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Abstract

In this paper we determine the smallest equivalence relation on a multialgebra for which the factor
multialgebra is a universal algebra satisfying a given identity. We also establish an important property
for the factor multialgebra (of a multialgebra) modulo this relation.
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1. Introduction

The starting point of this paper can be found in [7] where Freni presents the small-
est equivalence on a (semi)hypergroup for which the factor (semi)hypergroup is a
commutative (semi)group.

Multialgebras (also called hyperstructures) are particular cases of relational systems
which are generalizations of universal algebras. They have been studied for more than
60 years and have been used in different areas of mathematics (algebra, geometry,
graph theory) as well as in applied sciences (see [5]).

It follows from [7] (and also from [6] and [13]) that, among the equivalence relations
of a multialgebra, of great importance are those equivalence relations for which the
factor multialgebra is a universal algebra. For a multialgebra 21, the class of these
relations is an algebraic closure system. It follows that we can always obtain a smaller
such equivalence, which contains a relation R on A. Using this, some of the results
of [7] can be established in the general case of multialgebras. More precisely, we
determine the smallest equivalence relation a*r on a multialgebra that has the property
that the factor multialgebra is a universal algebra satisfying a given identity q = r.
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122 Cosmin Pelea and loan Purdea [2]

In [8], Gratzer proved that any multialgebra 21 is obtained as a factor of a universal
algebra 53 by an appropriate equivalence relation p c B x B. For a multialgebra
53/p, we consider the universal algebra (53//o)/a*r and we prove, in Theorem 5.3, that
this algebra is isomorphic to the factor algebra of 53 modulo the smallest congruence
relation 6 of 03 which has the property that p c 9 and q = r is satisfied on 53/0.
In the last section we give an application to hypergroups, which are factor of a group
modulo an equivalence relation determined by a subgroup.

While studying some properties of the factor multialgebra of a multialgebra we
have found an answer to the first part of Problem 4 from [8]: What are the factor
multialgebras of a group, abelian group, lattice, ring and so on? Characterize these
with a suitable axiom system. In the third section of this paper, we prove that an n-ary
identity q = r on an algebra 53 gives the weak identity q n r ^ 0 on the multialgebra
53//O. Yet, as mentioned at the end of [8], there exist multialgebras with one binary
associative multioperation, which are not factor multialgebras of a semigroup. So, a
multialgebra that satisfies a set of given weak (or strong) identities does not have to
be a factor multialgebra of a universal algebra satisfying the corresponding identities.
This means that our answer does not cover the second part of this problem.

2. Preliminaries

Let N be the set of the nonnegative integers, let x = (nY)y<o(r) be a sequence over
N, where o{x) is an ordinal, let fy be a symbol of an ny-ary (multi)operation for any
y < O(T), and let 53(n)(r) = (P(B)(f), (/y)y«»(r)) be the algebra of n-ary terms (of
type r ) .

Let A be a set and P*(A) the family of nonempty subsets of A. Let 21 =
(A, (fY)y<o(z)) be a multialgebra, where for any y < o(x), fY : A"' -> P*(A) is
the multioperation of arity nY that corresponds to the symbol fy. If the multialgebra 21
has no nullary multioperations, then we allow the support set A to be empty. Of
course, any universal algebra is a multialgebra (we identify a one element set with its
element).

If for any y < o(r) and for any A o , . . . , AB),_i e P*(A), we define

f y ( A 0 , . . . , Any-.i) = | J { f y ( a 0 , . : . , any_}) | a , 6 A , , i e [0, ... , n r - 1 } } ,

then we obtain a universal algebra on P*(A) (see [12]). We denote this algebra
by 53*(2t) and consider the algebra 9^<n)0P*(2l)) of the n-ary term functions on
53*(21) (n 6 N). Clearly, any term from p e P(n)(r) induces a term function from
53(n)(53*(2l)) ([9, Corollary 8.1]). We denote this term function by p (or by (p)<p.(a)
when necessary).
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[3] Multialgebras, universal algebras and identities 123

Denote by ^1^(^*021)) the algebra of the n-ary polynomial functions of the

universal algebra *P*(2l) (see [3]) and by ty™ 0$* 02L)) its subalgebra generated by

[cn
a \ a e A } U { e ? \ i e {0 , . . . , n - 1 } } ,

where c"a, e
n
t : P*{A)n -* P*{A) are defined by

c2(A0, . . . ,Af l - i ) = {fl} and <(A 0 An_,) = A,.

REMARK 1. For a multialgebra 21, PM0#*02l)) is a subalgebra o ^ )

REMARK 2. Let 21 be a universal algebra and let F^n)(2l) be the set of the n-ary
polynomial functions of 21. For any polynomial function p e PJn)0P*(2l)), the map

A" -> A, (a,). • • •, an-i) >-> p(a0 an_i)

defines a polynomial function from />^")(2l). Moreover, any polynomial function from
Pl

A
n)02l) can be obtained in this way from a polynomial function from P™ 0#* 021)).

REMARK 3. It is known that if y < o{z) and AQ, . . . , Any_\, Bo, ..., Bn,-\ are
nonempty subsets of A such that Ao c Bo, ..., Any_\ c S , , ^ , then

It easily follows that if « e N, p e P ^ O P * ^ ) ) , and the nonempty subsets
Aa,... ,An-\, Bo,... ,Bn-\ of A are such that Ao c BQ, ..., An_! c Bn_), then

p(A0, . . . , i4n_,) c p(B0, ..., Bn_{).

A map h : A —>• B between the multialgebras 21 and 55 of the same type x is called
a homomorphism if for any y < o{x) and for all a0, ..., an),_i € A, we have

(1) h(fy(ao,

A bijective map h is a multialgebra isomorphism if both h and h'i are multialgebra
homomorphisms. It follows from [12] that the multialgebra isomorphisms can be
characterized as being the bijective homomorphisms h for which the inclusion (1) is
an equality.

REMARK 4. By the construction of a polynomial (symbol) it follows that for a
homomorphism h : A —> B, if n e N, p € P( n )( t) , a n d a 0 , . . . , an_i € A, then

(2) h(p(ao, . . . , fl«_,)) c p(h(a0), ...,
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124 Cosmin Pelea and loan Purdea [4]

Let p be an equivalence relation on A and A/p = {p(x) \ x e A} (where p(x)
denotes the class of x modulo p). For a y < o{x), the equalities

fy(p(aQ), . . . ,p(aB| ,_i))

= {p(b) \befy{b0,...,bHr.1), aipbi, i e { 0 , . . . , n r - 1}}

define a multioperation fY on A/p (see [8]). One obtains a multialgebra 2l/p on A/p
called the factor multialgebra of 21 modulo p.

The definition of the multioperations from 2l/p allows us to see the canonical
map 7ip from A onto A/p as an multialgebra homomorphism for any equivalence
relation p on A (see [12]). Applying (2) for np we have

(3) {p{a) | a € (p)<p.(a)(an> • • •, an-i)} c (p)<p.(2l/p>(p(ao), • • •, P<an-i))

for any n e N, p e P<n)(r), and a 0 , . . . , a«_i € A.

REMARK 5. The inclusion (3) holds if we replace the n-ary term functions (p)<p.(aj

and (p)<p-(a/P) by the n-ary polynomial functions

p e P ^ C T W ) and p ' € P^ p (

respectively, where the polynomial function /?' (which corresponds to p) is given as

follows

(i) if/> = C ;(a)

(ii) if p = el = (x,)q3.(2l), then p' = ef = (x,-)<p.(a/P);
(iii) if p = fy(po, • ••, PnY-\) and the polynomial functions which correspond to

p0,..., pnK_, € / ^ ( q r C ^ a r e p'Q,..., p'n _t e PffpW<&/p)) respectively, then
P'= /,(/>;,..., P ;_ , ) .

Since the polynomial function p ' is obtained by using the same steps as in the con-
struction of p , if we take into account (i) from above, and write p instead of p'
then

(3') {p(a) | a e p(aQ,...,an_{)} c p(p{aQ),..., p{an-X)).

Let q, r e P(n)(r) and let 21 be a multialgebra of type x. We say that the n-ary
(strong) identity q = r is satisfied in the multialgebra 21 if

q(ao,...,an^) = r(a0, . . . , « „ _ , )

for all a0,..., an_i e A, where q = (q)<p.<a) and r = (r)«p.(aj. We also say that a
weak identity q n r ^ 0 is satisfied in the multialgebra 21 if

q(a0, ..., a n _ i ) n r(a0,..., a n _ i ) ^ 0

for all fl0. • • •, fl«-i e ^-
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[5] Multialgebras, universal algebras and identities 125

REMARK 6. Many important particular multialgebras can be defined by using iden-
tities.

3. On the factor multialgebra of an algebra

THEOREM 3.1 ([8]). For any multialgebra 21 of type z, there exists a universal
algebra 03 of type z and an equivalence relation p on B such that 21 = 23//?.

Since 93 is a universal algebra we can rewrite the multioperations from 03/p as
follows, for any y < o(x) and any bQ, ..., bn/_\ e B,

fY(p{b0), . . . , p(bny_\))

= {p(c) | c = fy(c0, . . . , cny.\), bipCi, i e { 0 , . . . , ny - 1}}.

REMARK 7. If we consider p as in Remark 5 and if b0, ..., bn_\ e B, then we have

(4) p(p{bo),...,p(bn-i))

2 {p(c} | c = p(c0, . . . , ( ? „ _ , ) , cj, i e { 0 , . . . , « - 1 } } .

REMARK 8. It follows immediately that if n e N, q, r e P(n)(z), and q = r is
satisfied on the universal algebra 03, then for any b0, ..., bn_\ e B the class of

q(b0, . ..,fcn_i) = r(^0 V i )

modulo p is mq(p{b0), . . . , p(^,,_i>) nr(p(/)0), • • •, p{bn_{)), thus the weak identity
q n r ^ 0 is satisfied on the multialgebra 03/p.

Next, we give an example which shows that, in general, the inclusion (4) is not an
equality. It also follows that the above weak identity on the multialgebra 53/p does
not need to be strong.

EXAMPLE 1. Let (25, +) be the cyclic group of order 5 and let us consider on Z5

the equivalence relation p = {0, 1} x {0, 1} U {2} x {2} U {3,4} x {3,4}. Then
p{0) = p(l) = {0, 1}, p{2) = {2}, and p{3) = p(4) = {3,4}. Using the above
considerations we obtain a multialgebra with one binary multioperation (that is, a
hypergroupoid) on !5/p — {{0, 1}, {2}, {3, 4}} with the table

^

{0,1}
{2}
{3,4}

{0
{0,1
{2},

{0,1}

,1}
}, {2}
{3,4}
{3,4}

{2}
{2}, {3,

{3,4}
{0,1}

4}

{0

{0,

.1}

{3,
1},
{0,

4}
{3
1}

. {2},

,4}

{3,4}
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The inclusion (4) is not always an equality since

{p(c) \c = (bQ + b,) + b2, bo = bt= 2, b2 e {3, 4}} = {p(c) | c e {2,3}}

= {p<2},p<3}}

and

(p<2> + p<2» + p<3> = p<3) + p<3) = {p<0>, p{2),

We also have p(2) + (p(2> + p(3)) = p{2) + p(0) = {p(2>, p(3)}. Thus the
associativity holds only in a weak manner for the hypergroupoid (25 /p, +) .

REMARK 9. Some identities, such as those which characterize the commutativity
of an operation of a universal algebra, hold strongly on the factor multialgebra.

EXAMPLE 2. Let 05 be a universal algebra of type r. Let y < o(r) and assume that
for a permutation a of the set { 0 , . . . , nY - 1},

is satisfied on 95.
Consider b0,..., bny-X e B. If p{c) e fy(p(b0),..., p (£>„,,-1)), then there exist c0,

. . . ,cn),_i e B withboPQ), • • •, bny.xpcny-\ suchthatc = fy(c0, ..., c«y_i). However,

ba<.o)PCa(O), • • •, bainr-\)pca(nr-\) and fy(c0,..., cB),_i) = fy(ca{0), . . . , c ^ - i , ) ,

thus p(c) e fY(p(ba(p)), -.., p{ba(nr-X))). Clearly, the identity

fy(X<r-i(0), • •• i Xff-'Ciy-l)) = fj-(XOi • • • t X n y - l )

also holds on the universal algebra 93, hence

fy(p{ba(0)), •-., P{bo(nr-\))) <=

It means that for any b0,..., bB|,_i e B, we have

fy(p(b0}, ..., p(bny-i)) = fy(p{ba

hence the identity f y (xo, . . . , xB),_i) = ^(x^n), . . . , x,,^^!)) is satisfied on the multi-
algebra 2$/p.

Now we describe the factor multialgebras of semigroups, groups, abelian groups,
rings and lattices.

3.1. The case of semigroups Consider a semigroup (5, •) and an equivalence
relation p on 5. According to Remark 8, the hypergroupoid (S/p, •) satisfies the asso-
ciativity in a weak manner. Such a hyperstructure is called //^-semigroup (see [14]).
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[7] Multialgebras, universal algebras and identities 127

3.2. The case of groups Consider a group (G, •) and let p be an equivalence relation
on G. The existence and uniqueness of solutions of the equations ya — b and ax = b
allow us to define on G the operations / and \ by

b/a = {y e G \ b — ya} and a\b — {x e G \ b = ax}.

So, the group G can be seen as a universal algebra (G, •, / , \) satisfying the following
identities

(X0 - X , ) - X 2 — X0 • (X| - X 2 ) , X, — X0 • ( X o \ x , ) , Xj = ( X i / X o ) - X 0 ,

x i = x o \ ( x o • x i K x i = ( x i • x o ) / x o -

We obtain the multialgebra (G/p, •, / , \ ) , which satisfies the above identities in a
weak manner. It follows that (G/p, •) is an //,-semigroup satisfying

p{a) • G/p = G/p = G/p • p{a), for any a e G,

that is, is an //t-group (see [14]). In general, an //,,-group does not have an identity
element. In our case the class p{ 1) of the identity element of G satisfies the condition

p{a) e p{a) • p{\) D p{\) • p ( a ) , f o r a n y a € G ,

hence the weak identities x0 • 1 n x0 ^ 0 and 1 • x0 n x0 / 0 are satisfied on the
Hl -group G/p. Moreover, any class p{a) e G/p has an inverse since

p(\) ep(a-i)-p{a)np{a)-p(a-1)

(a~! denotes the inverse of a in G).
If the group G is abelian, then the Hl -group G/p is commutative (see Example 2).

3.3. The case of rings In [14], a hyperstructure (/?, +, •) is called Hv-ring if (/?, +)
is an //,-group, (/?, •) is an //,-semigroup and for any a, b,c e R we have

a(b + c) n (ab + ac) ^ 0 and (b + c)a n (ba + ca) ^ 0.

It is easy to see that the factor multialgebra of a ring is an //,,-ring (for which the first
multioperation is commutative).

REMARK 10. Since the absorption (which is required in the definition of a hyper-
lattice, see [ 1 ]) is not satisfied in a strong manner in the factor multialgebra, the factor
multialgebra of a lattice is not necessarily a hyperlattice.
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128 Cosmin Pelea and loan Purdea [8]

EXAMPLE 3. Consider the lattice (N, A, V ) , where N = {0, 1, 2 , . . .} is the set of
the nonnegative integers, a A b = gcd(a, b), and a v b = lcm(a, b). Let us denote
by P the set {2, 3, 5, . . .} of prime numbers and consider

p = P x PU((a , f l ) [ a e N \ I P ) .

Clearly, p is an equivalence relation on N and we have

p<2) 6 p(2) v (p<2) A p < 6 » = p(2) v [p{\), p(2}}

= {p{2)}U{p(pq) \p,qeP,p^q],

so the absorption holds only in a weak manner.

4. A class of equivalence relations on a multialgebra

Let p be an equivalence relation on the set A. We denote by p the relation denned
on P*(A) as follows. If X, Y e P*(A), then

TJ5Y <=> xpy, VJC 6 X, Sy e Y (<=> X x Y C p).

It follows immediately that p is symmetric and transitive. In general, p is not reflexive.

Indeed, let us take, for example, the equality relation on A, denoted here by 8A. The

relation SA is reflexive if and only if \A\ = 1.

PROPOSITION 4.1. Let 21 = (A, (/>,)>, <o(r)) be a multialgebra of type x and let p be
an equivalence relation on A. The following conditions are equivalent:

(a) 2l/p is a universal algebra;

(b) Ify < o(z), a, b, JC, e A, i e { 0 , . . . , ny — 1}, with apb, then

fy(x0,..., *,-_!, a, xi+i, . . . , jc^.Op/yCxo, • • •. *i-i, b, x/+i, . . . , xn/_i),

for alii € { 0 , . . . , wy — 1};

(c) Ify< o(r) and xt, yt e A with Jc,p>>, for any i e {0, . . . , nY — 1}, then

f y ( x 0 , . . . , x n r - l ) ' p f y ( y o , •••, y n y - \ ) ;

(d) lfn e N, p e P^'OP*(21)), anrf JC, , y, e A with x{pyjor any / € {0, . . . , n - 1},
• • • , yn-\)-

PROOF, (a) if and only if (b) was proved in [2, Remark 12.a]. From the proof of
(b) implies (a) it follows that (b) implies (c) and (c) implies (a). Since (d) implies
(c) is obvious, it is enough to show that (c) implies (d) to complete the proof. This
was proved in [2, Theorem 13] for the case when p e /""'OP*(21)). The reasoning is
almost the same, that is why we skip it here. •
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[9] Multialgebras, universal algebras and identities 129

EXAMPLE 4. A hypergroupoid (//, •) is called semihypergroup if

(a • b) • c = a • (b • c), for any a, b, c e H.

An equivalence relation p on a semihypergroup (H, •) is called strongly regular if for
any a, b,x e H with apb we have ax~pbx and xa~pxb. It is clear that the strongly
regular equivalences of a semihypergroup are those relations p for which (H/p, •) is
a groupoid. Note that (H/p, •) is a semigroup (see [4, Theorem 31]).

REMARK 11. If the equivalence relation p satisfies one of the equivalent condi-
tions in Proposition 4.1, then the operations in the factor multialgebra (which is
a universal algebra) are defined as follows: if y < o(x), a0, ..., any_\ e A, and
b e fy(aQ a,, _i),then

(5) fy(p(a()),...,p{anr-i)) = p{b).

LEMMA4.2. LefX. = (A, (fy)y<o(T)) be a multialgebra of type x. The set Eua{%) of
the equivalence relations p on A for which 21/'p is a universal algebra is an algebraic
closure system on A x A.

PROOF. Consider a family (p, \ i e I) of relations from Eua0&), let y < o(r) and
X j , \ j e A (j e { 0 , . . . , n y - 1 } ) .

If we assume that (xn yy) e f\jel p, for all j e { 0 , . . . , nY — I}, it follows that
XjPjVj for any / e I and any j e {0, . . . , nY — 1}. Thus, for any / e / we have

f y ( x 0 , — x n y - . l ) ' p ~ f y ( y o , •••, y , , y - \ ) -

Therefore, xpi\ for any / e / , x e fy(x0,..., xn^y), and y e fY(yo,..., yn..-\)- ft

means that (x, y) 6 f]ia p, for any x e fY(x0, ..., xny_\) and y e /y(.Vo, • • •, .Vn/-i)

or, equivalently,

( / y ( x 0 , . . . , J T ^ . _ I ) , fy(y0, .••,yny-\)) e

Thus, we have proved that f]jel p, e £,,a(2l).
If (Xj, Vj) e [J i e / p, for all j e {0 , . . . , nY - 1}, then for each j e { 0 , . . . , nY - \}

there exists /y- e / such that (Xj, yj) e p,r Assuming the ordered set (jp, | i € / } , c )
is directed and / ^ 0, we obtain an element m e I such that p(j c pm for all y €
{0, . . . , n Y - \ } . C o n s e q u e n t l y , w e h a v e f Y ( x 0 , . . . , xny^i)p^fy(y0, . . . , y n y - i ) . H e n c e
(x, y) e pm c U / e / p, for any x e fY{x0,..., *„,,_,) and y e fy{y0, . . . , .yW/_i),
which means that

(fY(xo, . . . , x n y - x ) , fy(y<>, . . . , y n / - i ) ) e { J p i -
ie.1

ThusUi6/A e £uu(2l).

https://doi.org/10.1017/S1446788700014671 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014671


130 Cosmin Pelea and loan Purdea [ 10]

COROLLARY4.3. Let% = (A, {fY)Y<o(x)) be a multialgebra of type x. ifR c AxA,
then the relation a(R) = f~){p e Eua{%) \ R C p) is the smallest equivalence relation
on A containing Rfor which the factor multialgebra is a universal algebra.

REMARK 12. If the multialgebra 21 is not a universal algebra, then the smallest
element of Eua (21) is not SA.

For a multialgebra 21 the smallest equivalence from £ua(2l) will be denoted by a*
( o r a j when necessary) and it will be called the fundamental relation o/2l. We recall
that the fundamental relation a* of the multialgebra 21 is the transitive closure of the
relation a defined by xay if and only if x, y e p(a0, . . . , an_i) for some n e N,
p 6 ^n)(q3*(2l)), and a0,..., aB_, e A (see [10]).

Let n e N and q, r 6 P(n)(T). In [11, Proposition 3] we proved that if the weak
identity qf l r ^ 0 is satisfied on the multialgebra 21, then the identity q = r is satisfied
in the factor multialgebra 2l/a* (which is a universal algebra). This happens because
a* contains the relation

, ... , a >), y e r(a0, ... ^ a ^
a0 fl,-i e A

REMARK 13. Even if the weak identity q n r ^ 0 is not satisfied on the multialge-
bra 21, we can obtain a factor multialgebra of 21 that is a universal algebra satisfying the
identity q = r by taking the factor multialgebra determined by a relation from Eua (21)
which contains /?qr. Also, each relation from £HO(2l) that gives a factor multialgebra
satisfying the identity q = r must contain the relation Rqr. It means that the smallest
relation from £ua(2l) for which the factor multialgebra is a universal algebra satisfying
the identity q = r is the relation a(Rqr). From now on, we will denote the relation
a(/?q r )byaqV

REMARK 14. It follows immediately that a* = a(0) — a(8A) - a^, and it is
, * •obvious that a* c a* for any q, r 6 P(n)(T).

We give a characterization of the relation a*r in terms of unary polynomial functions

from P^n(q

REMARK 15. By the construction of the polynomial functions from /)^1)(<p*(2l)) it
follows that the usual mapping composition of two elements from /)^I)(^}*(21)) is an
element of P ^ O P * ^ ) ) .

Indeed, if / , p e P^1>(<P*(2l)), then fop: P*{A) ->• P*(A), and we have:

(i) if a e A, f = c\ and X e P*(A) is arbitrary, then ( / o p)(X) = cl
a(p(X)) =

a = cl(X). Thus / o p = c\ € Pil)
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[11] Multialgebras, universal algebras and identities 131

(ii) if / = el
0 and X e P*(A) is arbitrary, then ( / o p){X) = el

0(p(X)) = p(X).
Thus f o p = p;

(iii) if Y < o(x) and for f°, ..., fy'1 e P{
A

l) (ty* (%,)) was proved that

then for f = fY (f° /" '" ' ) we have

(/ o p)(X) = f(p(X)) = fY{f\ . . . , f

= fy(P0, . . - , Pn

and thus fop = fy(p0,..., Pn _,) e P*"

Now we can prove the main result of this section.

THEOREM 4.4. Letn e N, q, r € P( f l ) ( r) . /ef 21 = (A, ( / K ) y < 0 ( r ) ) be a multialgebra

of type r, a/ii/ /ef aqr c A x A be the relation defined by

xaqry o 3 p 6 /^"(«P*(2l)), 3a0 a«_i € A such that

x e p(q(a(),..., a n _ i ) ) , j € p(r(a0, ..., a n _ i ) ) o r

y € p ( ^ ( a 0 , • • •. « « - i ) ) , x e p(r(a0, ..., a n _ i ) ) .

77?e relation a*t is the transitive closure of the relation aqr.

PROOF. Let a' be the transitive closure of the relation aqr. We will show that
a* = at' by proving the following statements:

(A) The relation a' is an equivalence relation on A containing Rqr.

(B) If / e / ^ ' ' C P ' ^ ) ) , and for the elements a,b e A we have aaqrb, then

(C) The factor multialgebra 2l/a^r is a universal algebra satisfying the identity q = r.
(D) If p € £uu(2l) such that the identity q = r holds on the universal algebra 21/ p,
then a'v c p.

PROOF OF (A). It is obvious that aqr is symmetric. Taking p = c\ for any a e A,
we obtain the reflexivity of aqr. Thus aqr is the smallest equivalence relation on A
containing aqr. The inclusion Rqr c a'qr follows by considering p — e'o.

PROOF OF (B). From aa'qrb it follows that there exist m e N* and z0, • • •, zm-\ e A
such that a = ZoUqTZ\Uqr... aqTzm-\ = b. Let us consider j e { 0 , . . . , m — 2}. Since
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ZjdqrZj+i, there exist p e P^(ty*(%.)) and a0,..., an_i e A such that

Zj e p(q(ao,...,an_i)), zj+\ e p(r(a0, ..., an_y)) or

Zj+\ e p(q(aQ,..., a n - , ) ) , z-s e p(r(a0, ..., an_\)).

However, p' — f o p e P^'C^P'CSl)) and we have

c p'(q(aQ, . . . , a n _ i ) ) , f(Zj+\) 9 p'(r(a0, ..., a,,_i)) or

C p'(q(a0,..., a n _ i ) ) , / ( 2 y ) c p'(r(a0,..., a n _ i ) ) .

However, for any M7 e f(Zj) and any MJ+I G f(Zj+i) we have Myaqr«;+i and,
consequently, uoa'qrum^l. Since M0 e f(a) and «m_i e /(fc) are arbitrary, we obtain

PROOF OF (C). Consider y < O(T) and the arbitrary elements a, b, JC0, . . . , jcrtj,_! e -4
such that aaqrb. Applying (B) to the unary polynomial functions (from P^(ty*(

Mel <, . . . , clyj, /y(<, el < , ..., <7_,),..., /y(< < 2, el).
2

it follows that a'qr verifies (b) from Proposition 4.1, hence 2l/ceqr is a universal algebra.
Remark 13 and (A) complete the proof of (C).

PROOF OF (D). Let p be a relation from £ua(2l) such that the identity q = r is
satisfied on the universal algebra 2l/p, let p e P(I)(^}*(21)), aQ,..., an_i € A, and
x e p(q(a0,..., an_])), y € p(r(a0,..., an_i)). We will show by induction over the
steps of the construction of a polynomial function from /^l)(<P*(2l)) that xpy.

If a e A and p = c\, then * = y = a and xpy.
If p = £Q, t h e n * 6 q(a0,..., a n _ i ) , y e r(a0, . . . . a n _ , ) and using Remark 13 we

ha\e(x,y) 6 Rqr c p.
Assume that the statement is true for p0, •.., pn>,-i (y < o(r)) and consider

/> = /^CPO. •••, Pnr-\)- If

= fy(Po(q(ao, . . . , a n _ i ) ) , . . . , p n /

and

y G p ( r ( a 0 , . . . , a n _ i ) ) = fy(po, ••-, Pnr-i)(r(a0, ..., «„_,))

= fy(Po(r(ao, . . . , « „ _ , ) ) , . . . , p n y _ i ( r ( a 0 , . . . , a B _ i ) ) ) ,

then there exist J : , -ep , - (9(a 0 . • • •. a«-i)) ,3 ' i e p,-(r(a0, . . . , a n _ i ) ) , / e {0, . . . , nY- 1},

such that x e fy(xQ,..., *„ ,_ , ) and y e / y ( > > o , . . . , ^ - i ) . Since Xipy, for all / €

{0, . . .nY — 1}, using Proposit ion 4 . 1 , it results xpy. Analogously, if we take x e

p(r(a0,..., a n _ , ) ) and y e p(q(a0, . . . , an-{)), then x p y .

It follows that aqr c p, thus aqr c p . •
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EXAMPLE 5. Let (//, •) be a semihypergroup. The smallest strongly regular equiv-
alence on H such that the factor semihypergroup is a commutative semigroup was
determined in [7]. This relation, denoted by y*, is the transitive closure of the relation
Y — L L v Yn, where y, = SH and, for any n > 1, yn is defined by

xyny o 3(zu ..., zn) e H", 3a e S,, : x e ]~[z,, y €

(5n denotes the set of the permutations of the set {1, . . . , n\). Since the set of cycles

(1, 2), (2, 3), . . . , ( « — 1, n) generates the group Sn, it follows that y* is the transitive

closure of the relation y' — {Jn€%- y'n where y[ — SH and fo r« > 1,

xy'ny if and only if there exist (z\,..., zn) e H", and/ e { 1 , . . . , « — 1} such

t h a t x e z \ • • • Z i - i ( z i Z i + i ) z i + 2 • • • z n , a n d y e z \ • • • z , - i ( z , + i Z , ) z , + 2 • • - z n .

Clearly, y' = aqr with q = xox, and r — X\X0.
From [7] it follows that if (H, •) is a hypergroup, then the relation y is transitive and

y* — y is the smallest equivalence relation on H such that H/y* is a commutative
group.

REMARK 16. If (H, •) is a hypergroup and p is a strongly regular equivalence
on H, then H/p is a group (see [4, Theorem 31]). If q, r are two n-ary terms, then the
smallest equivalence relation on H such that the factor hypergroupoid is a semigroup
satisfying the identity q = r is the transitive closure xjr* of the relation

• -UJ x p(r(au

U p ( r ( a , , . . . , a,,)) x p(<?(a,, . . . , an))

p e Pl
HW(H,-)),}

and au . . . , « „ e // I

Since this relation is strongly regular, the factor semihypergroup is a group. It means
that ijf* contains the smallest relation a* of the hypergroup (//, •, / , \ ) with the
property that the factor hypergroup is a group satisfying the identity q = r. Since

p{q(au ...,an)) x p(r(au . . . , « „ ) )

Up(r(at, ...,an)) x p(q(au ...,an)
p e Pi(<p*(//,.,/,\))!
and a\,..., an e H

and P^(«P*(//, •)) ^ P^(<p*(//, •, / , \ ) ) , it follows that V c aqr, thus ^* c a*r and
we obtain \}r* = a*.

So, the smallest strongly regular equivalence on H for which the factor hypergroup
satisfies the identity q = r can be obtained by considering in Theorem 4.4 only those
polynomial functions p that are obtained with the multioperation • (in other words, it
is not necessary to use the multioperations / and \ in the construction of p).
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It is easy to observe that Theorem 4.4 and Remark 14 lead to the following charac-
terization of the fundamental relation of a multialgebra.

COROLLARY 4.5. The fundamental relation a* of a multialgebra 21 is the transitive
closure of the relation a' C A x A defined by xa'y if and only if there exist p €

l l \ andae A such thatx, y e p{a).

5. Identities and factor multialgebras

Let n € N and q, r e P(n)(T). Let 55 be a universal algebra and p an equivalence
relation on B. We denote by pq r the smallest equivalence relation on B containing p
and all the pairs (q(b0,..., bn_\), r(b0, . . . , bn^i)) with b0, ..., bn_\ e B. We denote
by 6(pqr) the smallest congruence relation on 05 containing pv. Clearly 9(pv) is the
smallest congruence relation on 05 containing

p U {(q(b0,..., /?„_ , ) , r(b0, ..., bn_x)) \ b0 bn_x e B}.

Theorem 10.4 from [9] presents a characterization for the smallest congruence
relation of a universal algebra, which contains a given relation. According to this,
x9(Pqr)y if and only if there exist m e N*, a sequence x = t0, t\, ..., tm = y, and
pairs of elements

(xh yt) € p U {(q(b0,..., /?„_ , ) , r(b0,..., V i ) ) I b0,..., fen_, e B}

and unary algebraic functions /?,, / e { 1 , . . . , m], such that

[ P i i x d , P , i y i ) } = { t i - u t i ) , i e [ ] , . . . , m } .

Clearly, if we take q = r = x0, then 9(pqr) is the smallest congruence relation on 53
which contains p. We denote it by 6{p).

LEMMA 5.1. Let p be an equivalence relation on a universal algebra 23. Ifn e N,
p € P^OP 'OB/p ) ) , andx, y,Zo,..., zn-i e B are such that

p{x), p{y) € p(p{z0), ..., p(zn_i)),

then x6(p)y.

PROOF. We prove this lemma by induction over the steps of construction of the
polynomial functions from P^pW*V&/P))•
Step 1. If p = c"p{b) for some b € B, then p{x) = p{y) — p(b) and hence xO(p)y.
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Step 2. If p = e" for some / € {(), . . . , n - 1}, then p(x) = p(y) = p(z,) and hence

x6(p)y.
Step 3. We consider the statement proved for p0,..., pn,,-\ (Y < o(j)) and we take

P = fyiPo, • • • - Pnr-\)- S i n c e

p(p{Zo), ••-, P ( 2 « - I » = fy(Po, •.., Pn.,-\)(P(ZO), • • • , p(Zn-\})

= fy(Po(p{ZO), • • • , p{Zn-\)), • • • , Pnr-\(P(Zo}, • • • , p ( Z n _ i » ) ,

from p{x), p(y) e p(p{zo), • • •, p{zn-\)), we deduce that there exist some elements

x t , y , e B w i t h p (*,•), p (>>,-) e Pi(p{z0), •••, p{zn~\)) s u c h t h a t

fy(p(x0), • • •, P ( . V , , : / _ I ) ) , p ( y > € f y ( p ( y o ) , . . . , p{yny-\)).

From the definition of the mul t iopcra t ion / y i n * 8 / p it follows that there exist x\, y- e B

with Xjpx- and ^py, ' (/' € {0, . . . , ny — 1}) such that x = fy(x'o,..., x'n _ , ) , and

y = /yC^o' •••->'«, - i ) - Since the statement holds for p0,..., pny-\, it follows that

XjO(j))yj for all i e {0, . . . , nY — 1}. Hence x.px,, Xi9(p)yh yipy- which implies

x'i9{p)y'i for all i e {0, ... ,ny — I}. However, 0(p) is a congruence on 55, thus

which ends the proof of the lemma. D

L E M M A 5.2. Let n e N, q, r e P( n )(T) and let p be an equivalence relation on the

universal algebra *8. If p € Pgl
/
)
/9(<P*(<8/p)) andx, y,Zo, ..., zn-\ € B are such that

p(x) e p(q(p(zo),-.-,p(zn-i))) and p(y) e p(r(p(z0),. •., p(zB_i))) ,

PROOF. We prove this lemma by using the steps of construction of the polynomial

functions from P$,CP* (93//>)).

Step 1. If p = cl
p{b) for some b e B, then p{*) = p{y) = p{b) and hence x9(pqr)y.

Step 2. If p = ei , then p(x) eq(p{z0),..., p(zn-\)) and p(y) er(p(z0), ..., p{zn-\))-

According to Remark 7 we also have p{q(zo, • • •, zn-\)) € q(p{zo), • • •, p{zn-\)) and

p(r (zo , . . . . zn-i)} e r(p(z0), . . . , p(zn_i», so, using the previous lemma, it follows

that x6(p)q(z0, ••-, zn-\) and yO(p)r(zo, ••-, zn-\)- H o w e v e r , 6{p) c 0 ( p q r ) and

q(z0, . . . , zn-\)O(pqr)r(zo, . . . , Zn-i), t hus x6(pv)y.

Step 3. We consider the statement proved for p0,..., pn,,-\ (y < O(T)) and we take

P = fyiPo, • • • . Pn.-i)- Since

, .-., p ( Z n - \ ) ) ) , •••, P n r -
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and

P(r(p(zo), ...,

= f y ( p 0 , ..., P n r - l ) ( r ( p ( Z 0 ) , • • • , P(Zn-\)))

= f y ( P o ( r ( p { z o ) , . . . , p ( Z n - i ) ) ) , •••, p n y - i ( r ( p { z o ) , ••-, p { Z n - i ) ) ) ) ,

from p(x) e p(q(p{z0), •.., p(zn-i))) and p(y) e p(r(p{z0),..., p(zn_i))), we
deduce that there exist*,, ;y, 6 B with p{x,) € Pi(q(p(zQ),..., p(zn-\))) and p(y,) e
Pi(r(p(zo),..., p(zn-i))) such that

p(x) € fy(p{x0),..., p(xny-x)), p(y) e fy(p(y0),..., p{yn.,-i))-

From the definition of the multioperation fY inQ3/p it results that there exist*,', y\ e B
with Xipx'j and yipy\ (i 6 { 0 , . . . , ny — 1}) such that x = fy(x0, ..., x'n _,), and
y — fy(y'Q, ..., y'n _ ,) . Since the statement holds for p0, ..., pny_x it follows that
XiO{pv)y, for all i e { 0 , . . . , nY — 1}. Hence x\pxt, Xi6(pv)yi, y,py\ which implies
x'ft(Pv)y'i for all / e {0, . . . , ny — 1}. However, # ( / v ) is a congruence on 03, thus

X = fy(x'o, • • • , •<x_,)0(A1r)/y<Jo< • • • , y'ny-i) = y,

which ends the proof of the lemma. •

Now we can prove the main result of this paper.

THEOREM 5.3. Let n e N and q, r e P<n)(T). If p is an equivalence relation on a
universal algebra 05, then (<8/p)/a*r = <B/6»(pqr).

PROOF. First we will prove that the correspondence or*r(p(a)} i-> #(pqr) {a) defines
a bijective map h : (B/p)/a* -> B/0(pqT).

For this, we will show that if a, b e B, we have p (a )a*rp(b) if and
If p{a)a*rp(b), then there exist m € N and z0, • • •. zm e fi such that

p(a> =p<Zo}aVP(zi)aqr.-.<VP{zm} = P(b).

Thus for each / e { 1 , . . . , m] there exist p,- e P^C^'CfB/p)) and
such that

/0<z^_!»), Pfe) e Pi(r(p{Zo), ..., p(z^_,») or

z , - i ) 6 P i ( r ( p ( z ' o ) , . . . , p { z l , _ i ) ) ) , p ( Z i ) e P i ^ ^

According to Lemma 5.2 it follows that for any i e {1, . . . , m] we have z,_i#(pqr)z,.
We deduce that Zo#(pqr)zra. However, apzo, zmpb and p c ^(pqr), thus aB{pv)b.
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Converse ly , if a6(pv)b, t he re exis t m e N , a s e q u e n c e a — to,tx, . . . , tm = b, pa i r s

o f e l e m e n t s ( x h yt) e p U { ( q ( b 0 , •••, b n _ x ) , r ( b 0 , . . . , b n _ x ) ) \ b 0 , . . . , b n _ x e B ] ,
and unary algebraic functions p,, i e {1, . . . , m], such that

[ t i - u t i ] = {Pi(Xi), P i ( y , ) ) , i e [I, ..., m ) .

We have {p ( / , _ , ) , p(t,)} = {pipdXi)), p{p,(y,))}.

If (Xj, >',) e p, then /3{x,) = p ( v , ) , and s ince

p(Pi(Xi)) e Pi(p(xi)) = Pi(p{yi)) B

we deduce that p(f,_,>or'p(/,•), thus p{t,-\)a*vp{ti).

If (*,-, >',) = (9(fc0. • • •. *«-i)- ''(^o. • • •. £„_,)) for some fc0- • • •. bn-\ e S, from

e pi(p(q(b0 fen_

iiVi)) = p(Pi(r(b0 fen-i))> e pi(p(r(b0, . . . , V i

it follows that p(f,-i)a*rp{f,).
So, we have proved that p(a) = p{to)a^Tp(tm) = p{b).
We deduce that /? is well defined and also that h is injective. Its surjectivity is

obvious.
Now, we can prove that the map h is an isomorphism between the universal algebras

(Q3/p)/a; and <£,/8(pqr).
Indeed, let us consider y < o(x) and b0, •. •, bnv-i 6 B. Since

for any p(fc) € fy(p(b0),..., p{bny-X)) and since

p(fy(bQ, ..., bny_x)) e fy(p(b0), ..., p{bny.x)),

we have fY{a*v(p(b*)), ..., a*qr(p{bny-X))) = a*qr(p(fy(b0, . . . , />„,_,)», thus

We also have

= 6(pqT)(fY(b0,...,bny_x)),

hence h is a homomorphism. •
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Let a* be the fundamental relation of the multialgebra 21. The universal algebra
2l/a* will be denoted by 21 and it will be called the fundamental algebra of the
multialgebra 21. Since a* = a*oXo and p ^ = p we have the following result.

COROLLARY 5.4. Let p be an equivalence relation on the universal algebra *B
and let 9(p) be the smallest congruence relation on *B which contains p. Then

From Corollary 5.4, using the notations from the beginning of this section, we
obtain the following.

COROLLARY 5.5. Let n e N and q , r e P< / ! )(r). If p is an equivalence relation on

a universal algebra 93, then 23 /p q r = 93/6*(pv).

From Theorem 5.3 and Corollary 5.5 we obtain the following consequence.

COROLLARY 5.6. If p is an equivalence relation on the universal algebra 53, then
(«8/p)/a*r =

6. An application to hypergroups

A hypergroup is an //u-group satisfying the associativity in a strong manner. A
classical example of hypergroup is obtained in [8], by factorizing a group (G, •)
through an equivalence relation determined by a subgroup H. The definition of the
hyperproduct on G/H = [xH | x e G] is

(xH)(yH) = {ZH \z = x'y', x' e xH, / € yH}.

Clearly, (G/H, •) is a group if and only if H is a normal subgroup of G.
Let y be the smallest strongly regular equivalence on G/H such that the factor

hypergroup is a commutative group. If G' is the derived subgroup of G, then G H is
the smallest normal subgroup N of G for which H c N and G/N is abelian. From
Theorem 5.3 we obtain the group isomorphism

h : (G/H)/Y - • G/(G'H), h(y(xH)) = x(G'H).

The derived subhypergroup D(K) of a hypergroup (K, •) is characterized in [7,
Theorem 3.1] as being (p^\]K/y) where <pK : K —>• K/y is the canonical projection
and \K/y is the identity of the group (K/y, •).

Let TZH : G —> G/H and <pG/H '• G/H —*• (G/H)/y be the canonical projections.
Using [7, Theorem 3.1], a connection between the derived subhypergroup of G/H
and the derived subgroup of G can be established as follows:

D(G/H) = (ho <pc/Hy\G'H) = {xH\xe G'H) = (G'H)/H = nH(G').
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Of course, if C c H, then H is an normal subgroup of G and G/H is an abelian

group, so D(G/H) = (G/H)' = H. If H c G\ then D(G/H) = G'/H.
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