B,C)), then gfhsgf'h{l(A,D)). We shall usually
write f = f'{l) rather than/ = /'(?(£, C)); we shall also write lA for l(A,A).
Congruences on <€ are ordered by: I 2: ! if / = /'(I) implies / = /'(I).

The category # is said to be additive if each 'if (A, B) is an abelian
group and composition of maps is bilinear. <€A is then a ring with identity.
By an ideal ctT in <£ is meant the selection, for each pair of objects A, B
in <€, of a subgroup Jf(A, B) of 1f(A, B), subject to the requirement that
gfheJf(A,D) whenever geV(C,D), feJT(B,C), and heV(A,B).
JfA = Jf(A, A) is then an ideal of the ring 1gA. An ideal Jf determines a
congruence by putting / = / ' for /—/' E Jf; and the congruences t that
arise in this manner are those for which / = / ' and g E= g' imply f—g == f'—g'.
Where there is no danger of confusion, we shall use the same symbol for
an ideal and the congruence it determines.

The additive category If is said to be direct if it admits finite direct
sums (including the direct sum of no objects, that is, a null object). Any
additive category If can be embedded as a full subcategory in a direct
category 3) by taking as an object A of 3> a finite sequence {Alt Ait • • •, An)
of objects of '€, and taking &i{A,B), where A is as above and B =
(Blf Ba, • • •, Bm). to consist of the matrices F = (ftj) where fit e1f(Ai, Bt).
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A direct sura of A and B in 2 is then given by {Ax, • • •, An, Bu • • •, Bm).
If If and 2 are any categories and T : # ->• 2 a functor, we say that

T is surjective if every object P of 2 is equivalent to an object of the form
TA where A is an object of <€, and if moreover, for any two objects A, B
of <€, any map ge2(TA, TB) is Tf for some fe1f(A, B). We say T
is injective if, T / = 7g, for f,ge^f(A,B), implies / = g. If T is both
surjective and injective we say it is bijective; if we admit the axiom of
choice for a class that may not be a set, it comes to the same thing to say
that T is an isomorphism, meaning that there is a functor R : 2 -> <€ with
each of TR and RT naturally equivalent to the appropriate identity
functor. We say that T is complete if it is surjective and equivalence-reflecting:
by which we mean that fe^(A,B) is an equivalence whenever
Tf e 2(TA, TB) is an equivalence. A bijective functor is easily seen to
be complete. If T is complete then A and B are equivalent whenever TA
and TB are; so that A is faithfully represented by TA, or TA is a "complete
set of invariants" of A.

If ! is a congruence in # we can form a quotient category If ft, with
the same objects as If, by defining («7f)(-4, B) as If (A, B)/l(A, B), the
quotient set of ^{A, B) by the equivalence relation l(A, B). There is a
canonical surjective functor S : # -> ^/f which sends each map to its
equivalence class (and is the identity on objects). If 'tf is additive and I
is derived from an ideal Jf", then ̂ /f = ^/JT is additive, and S is an additive
functor (that is, S(f+g) = Sf+Sg).

If T : <@ -*• 2 is any functor, a congruence E on ^ called the kernel
of T is defined by: / = /'(!) if Tf=Tf. T then factorizes as V-f If 11^2,
where U is injective; and T is surjective if and only if U is bijective. Thus
if T is surjective 2 is essentially determined by <€ and !. In particular,
if T is surjective, it is complete if and only if 5 is so. If #, 2, and T are
additive, the kernel is an ideal and S and U are additive.

For a surjective functor T, completeness is equivalent to the ap-
parently weaker condition that / e ? x be a unit of 9fA whenever Tf = 1.
For if feV(A, B) and Tf is an equivalence, then because T is surjective
there is a g e ^ B , A) with Tg = (Tf)-1. Then T(gf) = 1 and T(fg) = 1,
so that by hypothesis gf has an inverse h and /g has an inverse k. Since
Ag/ = 1 and fgk = 1, / has a left inverse and a right inverse and so is an
equivalence. This means, in terms of the kernel! of T, that T is complete
if and only if, for each object A of If, the f^-equivalence-class containing
the identity element of ¥A contains only units of 1fA. In the additive
case, if the kernel is the ideal Jf, this equivalence class is l-\-Ji~A; and for
this to consist only of units it is necessary and sufficient that JfA be contained
in the radical of ¥A (or again, that X'A, considered in itself, should be a
radical ring).
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3. The radical of an additive category

If P is a direct sum of Alt • • -, An in an additive category '€, we shall
write P = ffi" Ax and shall denote the injection Aa-+ P by ia and the
projection P -»• Aa by pa. Then we have

paip = dap (the kronecker delta),

It will be convenient to use P = ©J* Aa for a second direct sum, with
maps i'a, p'a; and so on.

The maps fe^(P, P') are in 1-1 correspondence with the matrices
F = ifafi). where fa0e&(Afi, A'J; f determines F by fat = p'Jif, and
F determines / by / = J a e i'afufiPe- If similarly g e ^?(P', P") corresponds
to the matrix G, then gf corresponds to the matrix product GF.

From the relations between / and F we deduce at once:

LEMMA 1. / / J is an ideal of (€, then feJ{P, P') if and only if
fatef{Afi, A'a) for each a, /?.

Now let 2 be an additive category, of which <€ is a full subcategory.
An ideal £ of 3i determines by restriction to *8f an ideal S of *& :S{A, B) =
/{A, B) for A, BeV; we can call J the trace of / on «".

LEMMA 2. / / every object of 2 can be expressed as a finite direct sum of
objects of W, then f -> S is a one-to-one correspondence between the ideals
of Si and those of *£.

By lemma 1, # is completely determined by S, and it remains only
to prove that any ideal J of <& is the trace of such a #. Given S, define
/ • thus: if P= ®Aa, P' = © A'a are in 2, where ^4a, ^ l e * 7 , then
/ e V(P, P') is in / if and only if each fa/l = p'Ji, is in J. / ( P , P') has
to be proved independent of the direct decompositions of P and P' used;
we prove this simultaneously with the fact that # is an ideal by verifying
that / 6 / implies gfh e / , where h e <g(P", P) and g e <${P', P'"),
P" = ®A'J, P'" = ®A'a': that / is weU-defined foUows by taking
g = 1, h = 1. The verification is immediate: the elements of the matrix
GFH are in J since those of F are and since ^ is an ideal.

It was remarked in [1] that an ideal J in an additive category is not
determined by the knowledge of SA for all objects A of *•&. However:

LEMMA 3. / / the additive category <€ is direct, an ideal J of& is determined
by the JA alone.

For, if 4̂X and A2 are objects o f# , I e t P = ^4 1 ©^4 a bea direct sum.
Then, by lemma 1, / e ^{A^, A2) is in J{AX, A2) if and only if i2fP\ is in JP.

Of course, the JA cannot be chosen arbitrarily:
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LEMMA 4. / / in a direct category ^ we are given for each object A an
ideal J'A of the ring f> A, then J'A can be extended to an ideal J of <€ if and
only if gfh e JB whenever geV(A, B), f eJA, and h e^(B, A).

The condition is clearly necessary. If it is fulfilled define #(AX, A2)
by / e /{Ax, A2) if and only if i2fpx e JP, where P = Ax © Az. Then
/ i s an ideal; for if ge<#(A2, A2) and A e ^ . i j ) , let P' = A'x © A'%.
Then fe/{Ax, A2) implies i'2gfhp'x = i'2gp2 • i2fpx • ixhp'xeJP,, since
hfPi e«/p. Moreover cfA = JA\ for if P = Ax © As where Ax = A2 = A,
we have that / e JA implies i2fpx e JP, so that JA ^ £A; and ufpx e JP

implies / = p2i2fpxix eSA, so that fA ^ JA.

LEMMA 5. In a direct category %', let $%A be the radical of ctfA for each
object A. Then 01A extends to a unique ideal S% of 1?.

That the ideal is unique if it exists follows from lemma 3; we must
verify that the MA satisfy the condition of lemma 4.

Let fe0lA, gec€{A, B), he<€{B, A). Let P = A © B, and let us
represent elements of ^P by the corresponding matrices.

We use the fact that x is in the radical of a ring if and only if 1 — yx
is a unit for all y in the ring. In this way we see that \L Q) e ^ P ; for
« ?) - ft 5)('o 8) = {l-% ?)• and this has the J e r s e ^ ?).
where u is the inverse of 1 —af, which exists since / e 8iA. Then for any e e ^g
we have, since 9tP is an ideal, that ®P con t a in s^ {{)(£ ° ) g *) = ({j ^ ) .
Thu s (o i_e»ft) is a u n i t °f /̂*» an<i hence l—egfh is a unit of ^ B , for
any e e ^B; we conclude that gfh eMB, as required.

We are now in a position to define the radical of an additive category
%. We embed ^ in a direct category 2 as in § 2, and we take the unique
ideal 8% of 3i such that &P is the radical of £&P for each object P of 3i.
The radical of # is then the trace of 0t on "g*, which we shall still call 01.

LEMMA 6. / / 0t is the radical of an additive category c€, 3&(A, B) depends
only on the subcategory of ^ determined by A and B; in fact the necessary and
sufficient condition for f e ^(A, B) to be in 0t[A, B) is that 1—gf be a unit
of %A for all gef(B, A).

Let P = A © B; then fe0t{A, B) if and only if § ty e0iP; that
is, if and only if (J J) - (* *)(j! °) = 1^2% ?) is a unit for all b and d.
But this has an inverse (* ^| if and only if q = 0, s = 1, p is an inverse
of 1—6/, and r = dfp; and so is a unit for all b and d if and only if 1—bf
is a unit for all b.

THEOREM 1. !M is the greatest ideal of # for which MA is contained in
the radical of %A for each A.

For if J were any such ideal and / 6 J(A, B), then for any g e ^(B, A)
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we should have gf e JA and so 1— gf would be a unit of 1fA. Thus J f£ &•
We remark that lemmas 1 and 6 now imply various known results

on the radicals of certain rings. If P— ®"Aa is a direct sum in f€, so that
<€P consists of the matrices F = (fafi) with fxf e ^(A^, Aa), then, by lemma
1, 8&P, the radical of &P, consists of the matrices F with fa$ e 0t{Af, Aa).
If all the Ax are identical with the object A, then ftp is the ring of n x n
matrices with elements in #,,, and its radical consists of the matrices
with fap e 01A for all a, /J. Again, if the Aa are indecomposable modules
satisfying both chain conditions, we know that each ^ ^ is a local ring;
then if / e ^ ( A a , Afi) and g e ^(Ap, Aa), l~gf is a unit whenever gf is a
non-unit. If Ax and A$ are non-isomorphic, gf is of necessity a non-unit,
otherwise / would map Aa isomorphically onto a direct summand of Ay,
while if Aa and Afi are isomorphic, gf is a non-unit whenever / is a non-
unit, and if / is a unit, 1 —/~7 = 0 is not a unit. Thus in this case tMP consists
of the matrices F in which no fafi is an equivalence. Finally, we can easily
calculate the radical of the category of finitely-generated abelian groups;
it suffices to know 0t(A, B) when A and B are indecomposable. The in-
decomposables are Z and Zt*; by the above, @(ZV«, Zim) consists of the
non-isomorphisms; ^(Zpn, Z) = 0; 0t(Z, Zpn) = V(Z, Z,.) = Zs , since in
this case 1— gf = 1 because g = 0; and @{Z) = radical of Z — 0.

4. The radix of an arbitrary category

Let # be any category. For each triple A, B, C of objects of % we
define an equivalence relation t(A, B; C) on <&(A, B) thus: if /, g : A -*• B
are any maps in % then / = g(l(A, B; C)) if and only if, for any u e&(B, C)
and any v e^(C, A), ufv and ugv are either both units in #<; or both non-
units in #<;. We now define an equivalence relation x(A, B) on ^(A, B)
by: / = g{t{A, B)) if and only if f = g(t(A, B; Q) for each object C of «\
(The objects of ^ in general form a class and not a set, but we can say that
x(A, B) is defined as the intersection of the set of those equivalence relations
on ^{A, B) which are of the form l(A, B; C) for some object C of #.)

THEOREM 2. t, which we shall call the radix of <€, is a congruence on %,
and is the greatest one for which, for any A, f B^Ais a unit whenever / = 1.

Hme1f{B,D),n€^(E,A)a.ndf=g(t(A,B))thenmfn^mgn{t(E,D));
for if C is any object of «" and u e <&(D, C), v e #(C, E), we have utnfnv
and umgnv are both units or both non-units of ^c, since f = g{l(A, B; C))
for all C; thus r is indeed a congruence.

If fe<€A and / = l ( t j , we have / = \(\{A, A; A)) and so 1 • / • 1
and 1 • 1 • 1 are both units or both non-units; so that / is in fact a unit.

If 3 is any congruence on # with the property that / is a unit whenever
/ = 1, let / = g(S(A, B)), u er€{B, C), v e<&(C, A). Then since 3 is a con-
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gruence ufv = ugv(3c). If ufv is a unit of ^Q we have, again since 3 is
a congruence, 1 = (ufv)(ufv)~l == («gw)(«/»)~1(3c); t n u s by hypothesis
(wgw) (w/fl)"1 is a unit, whence ugv is a unit. It follows that / = g[l(A, B; C)),
and since this is true for all C we have / = g(r). Hence § g t .

If 'S is a category with a single object .4, and thus in effect just a
monoid M = <€A, we shall also call the radix of # the radix of the monoid
M. It is the equivalence relation on M given by: / ^ g if and only if ufv
and ugv are simultaneously units or simultaneously non-units for all
u,ve M. It will appear in the examples below that, if t is the radix of an
arbitrary category <€, the radix of the monoid <€A may strictly exceed r^.

5. Examples of radices

(a) We first consider the radix of a single monoid M. If all the elements
of M are equivalent (i.e. modulo its radix r) they must all be units, and
so M is a group. Conversely if M is a group it is clear that all its elements
are equivalent. The simplest case apart from this trivial one is the case
where there are just two equivalence classes in M. These classes must
then consist of the units of M and the non-units of M; for whatever is
equivalent to a unit is itself a unit. In this case the product of two non-
units is always a non-unit, for if x and y are non-units we have x = y
and so x2 = xy; x2 is a non-unit since a; is a non-unit, whence xy is a non-
unit. It evidently comes to the same thing to say that if xy = 1 then x
and y are units. If, conversely, M is such that the product of two non-units
is always a non-unit, then the equivalence relation which partitions M
into the units and the non-units is easily seen to be a congruence, and so
must be the radix.

There are many classes of monoids that satisfy this condition; clearly
any commutative monoid does so, and so does any finite monoid. For if
M is finite and xy = 1, the map z -> yz of M into itself is injective and so
surjective, whence y has also a right inverse and so is a unit.

Again, if M happens to be a ring, the condition is satisfied if M is
indecomposable (as a left M-module), for if xy = 1 and yx ^ 1 then yx
is a non-trivial idempotent. The condition is also satisfied if M is a ring
with the maximum condition for left ideals, as may be seen by a simple
argument of the Fitting's-lemma type. Finally, if M is the ring of n x n
matrices A over a commutative ring, the condition is again satisfied: for
A is a unit if and only if det A is a unit.

(b) An example of a monoid not satisfying the condition above is
given by the monoid M of all maps of N into itself, where JV is the set
of natural numbers. We shall calculate the radix of M.

Suppose that feM and / = 1; and suppose if possible that / ^ l .
We may suppose without loss of generality that /(I) ^ 1; let /(I) = n.
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Since / == 1 it is a unit, and so bijective; thus /(*) ^ n for any i > 1.
Define, v, u e M by:

u(i) = »—1, * > l;

Then uv = 1, and since / = 1 we must have ufv = MII; = l, so that ufv
must be a unit. But w is not in the image of fv, so that n— 1 is not in the
image of ufv, which therefore cannot be a unit. Hence the equivalence class
of the identity map 1 reduces to 1 alone.

Now let / be any element of M with im / infinite, and suppose if pos-
sible that g EH / but g ¥" f- We may suppose g(l) ^ /(I); and since whenever
v is a unit vg = vf if and only if g = /, we may further suppose that
/(I) = 1. Define ueM by: « maps im / bijectively onto N, preserving the
order; u(i) = 2 if i'• $ im /. In particular «(1) = 1. Define » e M by choosing
i>(t) to be any element of (w/)"1^'), taking w(l) in particular to be 1. Then
ufv — 1, so that ugv = 1 if g = /. But «gfl(l) = «g(l) ^ 1, so that wgu # 1.
Hence the equivalence class of / reduces to / alone.

If im / is finite so is im ufv for any u and v; so the equivalence relation
on M given by putting all / with im / finite into one class and letting any
other / be the sole member of its class is in fact a congruence; clearly this
congruence is the radix of M.

(c) We now consider the category # of all sets and all maps. Let X
be a set with only two elements. Then if A, B are any sets and f,g:A->B
any maps, a necessary condition for / = g (i.e. modulo the radix of '&)
is that, for any u : B ->• X and any v : X -*• A, ufv and ugv should be both
units or both non-units of <€x • Thus / and g are inequivalent if it is possible
to find two elements x, y of A with f(x) and f(y) different and f(x) equal
to neither g(x) nor g(y); for then it is clear that u and v may be so chosen
that ufv is the identity on X while ugv is constant.

If im / has at least three elements and g ^ /, it is always possible to
choose x, y as above, and so g ̂  /; thus the equivalence class of / consists
of / alone. If im / has exactly two elements a and b, it is still possible to
find x, y as above unless either g = / or g is related to / by: for each z e A,
g(z) = a whenever f(z) = b and g(z) = b whenever f(z) = a.

If we define an equivalence relation x(A, B) on ^{A, B) by: all constant
maps from one equivalence class; a map / with im/ composed of exactly
two elements is equivalent only to itself and to the map g related to it as
above; any other map is the sole member of its equivalence class — then
by what we have proved r is certainly the radix of *€ if it is a congruence.
However, r is indeed a congruence, as may easily be verified, and so is the
radix of #.
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(d) Now let # be the category of finite dimensional vector spaces over
a (possibly skew) field k, and all linear maps. This is an additive category,
and so has a radical: this radical is moreover 0 since every object of "̂  is a
direct sum of copies of k and the radical of 1Pk = k is 0. We now calculate
the radix r of # .

In order that /, g : V -> W, where V and W are objects of (€, be equiv-
alent, it is necessary that ufv and ugv be both units or both non-units
for any maps u : W —*• k and v : k -> V. Since the only non-unit of k is 0,
this means that ufv is to be 0 if and only if ugv is 0. It is easily seen that
this is so if and only if g = A/ for some A ^ 0 in the centre of k.

Now the equivalence relation r, defined by "/ = g if and only if g = A/
for some A =£ 0 in the centre of k", is clearly a congruence, which is therefore
the radix of <€.

We observe that the radix of # properly exceeds its radical. Moreover
the radical may be inferred from the radix in this case: since the radical
is to be an ideal, and since 0 is equivalent only to itself in the radix, the
radical can only be 0.

(e) If in the example of (d) we replace k by a local ring R, which we
take commutative for simplicity, we can use the reasoning of (d) to infer
the radix in this case. For let / be the ideal of non-units in R, let k = Rjl,
and let * be the image in k of x e R. If we think of / and g as matrices with
elements in R, let / , g denote the matrices obtained from these by reducing
each element modulo / .

To say that ufv and ugv are simultaneously non-units, is to say that
ufv and ugv are simultaneously 0, or that £ = A/, A ^ 0. This in turn gives
g = af+h, where a is a unit of R and A is a matrix all of whose elements
are non-units. This relation between / and g is obviously a congruence,
and thus is the radix of <S. Once again the class of the zero matrix, consisting
of those matrices whose elements are non-units, is the radical of ^ .

(f) It need not be the case in an additive category, even if it is direct,
that the class of 0 in the radix is the radical. Let A be a vector space of
dimension « > 1 over a field k, and let % be the category whose objects
are the finite direct sums of copies of A and whose maps are all the linear
maps. If x is the radix of ^?, it is easy to verify, by the methods used above,
that zA is just the partitioning of VA into the units and the non-units,
while StA is of course 0.
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