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0. Let £ be a Banach space, and let N{E) be the Banach algebra of all nuclear
operators on E. In this work, we shall study the homological properties of this algebra.
Some of these properties turn out to be equivalent to the (Grothendieck) approximation
property for E. These include:

(i) biprojectivity of N(E);
(ii) biflatness of N(E);
(iii) homological finite-dimensionality of N(E);
(iv) vanishing of the three-dimensional cohomology group, H3(N(E), N(E)).
This adds another property to the wide range of concepts in functional analysis and

topology that can be characterized in terms of topological homology (see [1, Preface,
§6]): the approximation property for Banach spaces. This property is discussed in [1], [2],
[3], and [4].

Let A be a Banach algebra, not necessarily with an identity, and let A+ be its
unitization. All homological concepts to be used below (the cohomology groups of A, the
groups "Ext", the homological dimension dh^ A' of a (left Banach) ,4-module X, the
(left) global dimension, dg.,4, and the cohomological dimension (otherwise called
bidimension), dbA, of A, (bi)projectivity, (bi)flatness and others) are assumed to be
known; they are set out in detail in A. Ya. Helemskii's book [1] (see also [5]).

Let B(E) (respectively K(E)) be the Banach algebra of all continuous (respectively
all compact) linear operators on E. We recall that the algebra N(E) of all nuclear
operators on E consists of those elements T e B(E) which can be represented as an

oo

absolutely convergent series E Sn of one-dimensional operators, and that

imi,
»-n=l n = l

As usual, any subalgebra of B(E) that is a Banach algebra with respect to a certain
norm ||.|| > | | . | |B(E) will be called an operator Banach algebra on E. We recall (see [6,
Corollary 3.2]) that, if an operator Banach algebra A contains all finite-rank operators on
E, then it contains N(E) as a continuously embedded bi-ideal of A and is itself a Banach
N(£)-bimodule in the natural sense. In particular, we can speak about the N(E)-
bimodules B(E), K(E), and N(E).

Let E* be the dual space of E, and let A(E) = E®E* be the tensor algebra
generated by the duality (x,f) =f{x) (x e £ , / e E*) (see [6]), with multiplication given
by

Here ® denotes the projective tensor product of Banach spaces (see [2]). We recall
that there exists a homomorphism of Banach algebras r:A(E)—*B(E) defined by
T(X ®f)(y) = {y,f)x. The image of this homormorphism is the set of operators that can
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230 YU. V. SELIVANOV

be represented in the form

oo

oo

where xneE, fneE*, and E II/JI \\xn\\ <°°, i.e., it coincides with N(E). The co-

restriction of T to N(E) is denoted by d:A(E)-> N(E). It is clear that

\\e(a)\\NiE)^\\a\\A(E) (aeA(E)).

Let LE = ker 6. Then LE is a closed bi-ideal of A(E), and the operator
generated by 0 is an isometric isomorphism of Banach algebras. It is known (see [2, I, §5,
Proposition 35]) that LE = 0 if and only if E has the approximation property (AP for
short); in this case the Banach algebras A(E) and N(E) are isometrically isomorphic.

By Lemma 2.2 of [6], the algebra A(E) is always biprojective, and therefore (see [1,
Theorem V.2.28]) for A =A(E) (and also for A = N(E) in the case where E has AP) we
have Hn(A,X) = 0 for all y4-bimodules X and for all n > 3. In particular, dg/l ^ 2 and
dh,4 C ^ 1, where C = A+/A is the one-dimensional annihilator .A-module.

The content of the paper is as follows. The key result of Section 1 (Theorem 1) is
that, if E does not have AP, then, for A = N(E), we have dhAA = cc. It follows
(Corollaries 1 and 2) and dg.4 = dhA C = °°, and A is neither biprojective nor biflat. In
Corollaries 3 and 4, Theorem 1 is used to study the cohomology groups H"(A,X) and
singular extensions of the algebra A = N(E) by X, where X is a right-annihilator
/1-bimodule. In Section 2, the global and cohomological dimensions (and other
characteristics) of the algebras A{E) and N(E) are calculated for each infinite-
dimensional Banach space E. We show (Theorem 2 and Corollary 5) that dgA(E) =
db A(E) = 2, and the condition that dgN(E) = 2 (dbN(E) = 2) is equivalent to the
approximation property for E. Section 3 studies the cohomology groups of the algebra
N(E) with coefficients in annihilator and some other bimodules. In particular, Theorem 6
shows that H2(N(E), N(E)) = 0 for each Banach space E, and that H3(N(E), N(E)) = 0 if
and only if E has AP.

1. Homological finite-dimensionality for the algebra of nuclear operators. We shall
prove the following theorem.

THEOREM 1. Let E be a Banach space, and let A = N(E). Then

dh A = °o if E does not have AP.

We preface to the proof of Theorem 1 a number of simple lemmas.

LEMMA 1. Let E be a Banach space. Then, for each a, b eA(E) = E <8> E* and each
L e B(E), the following equalities hold:

(i) ab = (r(a) <8> lE.)(b) = (1 £ ® (T(6) )*) («) ;

(ii) T(a)L = T ( ( 1 £ ® L*)(a) and Lr(a) = T((L ® 1£.)(«))-
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/ / , in addition, xl <8>/,, x2 <8>/2 e A(E), then we have:
(iii) a(x, ®/j) = T(a)(jc,) ®/, and
(iv) (
(v) a

Proof. Formulae (ii) were established in [6] (see the proof of Theorem 3.2). The
equalities (i) and (iii) are easy to check on elementary tensors. The formulae (iv) and (v)
follows from (iii). •

For an algebra A, we set

Lan(^) = {a eA:ab = 0 for a\\ b e A},
Ann(A) = {a eA :ab = ba = 0 for all b eA}.

LEMMA 2. Let E be a Banach space, and let A = A(E). Then LE = Ann(v4) = Lan(/t).

Proof. We recall that LE = Ker 6 = Ker T. Let a e LE. Then r(a) = 0 and, by Lemma
l(i), ab = ba = 0 for be A. Hence aeAnn(A). Thus L£cAnn(,4). Since always
Ann(A) c Lan(A), it remains to prove that Lan(A) c: LE.

Let a e Lan(A). Then for b = x ® / E /4(£) we have afe = 0, where a£> = T(O)(JC) ® / ,
by Lemma l(iii). Since xeE and f e E* are arbitrary, we find that r(a) = 0 i.e.,
a e Ker T = LE. •

It is clear that every Banach space £ is a left Banach N(£)-module provided that the
outer multiplication is defined as the action of the operator on the vector. The space E* is
now regarded as the right Banach N(£)-module dual to E. Let £ <8> £* be the
N(£)-bimodule obtained from £ and £* by the tensor product bifunctor (see [1, II,
§5.3]). It is obvious that the outer multiplications of £ <8> £* by elements of N(£) are
given by the formulae

where L e N(E) and u e £ ® £*. By Lemma l(ii), the operator 0: £ ® E*->N(E) is a
morphism of N(£)-bimodules.

We now recall (see [1, II, §5.3]) that there is the so-called reduced module
Xn = A <8> X associated with any left A -module X. Let K\Xn^*X be the morphism of
A -modules defined by K(O <8> x) = a.x. If X = A, then it is easy to turn Xn = A <S> A into
y4-bimodule (see [1, Proposition II.5.15]). In this case, K:A ®A—>A becomes a
morphism of /i-bimodules.

LEMMA 3 (see [7, 4.6(i)]). Let E be a Banach space, and let A = N(E). Then, up to an
isometric isomorphism of A-bimodules, the reduced module An = A ® A coincides with
E <S> £*, and the morphism K.An—*A coincides with the epimorpnism 6:E®E*—>
N(E).

We give a direct proof of this result.

Proof. Choose x0 e E and f0 e E* such that (x0,f0) = ||JCO||E
 =

 II/OIIE*
 = 1- F°r x eE,

/ e £ * , l e t

k(x ® / ) = 0(x ® / ) ® 6(x0 ®/) .
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Then A is a continuous linear operator from E <8> E* into A <E> A; it is clear that A is a
morphism of/1-bimodules, and that ||A|| < 1.

On the other hand, let R:A x A-*E <8> E* be the bilinear operator given by
R(6u,dv) = uv, where u,v eA(E). We shall prove that R is properly defined and
continuous. Indeed, if 6u'= 6u and 6v' = dv, then, by Lemma 2, u' — u, v' — ve
Ker 8 = LE = Ann(A(E)); hence u'v' = uv and

It is easily verified that R is balanced (i.e., R{ab, c) = R{a, be) for any a = 6u,
b = 6v, c = 6w, where u, u, w eA(E)). The operator from A® A into E ® E* as-
sociated with R is denoted by fi. It is obvious that n is a morphism of ^4-bimodules, that
\\fi\\ < 1, and that ju°A = lE<g,E'. We shall prove now that A°ju is the identity on A <8> A,
in which case k = fi~l and :̂/4<8>^4—* E & E* is an isometric isomorphism of A-
bimodules.

Indeed, since 0 :A(E)—>N(E) is a homomorphism of algebras, we have

= 0M ® 0U

for arbitrary elementary tensors u =xx <8>/i and v=
It remains only to note that A: = 0°/x, and the assertion is proved. •

LEMMA 4. Le/ E be a Banach space, and set A = N(E). Then the left A-module An is
projective and the following statements are equivalent:

(i) the left A-module A is projective;
(ii) the left A-module A is flat;

(hi) EhasAP.

Proof. Let xoeE and foeE* be such that (xo,fo) = 1. It is easy to see that the
formula

p(x ®/) = d(x ®f0) ® (*o ®/) (* e E,f e

defines a morphism of left Banach A -modules

p:E ® £*-^>l ® (£ ® £*) Ci4+ ® (E ® £
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such that jt°p is the identity on £<£>£*, where n:A <g> ( £ <8> £ * ) - • £ <8[E* (the
so-ca l led canonical morphism) is de f ined b y n{a®u) = a.u (a eA,u e E <8> £ * ) . I t
follows that the v4-module £<§)£* is projective. Since, by Lemma 3, the .A-module
An is isomorphic to £ <8> £*, .«4.n is also projective.

The implication (i)=>(ii) follows from [5, Proposition 7.1.44].
Now suppose that (ii) holds. Let i be the natural embedding of A in A+. By

[5, Theorem 7.1.42], the operator K = i <8> 1A:A <8> A-*A+<8) A= A is topologically
injective. In particular, ker K = 0. By Lemma 3, ker 9 = 0 and, consequently, (iii) holds.

The implication (iii) => (i) follows from the facts that, for E having AP, 6: E <S> E* -*
A is an isomorphism of left A -modules, and E <8> E* is always projective. •

Proof of Theorem 1. The case "£ has AP" is contained in Lemma 4.
We now assume that E does not have A P. Set n = dhM A, and suppose that n < °°. By

Lemma 4, n > 1. By Theorem [1, V.2.1], for some >l-module W there exist short
admissible complexes of A -modules

and
0^W^V*±A®An^0, (1)

where U = (A+ ®A)®An, V = (A+®A*)@(A®A),

A(a ®x) = (i(a) <8>x,a<S) K(X)) (a e A, x e An),

i is the natural embedding of A in A+, and K = i <8> 1^ :An^>A. By Lemma 4, dh^ (7 = 0
and, by [1, Proposition III.5.5],

dh,4 W < maxfdh^ U, dhM A - 1} < n - 1.

The short admissible complex (1) defines, for any /4-module Y, an exact sequence of
groups

. . .->Ex£(W, Y)^Ext^(V, y)-»ExtJ(i4 ® ^ n , y)->ExtJ+1(W, Y)^. . . (2)

(see [1, Theorem III.4.4]). Since dh,, W < n - 1, we have Ext^W, Y) = Extn
A

+1(W, Y) =
0. Since the /4-module A+®An is projective, it follows that Ext^(V,Y) =
ExtA(A ®A, Y), recalling that « s: 1. Consequently, the segment (2) of the long exact
sequence for the groups Ext takes the form

0-*Ext"A(A ®A,Y)-Z*Ext"A(A <8» An, y)-»0.

Thus the morphism of groups d = Ext^(l/4 <8> K, Y) is an isomorphism for any
/l-module Y.

Let

be a projective resolution of length n for .A-module A. (Such a resolution exists because
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dhu A = n.) Consider the commutative diagram
0 ^ _ A® An *Z±L... ^— Pn-i®An *±1®± Pn®An «— 0

0 «— A&A +^- . . . « — Pn_,®yl ^ ^ P,,®/! * — 0.
It is obvious that the upper and lower lines of this diagram are projective resolutions

of the A-modules A ® An and A ® A, respectively.
Let Y be an arbitrary >l-module. Applying the functor Ah{7, Y) to the diagram (3),

we obtain the commutative diagram
. . . > „*(/»„_, ®An, Y) -^* Ah(Pn®An, Y) > 0

t . I'
. . . * Ah(Pn->®A,Y) ^ Ah{Pn®A,Y) * 0.

It is obvious that
Ext"A{A ® An, Y) = Ah(Pn ® An, Y)/lm yn

and
ExtJ(i4 ®A,Y) = Ah(Pn ® A, y)/Im V,

and that the operator X = Ah{\ <S> JC, Y) generates the morphism 8 considered above. As
was shown, 8 is an isomorphism.

Now set Y = Pn ® An, and consider the element of the group Ext^(^4 <E> An, Y) =
Ah(Y, Y)/Im î n defined by lYeAh(Y, Y). This element belongs to Im 6. It follows that
there exist morphisms of A-modules %:Pn_x® An-*Y and rj:Pn ® A-> Y such that

But Vn(l) = l° (^ n - i ® 1) and A(i/) = ?yo(l ® K), and hence

* ® ^ = §(rf»-i(jf)®>') + i/(*®*r(y)) ( ^ e ^ j e A n ) - (4)

Since E does not have AP, by Lemma 3, ker K # 0. Let y0 e ker *r\{0} and f0 e (An)*
be such that fo(yo) = 1. Set

e(z) = (l®/o)|(z®3'o) ( " U
Then clearly ^: Pn_!-» Pn is a morphism of A -modules. From (4) for y = y0, we see that

for all x e Pn, and hence t,°dn-x is the identity on Pn. Consequently the morphism
dn-x:Pn-*Pn-x is a coretraction. But then obviously dhAA<n. Since n=dh/ , /4 , we
obtain a contradiction. Thus dh,, A=<*>, and the theorem is proved. •

The following corollary is a consequence of Theorem 1, [1, Theorem V.2.28] and [6,
Lemma 2.2].

COROLLARY 1. Let E be a Banach space, and let A = N(E). Then the following
statements are equivalent:

(i) A is biprojective;
(ii) H\A,X) = 0 for all A-bimodules X;

(iii) dgy4<oo;
(iv) dh/4C<<»;
(v) Ehas AP.
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We recall (see [1, Proposition VII.2.2]) that, if A is a biflat Banach algebra, then the
left /4-module A is flat. On the other hand, every biprojective Banach algebra is biflat.
From Lemma 4 and Corollary 1 we obtain the following corollary.

COROLLARY 2. Let E be a Banach space. The Banach algebra N(E) is biflat if and
only if E has AP.

We recall that an /1-bimodule X is called right-annihilator if x. a = 0 for all x e X,
a eA. Each right-annihilator A-bimodule X can be regarded as the .A-bimodule J5(C, X)
(see [1, Proposition 0.4.5]). Theorem 1 and the formula

H"{A,

(see [1, Theorem III.4.12]) yield the following corollary.

COROLLARY 3. Let E be a Banach space, and let A = N(E).
(i) / / E has AP, then Hn{A,X) = 0 for all right-annihilator A-bimodules X and for

all n > 2.
(ii) / / E does not have AP, then, for each n, there exists a right-annihilator A

bimodule X such that H"(A,X) =£0.

As is well known (see [1, I, §1.2]), the question of the triviality of two-dimensional
cohomology groups of a Banach algebra A with coefficients in /1-bimodules is closely
connected with the question of the splitting of singular extensions of this algebra. In
particular, we obtain the next corollary from Corollary 3 and [1, Corollary 1.1.11].

COROLLARY 4. Let E be a Banach space, and let A = N(E).
(i) / / E has AP, then any singular extension of the algebra A by a right-annihilator

A-bimodule splits.
(ii) // E does not have AP, then there exists an unsplittable singular extension of the

algebra A by a right-annihilator A-bimodule.

2. The global dimension of the algebra of nuclear operators. The first theorem is
related to [8, Theorem 5], which was stated without proof.

THEOREM 2. Let E be an infinite-dimensional Banach space, and let A = A(E). Then
dhA K(E) = dh^ B(E) = 2, and dg A = db A = 2.

To prove Theorem 2, we need a lemma.

LEMMA 5. Let E be a Banach space, and set A = A(E). Suppose also that X = K(E)
or B(E). Then, up to an isometric isomorphism of A-bimodules, the reduced modules

A®XandX®A coincide with E <8> E*.
A A

The proof of this lemma is analogous to the proof of Lemma 3; the isomorphism

(U :A ® * - > £ <8> E* is denned by

>L) = ;t<g>L7 (xeE,LeX,feE*).
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Proof of Theorem 2. Let X = K{E) or B(E). By [1, Theorem V.2.1], there exists a
resolution for the A -module X of the form

0+-X^U^V*±A®Xn^0, (5)

where U = (A+ ® X) 0 Xn, V = (A+ ® Xn) ®(A® X),

A(a ®x) = (i(a)®x, a ® K(X)) (aeA,xe Xn),

i is the natural embedding of A in A+, and K = i ® 1^ : ^ n = /l ® X—*X. By Lemma 5,
•<4 A

Xn = A up to an isomorphism. Since the algebra A is projective, it is clear that the
complex (5) is a projective resolution. Its length is equal to 2. To obtain a contradiction,
suppose that dh/4A'<2. Then obviously the morphism A is a contraction, i.e., there
exists a morphism of A -modules V: V —* A ® Xn such that V°A is the identity on
A ® Xn. Set A, = lx ® A and V, = lx <8> V. Then, by Lemma 5,

A A

and
A1(a®fc) = (T(a)<S>/>,a<g>T(*>)) (a, be A).

Since obviously Vj0 Aj is the identity on A <S> A, we have for each a eA,

i.e., ||a||<2C||T(a)||A-, where C=||Vj| | . It follows that L£ = kerr = 0 and that the
norms of the spaces E <E> E* =A and E <§> E <= X are equivalent. (Here, <§> is the symbol
for the weak tensor product of Banach spaces (see [2], [5]).) In other words, E ® E* and
E ® E* are canonically isomorphic. As Grothendieck showed (see [2, I, §4, Corollary 2
on p. 153]), the latter implies that E is finite-dimensional. But we have assumed that
dim E = oo, and so we have a contradiction.

Consequently, dh^ X = 2 and db/4>dg.4>2. Since the algebra A is biprojective
([6, Lemma 2.2]), [1, Theorem V.2.28] implies that d b / l < 2 . Hence dgA = dbA = 2.
The proof is complete. •

Corollary 1 and Theorem 2 yield the following corollary.

COROLLARY 5. Let E be an infinite-dimensional Banach space, and let A = N(E).
Then

ifElwsAP-
oo if E does not have AP.

The following corollary is a consequence of Lemmas 3 and 5, [1, Proposition II.3.13]
and Grothendieck's results which was used in the proof of Theorem 2.

COROLLARY 6. Let E be a Banach space, and let A = A(E) or N(E). Then A has a left
bounded approximate identity if and only if dim E < oo.
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THEOREM 3. Let E be a Banach space, and let A = A(E) and N = N(E). Then

if E does not have A P.

The proof of this theorem is analogous to the proof of Theorem 2.

3. The cohomologies of the algebra of nuclear operators with special coefficients. We
recall that an /4-bimodule X is called annihilator if a . x = x. a = 0 for all a e A, x e X.

THEOREM 4. Let E be a Banach space, and set N = N{E). Let X ¥=0 be an annihilator
A-bimodule. Then:

(i) H2(N, X) = 0 if and only if E has AP;
(ii) H\N,X) = 0.

Proof The assertion (i) follows at once from [1, Theorem II.3.23] and Lemma 3.
Now let / e Z3(N, X), i.e., let /be a continuous trilinear operator from N x N x N to

X such that the identity

f(a, be, d) =f(ab,c, d) +f(a, b, cd) (a,b,c,de N)

holds. Set A = A(E) and set

fx(a,b,c)=f(da,6b,6c) (a,b,ceA).

Then fx is a continuous trilinear operator from Ax Ax A to X. Since 6:A—*N is a
homomorphism of Banach algebras, it is obvious that /, e Z3(A,X). It follows from the
biprojectivity of the algebra A that H3(A, X) = 0. Hence /, = d2gx for some g, :A x A-+
A'which is a continuous bilinear operator, i.e., we have

fx(a,b,c) — —gx(ab, c) + gx(a, be) (a,b,c e A).

If a eLE = ker 6, then for any b,c eA we have fx(a,b,c) = 0, and, by Lemma 2,
gx(ab,c) = 0. Hence gx(a,bc)=fx(a,b,c) +gl(ab,c) = 0. Consequently, gx(LE,A) = 0.
It is similarly shown that gx(A, LE) = 0.

It is obvious that the formula

g(da, 6b)=gx(a,b) (a, be A)

defines a continuous bilinear operator g:N x N-*Xsuch that/ = 62g. This completes the
proof of (ii). •

It follows from Theorem 4 that, if a Banach space E does not have AP, then, for any
annihilator N(£)-bimodule X =£ 0, there exists an unsplittable singular extension of N(E)
by X. On the other hand, if E has AP, then one can show the following: any extension of
N(E) by an annihilator N(£)-bimodule splits, even if it is not a priori singular.

Now let E be a Banach space, and let / be the natural embedding of LE = ker 6 in
A{E). Since

is an exact sequence of Banach algebras and LE = Ann(A(E)), the triple (A(E), 6,j) is
an extension of the algebra N(E) by the annihilator N(£)-bimodule LE. It is not clear to
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the author whether this extension is singular (i.e., whether LE has, as a subspace, a
Banach complement in A(E) for any E). But one can show that whether or not it splits is
equivalent to the approximation property for E.

We continue to study the cohomology groups of the algebra N(E). The proof of the
first lemma is analogous to the proof of [9, Theorem 1].

LEMMA 6. Let E be a Banach space, and let A be N(E) or A(E). Then
H"(A, B(E)) = 0for all n > 1.

THEOREM 5. Let E be a Banach space, and let A be N(E) or A(E). Let B be an
operator Banach algebra on E containing all finite-rank operators on E. Then B is a
Banach A-bimodule and H\A, B) = 0.

Proof. According to [6, Corollary 3.2], N(E) a B and the embedding of N(E) in B is
continuous. Using Lemma l(ii), we deduce that

a.L,L.aeN(E)<=B

for all a eA and L e B(E), and that

||a . L\\B s C ||a. L\\N(E) < C \\a\\A ||L||fl(£),l
\\L.a\\B<C\\L.a\\N(E)<C\\a\\A\\L\\B(E).)

 ( >

It follows easily that B is a Banach .A-bimodule.
Now let f:A X.A-+B cB(E) be a continuous bilinear operator with 62/ = 0. By

Lemma 6, / = 51g for some g :A—*B(E). Hence

g(ab) = a.g(b)-f(a,b) + g(a).b (a,beA). (7)

It follows from (6) and (7) that g(ab) e B for all a, b e A, and that

Consequently the formula

h(a <8> b) = g(ab) (a, be A)

defines a continuous linear operator h :A <E> A^>B.

It is clear that

h(u) = g(K(u))

where K.A ® A—*A is the operator given by ic(a®b) = ab (a, be A). Hence
A A

/i(ker K) = 0. By Lemma 3, K is an epimorphism. It follows that there exists a continuous
linear operator g!: A -> B such that h = g j ° *-. It is obvious that g, (a) = g (a) for all a e A
and that / = d1^. Consequently, H2(A, B) = 0. The theorem is proved. •

THEOREM 6. Let E be a Banach space, and set N = N(E). Then
(i) H2(N,N) = 0;
(ii) H\N, N) = 0if and only if E has AP.
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Proof. The equality (i) follows from Theorem 5. To prove (ii), consider the short
complex of N-bimodules

0^iV-4iV+^C^0, (8)

where C = N+/N, i is the natural embedding of N in N+, and o is the natural projection.
According to [1, Corollary III.4.1], the complex (8) defines the exact sequence of
cohomology groups

. . .-> H\N, N+)^ H2(N,C)-^ H3(N, N)-+. ... (9)

Suppose that E does not have AP. By Theorem 5, H2(N, N+) = 0. But then /3 is an
embedding, while the group being mapped is nontrivial, as shown in Theorem 4(i). Hence

3
()

On the other hand, if E has AP, the H3(N, N) = 0, by Corollary 1. This completes
the proof of (ii). •

Finally, we note that, in the case where £ is a Hilbert space, the triviality of the
groups H2(N(E),N(E)) and H\N(E), N(E)) was proved earlier in [10] by B. E.
Johnson.
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