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Free-stream coherent structures in parallel
compressible boundary-layer flows at subsonic
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As a first step towards the description of coherent structures in compressible shear
flows, we present an asymptotic description of nonlinear travelling-wave solutions of the
Navier–Stokes equations in the compressible asymptotic suction boundary layer (ASBL).
We consider free-stream Mach numbers M∞ in the subsonic and moderate supersonic
regime so that 0 � M∞ � 2. We extend the large-Reynolds-number asymptotic theory of
Deguchi & Hall (J. Fluid Mech., vol. 752, 2014, pp. 602–625) describing ‘free-stream’
coherent structures in incompressible ASBL flow to describe a nonlinear interaction in a
thin layer situated just below the free stream. Crucially, the nonlinear interaction equations
for the velocity field in this layer are identical to those obtained in the incompressible
problem, and thus the asymptotic analysis supporting free-stream coherent structures in
compressible ASBL is easily deduced from its incompressible counterpart. The nonlinear
interaction produces streaky disturbances to both the velocity and temperature fields,
which can grow exponentially towards the wall. We complete the description of the growth
of the velocity and thermal streaks throughout the flow by solving the compressible
boundary-region equations numerically. We show that the velocity and thermal streaks
obtain their maximum amplitude in the unperturbed boundary layer. Increasing the
free-stream Mach number enhances the thermal streaks and suppresses the velocity
streaks, whereas varying the Prandtl number suppresses the velocity streaks, and can either
enhance or suppress the thermal streaks depending on whether the flow is in the subsonic
or moderate supersonic regime. Such nonlinear equilibrium states have been implicated
in shear transition in incompressible flows; therefore, our results indicate that a similar
mechanism may also be present in compressible flows.
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1. Introduction

It has been known since Kline et al. (1967) that transitional and turbulent flows exhibit
clear structure within the boundary layer in the form of vortical structures coupled to
high- and low-speed streaks in the plane perpendicular to the unperturbed flow. Recent
understanding of these structures has been aided by the identification of three-dimensional,
nonlinear invariant solutions of the Navier–Stokes equations which may take the form
of equilibria, periodic orbits or travelling-wave solutions. These states, now commonly
known as exact coherent structures, have been found in a wide range of canonical shear
flows where the key parameter governing the dynamics is the Reynolds number; see,
for e.g. Faisst & Eckhardt (2003), Waleffe (2001, 2003), Wedin & Kerswell (2004) and
Wang, Gibson & Waleffe (2007). The study of exact coherent structures in two-parameter
space has previously only been conducted in the context of stably stratified flows (Eaves &
Caulfield 2015; Deguchi 2017; Lucas & Caulfield 2017; Lucas, Caulfield & Kerswell 2017;
Olvera & Kerswell 2017), where it is shown that the Prandtl number plays a key role in the
structure of the states found (Langham, Eaves & Kerswell 2020).

The present work is confined to a special type of coherent structure in asymptotic
suction boundary-layer (ASBL) flow, in which a parallel, streamwise-invariant basic flow
is maintained via constant suction far from the leading edge. In the incompressible case,
Hocking (1975) showed that the flow is linearly stable up to a Reynolds number of
54 370; Fransson & Alfredsson (2003) subsequently showed experimentally that transition
could occur at much lower Reynolds numbers. It has been very recently shown that
it is possible to experimentally realise a turbulent ASBL (Ferro, Fallenius & Fransson
2021). Several three-dimensional, fully nonlinear invariant solutions of the Navier–Stokes
equations have been identified in incompressible ASBL flow. Periodic-orbit-type solutions
have been obtained by Kreilos et al. (2013) and Khapko et al. (2013) via edge tracking.
Travelling-wave-type solutions have also been identified in the ASBL by Deguchi &
Hall (2014), who found structures localised in the wall-normal direction but periodic in
the streamwise and spanwise directions, and by Kreilos, Gibson & Schneider (2016),
who found spanwise-localised travelling-wave solutions. In both cases, two types of
solution were found: a ‘wall mode’ coherent structure with the streaks and vortex structure
concentrated near the wall region; and a ‘free-stream’ coherent structure with the streak
flow still mainly concentrated in the near-wall region but with the vortical structure
residing in the free stream.

Deguchi & Hall (2014) showed that the spanwise-periodic wall modes could be
described by high-Reynolds-number vortex–wave interaction theory (Hall & Smith 1991;
Hall & Sherwin 2010), in which forcing in the critical layer of the wave drives a roll
flow which produces a streak; the streaky flow is then itself unstable to the wave.
This tripartite interaction is also known as a self-sustaining process (Waleffe 1997).
Meanwhile, the free-stream coherent structures can be described by a distinct asymptotic
theory which relies on the exponential approach of the boundary-layer flow to its
free-stream form. A nonlinear interaction between tiny waves, rolls and streaks satisfies the
unit-Reynolds-number three-dimensional Navier–Stokes equations within a ‘production’
layer, which is located at the edge of the free stream and which is of the same depth
as the unperturbed boundary layer. The nonlinear production-layer interaction allows a
streak disturbance to the velocity field to grow exponentially beneath the production layer.
An analysis of the induced roll–streak flow shows that the streak obtains its maximum
size in the near-wall boundary layer. This high-Reynolds-number asymptotic framework
to describe free-stream coherent structures has subsequently been extended to non-parallel
(Deguchi & Hall 2015, 2018) and unsteady (Johnstone & Hall 2020) flows.
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Free-stream coherent structures in compressible shear flows

Free-stream turbulence is known to play a key role in boundary-layer transition
(Fransson, Matsubara & Alfredsson 2005; Fransson & Shahinfar 2020). It is hypothesised
that free-stream coherent structures may play a key role in linking the coherent structures
observed in the inner region (near-wall region of intense turbulence production) and outer
(large-scale, less active) regions of boundary-layer flow (Deguchi & Hall 2014). This detail
would be particularly relevant in the context of jet acoustics for compressible flows, when
disturbances originating in the free stream may be implicated in the high frequency sound
often referred to as ‘screeching’ which is observed in high-speed jet flows (Deguchi &
Hall 2018).

There has been little work, however, into the asymptotic description of coherent
structures in the context of compressible flows despite the importance of transitional
and turbulent compressible flows to many industrial problems, particularly in the fields
of aerospace engineering and acoustics. Past experimental and numerical studies have
focused on laminar–turbulent transition in compressible boundary layers in the context of
the effect of free-stream vortical disturbances, with particular focus on bypass transition
(see, for e.g. Laufer 1954; Kendall 1975; Demetriades 1989; Graziosi & Brown 2002;
Mayer, von Terzi & Fasel 2011). By extending the incompressible theory of Leib,
Wundrow & Goldstein (1999), Ricco & Wu (2007) show that free-stream vortical
disturbances can induce temperature fluctuations that lead to the formation of ‘thermal
streaks’; the growth of these streaks is enhanced at larger free-stream Mach numbers,
although nonlinear effects were found to inhibit the growth of the streaks (Marensi, Ricco
& Wu 2017). Short-wavelength free-stream vortical disturbances have also been found to
concentrate in the ‘edge layer’ Wu & Dong (2016), which is akin to the production layer
for free-stream coherent structures described above.

However, the organised streaky structures observed experimentally in incompressible
flows have been identified in supersonic compressible flows both experimentally (for
a thorough review see Spina, Smits & Robinson 1994) and numerically (Pirozzoli,
Bernardini & Grasso 2008; Ringuette, Wu & Martín 2008). The structures found are
consistent with the hairpin loop model of wall turbulence, with low-speed, elongated
streaks observed in the logarithmic region. Thus there exists compelling evidence for the
similarity between compressible and incompressible coherent structures. Indeed, the main
effect of compressibility in turbulent shear boundary layers lies in the density fluctuations
(Morkovin 1962), and it is generally accepted that for moderate free-stream Mach numbers
M∞ � 2, the dynamics of compressible shear boundary layers does not differ greatly from
its incompressible counterpart (Spina et al. 1994).

The aim of the present work is to ask: (a) Can we use the high-Reynolds-number
asymptotic theory describing free-stream coherent structures in incompressible ASBL
flow (Deguchi & Hall 2014) to describe free-stream coherent structures in compressible
ASBL flow in the subsonic and moderate supersonic regimes? And (b), what is the
influence of the additional physical parameters, namely the Mach number M∞ and the
Prandtl number σ?

Assuming a perfect gas, the basic flow for the compressible ASBL approaches its
free-stream form exponentially and thus has the underlying structure required to support
the free-stream coherent structures described in Deguchi & Hall (2014). We find that
compressibility effects shift the location of the production layer by a constant proportional
to M2∞. However, the key result is that the leading-order equations for the velocity field
in the production layer are identical to those for the incompressible problem. Since the
asymptotics and numerical solutions agreed well for the incompressible case we expect
that this is true for the compressible problem. Moreover, this also represents a significant
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computational reduction as the solution of the nonlinear eigenvalue production-layer
problem, which was computed by direct numerical simulation by Deguchi & Hall (2014),
can also be used for the compressible problem. However, as discussed at the end of this
paper, we expect that this reduction will not hold in general for other compressible regimes
at higher free-stream Mach number due to the presence of non-parallel effects and shocks.

The equations for the thermal field in the production layer are passive and driven by the
velocity field. This effect arises due to the location of the thin production layer being just
below the free stream, where compressibility effects are negligible because the density
and viscosity are close to their constant free-stream values. As in the incompressible
problem, the nonlinear interaction in the production layer produces a disturbance to the
streamwise velocity field (a ‘streak’) that grows exponentially down towards the wall
through interaction with the mean flow. However, the nonlinear interaction also induces
a disturbance to the temperature field, a ‘thermal streak’, which also grows exponentially
down towards the wall. The amplitude of the thermal streaks is enhanced as the Mach
number is increased whilst the amplitude of the velocity streaks is suppressed. In the
subsonic regime the amplitude of the velocity streaks is in general one order of magnitude
larger than that of the thermal streaks but the amplitudes become of comparable size in
the moderate supersonic regime. At the wall, both the velocity and thermal streaks vanish
so as to satisfy the wall boundary conditions. The location where the thermal and velocity
streaks attain their maximum amplitude relative to the velocity streak is controlled by the
Prandtl number.

The rest of this paper is presented as follows: in § 2, we provide a brief description
of free-stream coherent structures in incompressible ASBL flow. We then define the
governing equations for compressible ASBL flow in § 3 and find the basic flow in § 4.
The production-layer problem is then described in § 5. We present the solution below the
production layer and down to the wall in § 6. We then present results for a variety of
parameters in § 7 and finally in § 8 we draw some conclusions.

2. Free-stream coherent structures in incompressible parallel boundary-layer flows

To provide some context for the discussion of free-stream coherent structures in the
compressible ASBL flow, we briefly summarise the results of Deguchi & Hall (2014) for
free-stream coherent structures in incompressible ASBL flow.

Incompressible ASBL flow describes viscous, incompressible flow (u∗, v∗,w∗) with
respect to Cartesian coordinates (x∗, y∗, z∗), with dynamic viscosity μ and kinematic
viscosity ν, over a flat plate at y∗ = 0. Uniform flow exists in the free stream, so denoting
free-stream values by subscript ∞, at the free-stream (u∗, v∗,w∗) = (u∞,−v∞, 0).
The plate is subject to constant suction, so the velocity at the plate is (u∗, v∗,w∗) =
(0,−v∞, 0). Non-dimensionalising the velocity components on the free-stream speed
u∞ and the coordinates on the length scale ν/v∞, and defining the Reynolds number
Re = u∞/v∞, the basic flow is given by

(ub, vb,wb) = (1 − e−y,−Re−1, 0). (2.1)

Deguchi & Hall (2014) showed that, at high Reynolds numbers, the incompressible
Navier–Stokes equations allow for nonlinear equilibrium solutions taking the form of
a roll–wave–streak interaction propagating in a viscous layer at the outer edge of
the boundary layer; this layer is termed the production layer and the solutions are
known as free-stream coherent structures. The interaction in the production layer is
characterised by nonlinear travelling-wave solutions propagating with wave speed c;
numerical computations suggest that the asymptotic behaviour of the wave speed is
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Free-stream coherent structures in compressible shear flows

1 − c = O(Re−1), so that the wave propagates downstream with almost free-stream speed.
The solutions also have streamwise length scales comparable to the spanwise length scales,
and the thickness of production layer is comparable to the boundary-layer thickness.
Seeking a solution with these scalings, which is periodic in the streamwise and spanwise
directions with respective wavenumbers α and β, shows that the production layer in ASBL
flow is located at y = ln Re.

The solution inside the production layer is U(X, Y, z) = (U,V,W), where (x, y, z) =
(X − ct, Y − ln Re, z), c = 1 − Re−1c1, and is determined by numerically solving the full
Navier–Stokes equations at unit Reynolds number as a nonlinear eigenvalue problem for
the perturbed wave speed c1 of the travelling wave:

([U + c1 î] · ∇)U = −∇P + ∇2U, (2.2)

∇ · U = 0. (2.3)

The asymptotic structure of the solution emerging from the lower side of the production
layer shows that, below the layer, the disturbance to the streamwise velocity (termed the
streak), which occurs as a result of the nonlinear interaction in the production layer, can
grow exponentially like e−Y as Y → −∞ while the other velocity components decay. Thus
moving beneath the production layer,

u → 1 − e−y + d0

Re
+ J1

Reω1
e(ω1−1)y cos(2βz)+ J1K1

Re2ω14ω1
e(2ω1−1)y + · · · , (2.4)

v → − 1
Re

+ K1

Reω1+1 eω1y cos(2βz)+ · · · , (2.5)

w → − K1ω1

2βReω1+1 eω1y sin(2βz)+ · · · , (2.6)

where

J1 = K1

(ω1 − 1)2 + (ω1 − 1)− 4β2 , ω1 = −1 +
√

1 + 16β2

2
� 0, (2.7a,b)

for spanwise wavenumber β, and where K1 is found as part of the numerical solution of the
eigenvalue problem in the production layer. These solutions are valid as the wall layer is
approached, i.e. when 1 � y � ln Re. The constant of integration d0 is found by matching
with the numerical solution of the eigenvalue problem (2.2)–(2.3) which was computed for
a range of spanwise wavenumbers β in Deguchi & Hall (2014). Thus the term d0/Re is the
next order correction to the mean flow due to the nonlinear interaction in the production
layer. Therefore in general the streamwise velocity solution is only given up to a constant,
however, the correction does not influence the vortex field which is the quantity of interest.
By solving for the induced flow throughout the boundary region between the production
layer and the wall, Deguchi & Hall (2014) show that for β < 1/

√
2 the streak disturbance

grows down to the main part of the boundary layer, before being reduced to zero at the
wall to satisfy the boundary conditions.

3. Governing equations for compressible ASBL flow

We now consider the compressible counterpart of ASBL flow. Consider a viscous,
compressible perfect gas with density, temperature and dynamic viscosity ρ∗, θ∗ and μ∗
respectively, flowing with velocity u∗ = (u∗, v∗,w∗)with respect to Cartesian coordinates
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(x∗, y∗, z∗) over an infinitely long flat plate at y∗ = 0. Uniform suction exists at the
plate boundary so that, denoting free-stream values by subscript ∞, the velocity is
u∗ = (0,−v∞, 0) at the plate. Meanwhile, a long way from the plate at the free stream,
u∗ → (u∞,−v∞, 0) and (ρ∗, θ∗, μ∗, p∗) → (ρ∞, θ∞, μ∞, p∞/ρ∞u2∞). The suction at
y∗ = 0 does not allow for zero heat transfer over the plate due to the transfer of kinetic
energy across it, and therefore we assume the temperature at the plate is fixed so that
θ∗ = θp at y∗ = 0.

We non-dimensionalise by scaling the coordinates (x∗, y∗, z∗) on the velocity-boundary-
layer thickness δ = μ∞/ρ∞v∞, the velocity components (u∗, v∗,w∗) on u∞, the pressure
on ρ∞u2∞ and the quantities ρ∗, θ∗ and μ∗ on their free-stream values. We define the
Reynolds number Re by

Re = u∞/v∞. (3.1)

Throughout the analysis that follows, we assume the Reynolds number is large. We also
define the following physical constants:

(i) cv , cp, are the specific heats at constant volume and constant pressure respectively;
(ii) γ = cp/cv is the ratio of specific heats; for air, γ ≈ 1.4;

(iii) R is the molecular gas constant which is approximately 286 m2 s−2 K−1 for air;
(iv) a∞ = √

γRθ∞ is the speed of sound in the free stream;
(v) M∞ = u∞/a∞ is the free-stream Mach number;

(vi) k is the thermal diffusivity of the gas;
(vii) σ = μ∞cp/k is the Prandtl number which defines the ratio of momentum diffusivity

to thermal diffusivity; for air, σ ≈ 0.71.

We consider values of u∞ and a∞ such that we obtain Mach numbers M∞ in the
subsonic and moderate supersonic regimes so that M∞ � 2. In the moderate supersonic
regime we assume that the plate is sufficiently thin so that shocks are not present. We
choose parameters γ and σ that are appropriate for the ideal gas assumption; in particular,
this means that σ < 2, which will become important in the scaling arguments below.

Then, using mixed notation so that (x1, x2, x3) represents (x, y, z), ∇ = (∂x1, ∂x2, ∂x3)

and u = (u1, u2, u3) represents (u, v,w), the Navier–Stokes equations have the form

ρ
Dui

Dt
= − ∂p

∂xi
+ 1

Re

{
∂

∂xi

(
−2

3
μ∇ · u

)
+ ∂

∂xj

(
μ
∂uj

∂xi

)
+ ∂

∂xj

(
μ
∂ui

∂xj

)}

(i, j = 1, 2, 3), (3.2)

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.3)

ρ
Dθ
Dt

= (γ − 1)M2∞
Re

Φ + (γ − 1)M2
∞

Dp
Dt

+ 1
Re

1
σ

∂

∂xi

(
μ
∂θ

∂xi

)
, (3.4)

p = θ∞U−2
∞ ρRθ, (3.5)

where the dissipation function Φ is defined by

Φ = 1
2μeijeij − 2

3μ(∇ · u)2, (3.6)

and eij = ∂ui/∂xj + ∂uj/∂xi is the rate of strain tensor.

924 A27-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.617


Free-stream coherent structures in compressible shear flows

We close the equations of motion with a power-law viscosity law, so that after
non-dimensionalisation

μ = θζ . (3.7)

The index ζ = 1 gives the Chapman–Rubesin viscosity law (Chapman & Rubesin 1949)
which is suitable for the subsonic regime; for the moderate supersonic regime a slightly
more accurate model has ζ = 0.76 (Cebeci 2002). If we were to extend the analysis to
higher Mach numbers then a more realistic viscosity model, such as Sutherland’s law
(Sutherland 1893), would be required.

4. The basic flow

We now solve the equations of motion for the basic boundary-layer flow state. The ASBL
flow is steady, two-dimensional and independent of x. Therefore we seek a boundary-layer
solution in the form

(u, v,w, p) =
(

û( y),Re−1v̂( y), 0, p̂( y)
)
, (4.1a)

(θ, ρ, μ) =
(
θ̂ ( y), ρ̂( y), μ̂( y)

)
, (4.1b)

where the scaling for the normal velocity arises from the need to retain viscous effects in
the boundary layer. The boundary conditions at the plate and the free stream are given by

(û, v̂, ŵ) = (0,−1, 0) , θ̂ = θp/θ∞ at y = 0, (4.2a)

(û, v̂, ŵ) → (1,−1, 0) , p̂ → p∞/ρ∞u2
∞, (θ̂, ρ̂, μ̂) → (1, 1, 1) as y → ∞.

(4.2b)

We substitute the expansion (4.1) into the governing equations (3.2)–(3.5) and, assuming
that the Reynolds number is large, retain leading-order terms. The y-momentum equation
from (3.2) with i = 2 reduces to ∂ p̂/∂y = 0, which means that the pressure p̂ is constant
across the boundary layer and equal to its free-stream value of p∞/ρ∞u2∞. It follows that
the equation of state (3.5) reduces to ρ̂θ̂ = 1. Then the continuity equation (3.3) reduces
to ∂y(ρ̂v̂) = 0; integrating and applying free-stream boundary conditions (4.2) gives ρ̂v̂ =
−1 across the boundary layer. Thus, v̂ = −θ̂ , so in particular, the suction condition at the
plate gives θp/θ∞ = 1.

We now use the Dorodnitsyn–Howarth transformation (Dorodnitsyn 1942; Howarth
1948) given by

ξ =
∫ y

0
ρ̂( y′) dy′, (4.3)

so that y-derivatives dy are replaced by ρ̂(ξ) dξ . The equations of motion then reduce to

û′ + (θ̂ ζ−1û′)′ = 0, θ̂ ′ + σ−1(θ̂ ζ−1θ̂ ′)′ + (γ − 1)M2
∞(û

′)2 = 0, (4.4a,b)

where a prime denotes derivative with respect to ξ . In general, these equations must be
solved numerically subject to the boundary conditions (4.2). An analytic solution can be
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found in the special case of the Chapman–Rubesin law when ζ = 1, and is given by

û(ξ) = 1 − e−ξ , θ̂ (ξ) = 1 + (γ − 1)M2∞σ
2(2 − σ)

(e−σξ − e−2ξ ), (4.5a,b)

v̂(ξ) = −θ̂ (ξ), ŵ(ξ) = 0, p̂(ξ) = p∞/ρ∞u2
∞, (4.6a–c)

ρ̂(ξ) =
(
θ̂ (ξ)

)−1
, μ̂(ξ) = θ̂ (ξ). (4.7a,b)

For large ξ , when the temperature and streamwise velocity are approaching their
(non-dimensional) free-stream values of 1, this analytical basic solution can be used
regardless of the index in the viscosity law (3.7). We can invert the Dorodnitsyn–Howarth
transformation (4.3) as

y =
∫ ξ

0
θ̂ (ξ ′) dξ ′. (4.8)

Thus if ξ is large, then we can approximate the Dorodnitsyn–Howarth variable by

ξ ≈ g( y) = y + C0; C0 = (1 − γ )M2∞
4

. (4.9a,b)

Consequently, in the free stream, we can write the basic flow in terms of the physical
variable y. For the interior region we find ξ = g( y) by solving the inversion equation (4.8)
numerically.

Thus for large ξ , i.e. large y, the basic streamwise velocity is given by û ≈ 1 − e−C0e−y.
Thus the streamwise velocity approaches its free-stream form exponentially as a function
of distance from the wall. Therefore the free-stream coherent structure theory of Deguchi
& Hall (2014) can be applied. The basic solution for the temperature field also approaches
its free-stream form exponentially, with the rate of decay being dependent on the value of
the Prandtl number. As discussed above in § 3, gases which provide a good approximation
to the ideal gas assumption have Prandtl numbers σ < 2, and therefore the decay of the
basic state to its free-stream form will be dominated by the exp(−σξ) term in the basic
flow (4.5a,b). Hence, the decay will be slower than that of the streamwise velocity field
û if σ < 1. Thus the thermal boundary layer is thicker than the velocity boundary layer
if σ < 1, and vice versa if σ > 1; this is consistent with laminar boundary-layer theory
which suggests that the thickness of the thermal boundary layer δθ scales relative to the
thickness of the velocity boundary layer δv as δθ ∼ δvσ

−1/3 (Schlichting 1968, p. 307).

5. The production-layer problem for compressible ASBL flow

Using the inversion of the Dorodnitsyn–Howarth transformation for large ξ (4.8), at the
production layer we obtain ξ ≈ y + C0, and therefore the solution in the production layer
can be expressed in terms of the physical variable y. To find the location of the production
layer and the scalings of the flow components in the layer, following Deguchi & Hall
(2014), we seek a travelling-wave solution propagating with almost the free-stream speed
with wavelengths comparable to the boundary-layer scalings of § 4 so that ∂x = ∂y =
∂z = O(1). Then, if viscosity is to play a role in the interaction, v = O(Re−1), and by
the continuity equation (3.3), 1 − u = w = O(Re−1). To retain convective terms in the
x-momentum equation (3.2) the ρ(∂t + u∂x) term must also be O(Re−1); this defines the
wave dependence in the production layer. The pressure must then be O(Re−2) to stay in
play.
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Free-stream coherent structures in compressible shear flows

The streamwise component of the velocity field in the production layer must include
the basic flow component (4.5a,b) for matching. For large ξ , the basic flow û has the
form 1 − û = exp(−y − C0), therefore, in the production layer, e−y−C0 = Re−1. Thus the
location of the production layer is given by y = yPL = ln Re − C0; this allows us to define a
production-layer variable Y = y − ln Re + C0. The thickness of the production layer must
then be O(1) to ensure that the streamwise velocity u can only vary on an O(1) length
scale in the production layer.

Thus since C0 < 0 for γ = 1.4, a key feature of the compressible problem is that the
location of the production layer where the waves and rolls are concentrated moves further
away from the wall as both the Reynolds number and the Mach number increase. Since
C0 ∝ M2∞, it is anticipated that the Mach number may have a strong influence on the
hypersonic (large Mach number) production-layer problem; this is discussed further in
the conclusion. However, our choice of parameters means that |C0| � ln Re. Therefore the
values of σ and M∞ do not strongly influence the location of the production layer.

Under the scalings described above, the basic states for the streamwise velocity and
temperature (4.5a,b) in the production layer are given by

û = 1 − 1
Re

e−Y , θ̂ = 1 + λ
(

1
Reσ

e−σY − 1
Re2 e−2Y

)
, (5.1a,b)

where

λ = (γ − 1)M2∞σ
2(2 − σ)

. (5.2)

Thus the largest deviation of the temperature field from its free-stream value at the
production layer is controlled by the value of the Prandtl number σ . In particular, if σ < 1,
then the deviation of the temperature field from its free-stream value is greater than the
streamwise velocity deviation; this is again due to the relative thickness of the thermal and
velocity boundary layers as discussed in § 4.

It is also important to stress that, although the exp(−σξ) exponential in the basic
temperature state (4.5a,b) dominates the decay of the basic state to its free-stream value,
upon exiting the production layer towards the wall as Y → −∞, any growing temperature
disturbances will be dominated by the exp(−2Y) term in (5.1) and thus both exponentials
need to be retained in the production-layer scalings.

Based on the discussion above, in the production layer we seek a solution of the
Navier–Stokes equations in the form

(X, Y, z) = (x − ct, y − ln Re + C0, z); c = 1 − Re−1c1 + . . . ,

u = (1, 0, 0)+ Re−1ū(X, Y, z)+ . . . , p = p∞/ρ∞u2
∞ + Re−2p̄(X, Y, z)+ . . . ,

(θ, ρ, μ) = 1 + Re−σ (θ̄1, ρ̄1, μ̄1)(X, Y, z)+ Re−2(θ̄2, ρ̄2, μ̄2)(X, Y, z).

⎫⎪⎪⎬
⎪⎪⎭

(5.3a–e)
We substitute these scalings into the Navier–Stokes equations (3.2)–(3.5) and, at leading
order, we obtain the production-layer problem

Lū = −∇p̄ + ∇2ū, at order Re−1, (5.4)

∇ · ū = 0, at order Re−1, (5.5)
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Lθ̄1 = σ−1∇2θ̄1, at order Re−(σ+1), (5.6)

Lθ̄2 = (γ − 1)M2
∞Lp̄ + (γ − 1)M2

∞Φ̄ + σ−1∇2θ̄2, at order Re−3, (5.7)

ρ̄1 + θ̄1 = 0, at order Re−σ , (5.8)

p̄ = Rθ∞u−2
∞ (ρ̄2 + θ̄2), at order Re−2, (5.9)

μ̄1 = ζ θ̄1, at order Re−σ , (5.10)

μ̄2 = ζ θ̄2, at order Re−2, (5.11)

where the operator L = ([ū + c1 î] · ∇), ∇ = (∂X, ∂Y , ∂z) and the dissipation function Φ̄
is found by substituting the production-layer scalings into (3.6).

We see that the production-layer equations for the velocity field ū (5.4)–(5.5) are the
same as the equations (2.2)–(2.3) for the incompressible production-layer problem in
Deguchi & Hall (2014), which describe a unit-Reynolds-number eigenvalue problem for
the wave speed c1. The only difference in the compressible problem is that the equations
are solved at a slightly different value of y. Therefore, the solution to the incompressible
eigenvalue problem, which was calculated in Deguchi & Hall (2014), can now also be used
for the compressible problem. The velocity field then drives the temperature field through
the heat equations (5.6)–(5.7); (5.6), which is obtained at O(Re−σ ), is dominant in the
production layer, but we require the solution of the equation at O(Re−2) as the production
layer is exited towards the wall.

The production-layer problem (5.4)–(5.11) is solved subject to boundary conditions
specifying that the flow exiting the production layer on either side must match
asymptotically onto the basic solution (4.5a,b),

ū → (0,−1, 0), θ̄1 → λe−σY , θ̄2 → −λe−2Y as Y → ∞, (5.12)

ū → (−e−Y ,−1, 0), θ̄1 → λe−σY , θ̄2 → −λe−2Y as Y → −∞, (5.13)

and periodicity conditions; defining α and β as the streamwise and spanwise
wavenumbers, respectively,

(ū, θ̄1,2)(X, Y, z) = (ū, θ̄1,2)(X + 2π/α, Y, z), (5.14)

(ū, θ̄1,2)(X, Y, z) = (ū, θ̄1,2)(X, Y, z + 2π/β). (5.15)

Thus, boundary condition (5.13) allows for the streamwise velocity disturbance ū to grow
exponentially beneath the production layer. However, it also allows for the disturbances to
the temperature field θ̄1, θ̄2 to grow exponentially, and at a faster rate than the streamwise
velocity disturbance. Coming out of the production layer θ̄2 is dominant, however, θ̄1,
which satisfies a homogeneous equation, must be retained as it is needed at the wall. All
disturbances must be reduced to zero at the wall and therefore, as in the incompressible
problem, the maximum value of the disturbances will occur in a layer between the wall
and the production layer where the basic flow adjusts to accommodate the disturbance.

6. The adjustment-layer problem

Below the production layer, the flow returns to the unperturbed boundary-layer flow
(4.5a,b)–(4.7a,b) at leading order. However, the nonlinear production-layer interaction
produces exponentially growing disturbances to the streamwise velocity and temperature
fields that interact with the basic flow beneath the production layer. The flow between the
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Free-stream coherent structures in compressible shear flows

production layer and the wall adjusts to accommodate the disturbances; we thus refer to
this region as the adjustment layer. The solution in the upper part of this layer is dominated
by the solution exiting the production layer. Then as the wall is approached, the solution is
described by the boundary-region equations.

6.1. The solution exiting the production layer
Firstly, above the production layer as Y → ∞, the velocity must eventually return to
its free-stream form ū = (0,−1, 0). As in Deguchi & Hall (2014), the decay of the
streamwise velocity u will be proportional to e−Y−C0 , however, the nonlinear interaction
in the production layer gives a constant of proportionality which differs from unity. Thus
the production-layer interaction can give at most an O(1) effect on the amplitude of the
streamwise velocity displacement. Since the temperature field in the production layer is
entirely driven by the equations for the velocity (5.4)–(5.5), any temperature disturbances
will also decay above the production layer as there is no interaction to sustain them.

We now consider Y → −∞. To analyse the flow beneath the production layer, we
decompose the velocity disturbance ū into vortex and wave components. The wave is
associated with the X-dependent components of the velocity field. The X-independent
components of the velocity are split into a roll flow, which is associated with the
components v̄ and w̄, and the streak, which is the downstream velocity component ū. The
combination of the roll and streak constitutes a streamwise vortex. At leading order, the
flow must satisfy the basic ASBL flow given by (5.13), and therefore we split the streak
into a mean in z and a z-dependent component (there is no mean in z of the roll flow
due to symmetry). In addition to the z-dependent components, we allow the z-independent
term to grow exponentially in the adjustment layer as Y → −∞, but it must eventually
at leading order reduce to −e−Y in order to match onto the unperturbed basic flow at the
wall.

We decompose the temperature disturbances θ̄1 and θ̄2 in the same way. Following the
nomenclature outlined in Ricco & Wu (2007), we refer to the X-independent component
of the temperature disturbance as a ‘thermal streak’ and the corresponding streamwise
velocity disturbance shall be termed a ‘velocity streak’. Hence, in the adjustment layer, we
seek a solution in the form

ū = (ūs(Y),−1, 0)+ (us(Y, z), vr(Y, z),wr(Y, z))+ uw(X, Y, z), (6.1)

θ̄1,2 = θ̄s1,2(Y)+ θs1,2(Y, z)+ θw1,2(X, Y, z), (6.2)

where subscripts s, r and w refer to streak, roll and wave components respectively.
As in the incompressible ASBL study of Deguchi & Hall (2014), outside of the

production layer the roll flow decays as there is no longer any forcing from the Reynolds
stresses associated with the wavefield to sustain it. The wave uw also decays faster
than the roll; this can be seen through a balance of advection–diffusion terms and is
confirmed by the numerical results of Deguchi & Hall (2014). Since the temperature field
is driven entirely by the velocity field, the same is true of the corresponding temperature
components θw1,2 and θw1,2 . However, the velocity streak ūs + us can grow exponentially
through interaction with the roll. The growth or decay of the velocity streak depends on
the spanwise wavenumber β through the periodicity conditions (5.15). The new feature for
the compressible problem is that the interaction of the roll flow with the temperature field
drives the growth of the thermal streak.

We substitute the decomposition of the disturbances (6.1)–(6.2) into the production-layer
equations (5.4)–(5.11). After introducing the roll-flow streamfunction ψ such that
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∂zψ = vr and ∂yψ = −wr, the resulting equations for the roll-velocity-streak flow are
given by (

∂2

∂Y2 + ∂

∂Y
+ ∂2

∂z2

)
us = e−Yvr, (6.3)

(
∂2

∂Y2 + ∂

∂Y
+ ∂2

∂z2

) (
∂2

∂Y2 + ∂2

∂z2

)
ψ = 0, (6.4)

(
d

dY
+ d2

dY2

)
ūs = β

2π

d
dY

∫ 2π/β

z=0
(usvr) dz, (6.5)

where the final equation for the mean velocity streak disturbance ūs has been found by
taking the mean in z of the production-layer x-momentum equation (5.4). It is important
to note the ∂Y terms in the equations above which arise from the suction in the flow. It is
these terms that allow the interaction of the mean part of the basic flow with the roll flow
to produce growth.

The roll-velocity-streak equations (6.3)–(6.5) are solved together with the equations for
the thermal streak, (

∂2

∂Y2 + 1
σ

∂

∂Y
+ 1
σ

∂2

∂z2

)
θs1 = −σλe−σYvr, (6.6)

(
∂2

∂Y2 + 1
σ

∂

∂Y
+ 1
σ

∂2

∂z2

)
θs2 = −2λvre−2Y − 2(γ − 1)M2

∞e−Y ∂us

∂Y
, (6.7)

(
d

dY
+ 1
σ

d2

dY2

)
θ̄s1 = β

2π

d
dY

∫ 2π/β

z=0
(vrθs1) dz, (6.8)

(
d

dY
+ 1
σ

d2

dY2

)
θ̄v2 = β

2π

d
dY

∫ 2π/β

z=0

(
vrθs2 − (γ − 1)M2

∞Φv
)

dz, (6.9)

where the dissipation function Φv associated with the vortex flow is

Φv = 4
3

(
∂vr

∂Y

)2

+ 4
3

(
∂wr

∂z

)2

+
(

dūs

dY
+ ∂us

∂Y

)2

+
(
∂us

∂z

)2

+
(
∂vr

∂z

)2

+ 2
∂vr

∂z
∂wr

∂Y
+

(
∂wr

∂Y

)2

− 4
3
∂vr

∂Y
∂wr

∂z
. (6.10)

These equations are solved by Fourier expansion in z. The numerical results of Deguchi
& Hall (2014) show that the vortex wavelength is half that of the wave part of the flow, and
therefore the wavelength of the vortex is π/β, which sets the wavenumbers of the Fourier
expansion. Therefore, we seek a solution for ψ in the form

ψ =
∞∑

n=0

an cos(2nβz)+
∞∑

n=1

bn sin(2nβz). (6.11)

The roll-velocity-streak equations (6.3)–(6.5) are the same as those for the
incompressible equation in Deguchi & Hall (2014), with Y = y − ln Re + C0 where
C0 = 0 (corresponding to M∞ = 0) in the incompressible problem. Thus, the solution
of (6.3)–(6.5) is the same as that for the incompressible problem; the incompressible
solution with C0 = 0 is given in (2.4)–(2.6). Thus upon exiting the production layer in the
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compressible problem, the leading order solution of (6.3)–(6.5) in original boundary-layer
coordinates (x, y, z) and associated flow quantities (u, v,w) is

u → 1 − exp(−( y + C0))+ d0

Re
+ J1

Reω1
exp((ω1 − 1)( y + C0)) cos(2βz)

+ J1K1

Re2ω14ω1
exp((2ω1 − 1)( y + C0))+ · · · , (6.12)

v → − 1
Re

+ K1

Reω1+1 exp(ω1( y + C0)) cos(2βz)+ · · · , (6.13)

w → − K1ω1

2βReω1+1 exp(ω1( y + C0)) sin(2βz)+ · · · , (6.14)

where

Jn = Kn

(ωn − 1)2 + (ωn − 1)− 4n2β2 , ωn = −1 +
√

1 + 16n2β2

2
� 0, (6.15a,b)

for n � 1. The terms represented by ‘· · · ’ represent more slowly growing harmonics in
z, with constants Jn, Kn and ωn for n > 1. The constants d0 and K1 are found as part of
the nonlinear eigenvalue production-layer problem; K1 was reported for a range of β in
Deguchi & Hall (2014). Thus we only give the full streamwise velocity solution up to a
constant d0/Re, but this constant does not affect the streaks. As required, the flow returns
to its unperturbed basic state at leading order, with exponentially growing disturbances
that can become larger than the velocities involved in the nonlinear interaction in the
production layer where the disturbances originated.

The solutions for us, vr and ūs are then used as forcing for the equations (6.6)–(6.9) for
the thermal streak. In the original boundary-layer variables, θ = 1 + Re−σ θ̄1 + Re−2θ̄2,
we find that upon exiting the production layer,

θ → 1 + λ exp(−σ( y + C0))− λ exp(−2( y + C0))+ d1

Reσ
+ d2

Re2

+ 1
Reω1

(L1 exp((ω1 − σ)( y + C0))+ Q1 exp((ω1 − 2)( y + C0))) cos(2βz)

+ 1
Re2ω1

(
L1K1σ

4ω1
exp((2ω1 − σ)( y + C0))+ R1 exp((2ω1 − 2)( y + C0))

)
+ · · · ,

(6.16)

where again the terms represented by ‘· · · ’ denote more slowly growing harmonics in z,
with constants Kn, Jn, Ln, Qn, Rn and ωn for n > 1 and where

Ln = −Knλσ

(ωn − σ)+ σ−1(ωn − σ)2 − σ−14n2β2 , (6.17a)

Qn = −2λKn − 2(γ − 1)M2∞Jn(ωn − 1)
(ωn − 2)+ σ−1(ωn − 2)2 − σ−14n2β2 , (6.17b)

Rn = −2
σ

(
1
4 M2∞Jn

2 (γ − 1) ωn
3 − 1

2 M2∞Jn
2 (γ − 1) ωn

2 − 1
4 JnM2∞Kn (γ − 1)

)
ωn (σ + 2ωn − 2)

−2
σ

(
M2∞

(
β2n2 + 1

4

)
(γ − 1) Jn

2 + 1
2 JnM2∞Kn (γ − 1)− 1

4 QnKn

)
σ + 2ωn − 2

. (6.17c)
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(a) β <
√

3
4 (b)

√
3

4 < β < 1√
2

(c) 1√
2
< β <

√
3
2 (d) β >

√
3
2

us G G D D
ūs G D D D
θs G G G D
θ̄v G G D D

Table 1. The growth and decay of the disturbances for different values of the spanwise wavenumber β. Growth
is represented by ‘G’ and decay by ‘D’. The growth and decay is shown for the both the mean in z and the
z-dependent parts of the flow.

The constants d1 and d2 are constants of integration; again, we only find the solution for
the temperature field up to a constant, but this constant does not affect the growth of the
thermal streaks beneath the production layer.

The asymptotic solution (6.12)–(6.13) for u and v beneath the production layer shows
that the roll flow always decays as the wall layer is approached, whereas the mean part
of the velocity streak flow (6.12) can grow beneath the production layer if 2ω1 < 1,
corresponding to values of β <

√
3/4. The z-dependent part of the velocity streak

can grow if ω1 < 1, corresponding to values of β < 1/
√

2, and therefore these latter
modes are the fastest growing. If β > 1/

√
2, then the velocity streak disturbance decays

exponentially, and the nonlinear interaction in the production layer simply produces an
O(Re−1) correction to the flow.

Meanwhile, the asymptotic solution for the temperature (6.16) beneath the production
layer shows that the thermal streaks can grow if ω1 < σ or if ω1 < 2. For the range
of values of Prandtl number σ < 2 considered, the modes proportional to exp((ω1 − 2)
( y + C0)) will dominate the growth, and therefore the nonlinear interaction in the
production layer will always produce growing temperature disturbances for β <

√
3/

√
2.

The structure of the solution with varying β is summarised in table 1. The asymptotic
results suggest that there exists a case where the thermal streaks can grow while the
velocity streak decays. However, solutions of the production-layer problem (5.4)–(5.5)
have not been found for values of β � 0.47 (Deguchi & Hall 2014, 2015), and therefore
cases (c) and (d) are possibly not relevant.

We see that, in all cases, a nonlinear interaction in the production layer of size
O(Re−1), which drives O(Re−2),O(Re−σ ) temperature perturbations, can induce much
larger changes to the velocity and temperature fields of O(Re−ω1) in the main part of the
boundary layer. We now consider the solution as it approaches the wall layer, where all
disturbances are eventually reduced to zero to satisfy the wall boundary conditions.

6.2. Boundary-layer analysis
The solutions exiting the production layer, (6.12)–(6.14) and (6.16), do not satisfy the wall
boundary conditions. We now find the solution for the induced flow which is valid all
the way down to the wall. This solution should also match onto the solution exiting the
production layer given by (6.12)–(6.14) and (6.16). An examination of this solution shows
that in the boundary layer, disturbances can grow exponentially. The z-dependent part
of the disturbance grows faster than the z-independent part; therefore, to match onto the
solution exiting the production layer, the boundary-region solution will have z-dependence
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Free-stream coherent structures in compressible shear flows

in the form of cos(2βz). However, the solution must also satisfy conditions (4.2a), and
therefore any disturbances must ultimately be reduced to zero at the wall.

The solution in the boundary region is described in terms of the Dorodnitsyn–Howarth
variable ξ ; since disturbances are always small compared with the basic flow, the definition
of the variable in (4.3) is valid throughout the flow, and in particular, ∂y = ρ̂(ξ)∂ξ . The
inversion of the Dorodnitsyn–Howarth transformation for y(ξ) is given in (4.8), however,
unlike near the wall and in the production layer, we cannot generally find an explicit
relationship for ξ( y) as it cannot be assumed that the exponential terms involving ξ are
smaller than the linear terms. Therefore, to find the solution for the physical variable y,
we first solve the boundary-region equations in terms of ξ , and then use the monotonic
relationship y(ξ) in (4.8) to plot the solutions for each corresponding value of y.

Based on this discussion, in the boundary region we seek a solution in terms of the
fundamental harmonics of the solution exiting the production layer (6.12)–(6.14), (6.16) in
the form

u = û(ξ)+ Re−ω1 ũ(ξ) cos(2βz), (6.18a)

v(ξ) = Re−1v̂(ξ)+ Re−(1+ω1)ṽ(ξ) cos(2βz), (6.18b)

w = Re−(1+ω1)w̃(ξ) sin(2βz), p = p̂(ξ)+ Re−(2+ω1)p̃(ξ) cos(2βz), (6.18c)

(θ, ρ, μ) =
(
θ̂ (ξ), ρ̂(ξ), μ̂(ξ)

)
+ Re−ω1

(
θ̃ (ξ), ρ̃(ξ), μ̃(ξ)

)
cos(2βz), (6.18d)

where the basic solution (hat quantities) is given by the solution of (4.4a,b). We use
the same velocity streak and thermal streak terminology to refer to the disturbances to
the streamwise velocity and temperature fields respectively, and again the roll flow is
associated with the disturbances to the (v,w) components of the velocity.

We substitute this expansion into the Navier–Stokes equations (3.2)–(3.5), which leads
to a set of ordinary differential equations in ξ for the leading-order disturbance amplitudes
(tilde quantities). Following Hall (1983), we eliminate the pressure p̃ and the spanwise
disturbance velocity w̃; then we also eliminate the viscosity μ̃ and the density ρ̃ using the
equation of state (3.5) and the linearised power-law viscosity law (3.7). We are then left
with three coupled differential equations for ũ (from the x-momentum equation), ṽ (from
the y-momentum equation) and θ̃ (from the temperature equation)

A1ũ + A2ũ′ + A3ũ′′ = A4ṽ + A5θ̃ + A6θ̃
′, (6.19)

B1ṽ + B2ṽ
′ + B3ṽ

′′ + B4ṽ
(3) + B5ṽ

(4) = B6θ̃ + B7θ̃
′ + B8θ̃

′′ + B9θ̃
(3) + B10θ̃

(4),
(6.20)

C1θ̃ + C2θ̃
′ + C3θ̃

′′ = C4ũ′ + C5ṽ. (6.21)

Here, the superscripts represent derivatives in the usual way. The coefficients Ak, Bk and
Ck depend on the basic solution and are too long to write here; details are available from
the authors on request. These coupled equations are solved subject to zero-disturbance
and no-slip boundary conditions at the wall, and matching to the solution exiting the
production layer (6.12), (6.13), (6.16) at ξ = ξPL = ln Re, so that

ũ(0) = 0, ũ(ξPL) = J1 exp((ω1 − 1)ξPL), (6.22a)

ṽ(0) = ṽ′(0) = 0, ṽ(ξPL) = K1 exp(ω1ξPL), ṽ′(ξPL) = K1ω1 exp(ω1ξPL), (6.22b)

θ̃ (0) = 0, θ̃ (ξPL) = (L1 exp((ω1 − σ)ξPL)+ Q1 exp((ω1 − 2)ξPL)) . (6.22c)
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Altitude (m) θ∞ (K) a∞ (m s−1) u∞ (m s−1) v∞ (m s−1)

0 288.2 340 34–679 2.4 × 10−4 − 8.5 × 10−3

5000 255.7 320 32–640 2.3 × 10−4 − 8.0 × 10−3

11 000 216.8 295 29–589 2.1 × 10−4 − 7.4 × 10−3

Table 2. The range of dimensional values of free-stream velocity u∞ and suction velocity v∞ at free-stream
temperature θ∞ for the range of Mach numbers 0.1 � M∞ � 2 and Reynolds numbers 80 000 � Re �
140 000.

The reduced boundary-region equations are discretised on a grid with N interior points
and we use second-order accurate centred finite differences to approximate the derivatives
with step size�ξ ; see Appendix A for details. We then solve the resulting matrix equation
for ũ, ṽ and θ̃ .

7. Results

We solve the matrix system for ũ, ṽ and θ̃ on a grid containing N = 2000 points. To
compute the boundary conditions (6.12), (6.13) and (6.16), we require the value of K1 =
K1(α, β) which is determined as part of the numerical solution of the production-layer
nonlinear eigenvalue problem (5.4)–(5.5) for the wave speed c1. For wavenumber values
(α, β) = (0.2, 0.4), which by table 1 is in the regime where both the velocity and thermal
streaks are expected to grow, Deguchi & Hall (2014) find K1 = 16.9; we use these
parameter values in our computations.

We explore the behaviour of the velocity and thermal streaks as the Reynolds number
Re, Mach number M∞ and Prandtl number σ vary. The Reynolds number and Mach
number are defined using the dimensional quantities u∞ (the streamwise velocity), v∞ (the
suction velocity) and θ∞ (the free-stream temperature). Using the International Standard
Atmosphere (International Organization for Standardization 1975) value for temperature at
a fixed altitude, we describe in table 2 the range of free-stream velocities u∞ and suction
velocities v∞ required to obtain Reynolds numbers in the range 80 000–140 000 and Mach
numbers in the subsonic to moderate supersonic range, 0.1 � M∞ � 2.

Next, to examine the development of the flow disturbances beneath the production layer,
we define the amplitudes of the leading-order velocity streak, roll and thermal streak
solutions exiting the production layer (6.12)–(6.14), (6.16) and the numerical solution in
the boundary region

Aus = Re−1

√
β

2π

∫ 2π/β

0
u2

s dz, Aũ = Re−ω1

√
ũ2

2
, (7.1a,b)

Avr,wr = Re−1

√
β

2π

∫ 2π/β

0
(v2

r + w2
r ) dz, Aṽ,w̃ = Re−(ω1+1)

√
ṽ2 + w̃2

2
, (7.2a,b)

Aθs =
√
β

2π

∫ 2π/β

0

(
Re−σ θs1 + Re−2θs2

)2 dz, Aθ̃ = Re−ω1

√
θ̃2

2
. (7.3a,b)

We first consider the validity of the upper adjustment-layer solution (6.12)–(6.14), (6.16).
In figure 1 we plot the amplitudes of the velocity streaks, roll flow and thermal streaks
for both the asymptotic solution (6.12)–(6.14), (6.16) and the numerical solution of the
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Figure 1. The amplitudes of the velocity streak (a,b), roll flow (c,d) and thermal streak (e, f ). The solid
black lines denote the amplitudes of the boundary-region solution (Aũ, Aṽ,w̃, Aθ̃ ) whilst the dashed lines
denote the amplitudes of the asymptotic production-layer solution (Aus , Avr,wr , Aθs ) as functions of the
Dorodnitsyn–Howarth variable ξ . The four lines denote the amplitudes calculated for Reynolds numbers
Re = 80 000, 100 0000, 120 000 and 140 000, corresponding to production-layer locations ξPL = 11.29, 11.51,
11.70 and 11.85 respectively. The black arrow denotes the direction of increasing Reynolds number. The
amplitudes in (a,c,e) were calculated using a subsonic free-stream Mach number M∞ = 0.8 whilst (b,d, f )
are the amplitudes for the moderate supersonic regime with M∞ = 2. The Prandtl number is σ = 0.71 and we
have used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic flow.

boundary-region equations (6.19)–(6.21) in terms of the Dorodnitsyn–Howarth variable ξ ,
so that the production layer is located at ξPL = ln Re. For both the subsonic (a,c,e) and
moderate supersonic (b,d, f ) regimes, the asymptotic solution describing the roll flow is
valid all the way to the wall, whereas the solution for the velocity and thermal streaks
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Figure 2. The numerical solution of boundary-region equations (6.19)–(6.21) at subsonic Mach number
M∞ = 0.8. The Prandtl number is σ = 0.71 and we have used ζ = 0.76 in the power-law viscosity law (3.7)
to calculate the basic flow. The amplitudes of the velocity streak Aũ (a) and the thermal streak Aθ̃ (c) (left
axis) are denoted by solid black lines together with the basic flow profile û( y) (a) and θ̂ ( y) (c) (right axis),
which are denoted by dashed lines. The four solid lines denote the amplitudes calculated for Reynolds numbers
Re = 80 000, 1 000 000, 120 000 and 140 000, corresponding to production-layer locations yPL = 11.35, 11.58,
11.76 and 11.91 respectively. The black arrow denotes the direction of increasing Reynolds number. The
velocity (b) and thermal (d) streaks are shown over two vortex wavelengths at a Reynolds number Re = 80 000,
with yPL = 11.35.

breaks down as the wall is approached; the location of this breakdown indicates the
thickness of the upper adjustment layer. This breakdown occurs further from the wall
in the moderate supersonic regime, indicating a thinner upper adjustment layer. We also
note that the amplitude of the thermal streaks for subsonic free-stream Mach numbers is
approximately one order of magnitude smaller than that of velocity streaks, whereas in the
moderate supersonic regime the amplitudes are comparable.

As the wall is approached, the numerical solution of the boundary-region equations
describes the flow induced by the disturbances from the production layer. In figure 2
we show the development of the amplitudes of the velocity and thermal streaks as the
walls is approached, for subsonic free-stream Mach number M∞ = 0.8, as a function of
the physical variable y which is related to the Dorodnitsyn–Howarth variable by (4.8).
As in the incompressible case, the velocity streak grows throughout the boundary region
before taking its maximum in the near-wall boundary layer. In the compressible problem,
the nonlinear interaction in the production layer also produces a thermal streak which
similarly grows throughout the boundary layer; the rate growth of the thermal streak
is higher than that of the velocity streak so that the effect of the thermal streak is
felt both further from the wall and more uniformly across the flow compared with the
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Figure 3. The amplitude of the velocity streaks (a) and thermal streaks (b) (solid lines, left axis), together with
the basic flows û( y) and θ̂ ( y) (dashed lines, right axis) for free-stream Mach numbers M∞ = 0.8, 1.4 and 2.
The arrow indicates the direction of increasing Mach number. The Prandtl number is σ = 0.71 and we have
used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic flow.

velocity streak. In figure 2(b,d) we show the velocity and thermal streaks over two vortex
wavelengths. Note that the velocity and thermal streaks shown in figure 2(b,d) are in phase,
but the functions of y multiplying cos(2βz) have opposite sign.

The variation of the amplitude of the velocity and thermal streaks for varying Mach
number is shown in figure 3, for a Reynolds number of Re = 80 000. The amplitude
of the thermal streak is enhanced as the free-stream Mach number is increased whilst
the amplitude of the velocity streaks decreases; as noted above, for moderate supersonic
M∞ the amplitudes are of comparable magnitude. This is consistent with the idea of
compressibility effects becoming more important as the free-stream Mach number is
increased (Morkovin 1962), but also suggests that the amplitude of the velocity streaks
could be become larger than that of the thermal streaks in more compressible regimes.
The location of the maximum amplitude of the thermal streak occurs further from the wall
as M∞ is increased, with the structure of the amplitude solution changing from two local
maxima to one more pronounced peak. Thus unlike the incompressible case, the growth
of the thermal streak is not uniform in y.

Meanwhile, the effect of Prandtl number on the streak amplitude is shown in figure 4
for both the subsonic and moderate supersonic regimes. Increasing the Prandtl number
from 0.7 to 1.3 leads to velocity streaks with smaller maximum amplitude where the
maximum occurs further from the wall; these effects are more pronounced in the moderate
supersonic regime than the subsonic regime. Meanwhile, for the thermal streaks, the effect
of increasing the Prandtl number is to decrease the amplitude of the streak exiting the
production layer, inhibit the growth of the streak further from the wall, but increase the
eventual rate of growth. In the subsonic case the streaks eventually have a larger maximum
amplitude; this is not the case in the moderate supersonic regime.

8. Discussion

Our results show the existence of free-stream coherent structures in the compressible
ASBL at O(1)Mach number. The solutions take the form of a roll–wave–streak interaction
at the edge of the boundary layer, in a production layer whose location is dependent on
both the Prandtl number and the Mach number. The interaction produces both a streaky
disturbance and a temperature disturbance. These grow exponentially out of the production
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Figure 4. The amplitude of the velocity streaks (a,c) and thermal streaks (b,d) for Prandtl number σ = 0.71
(solid black line), 1 (dashed line) and 1.3 (dotted line). The amplitudes in (a,c) are for a subsonic free-stream
Mach number M∞ = 0.8 whilst (b,d) are for the moderate supersonic regime with M∞ = 2. The Reynolds
number is Re = 80 000 and we have used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic
flow.

layer, with the rate of growth being controlled by the spanwise wavenumber and, for
the temperature disturbance, the Prandtl number. Above the layer, the disturbances decay
rapidly to zero. For the compressible case considered here, the main difference from the
incompressible case is the development of a spanwise varying temperature field beneath
the production layer. The amplitude of the induced temperature field disturbances depends
on both the Prandtl number and the free-stream Mach number, with the amplitude of
the velocity and thermal streaks being comparable in the moderate supersonic regime.
We might anticipate that in practice the induced temperature and streak fields could be
big enough to lead to secondary instabilities. In the incompressible case we know from
Dempsey, Hall & Deguchi (2017) that the streak generated by the free-stream coherent
structure acts as a receptivity mechanism in curved flows, so for curved compressible
flows, such as those over turbine blades, we anticipate that the structures described here
might trigger transition through the Görtler vortex mechanism.

Our results show that the fundamental mechanism described by Deguchi & Hall (2014)
for incompressible flows is also operational in compressible flows. In particular, this
suggests the mechanism will occur in compressible jets and therefore might have important
consequences for sound production in compressible jet flows. Extension of the work of
Deguchi & Hall (2015) on swept wing flows is also possible.
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Our analysis has assumed that the viscosity can be described by the power-law viscosity
law, that the effect of shocks in the moderate supersonic regime is negligible with a
sufficiently thin plate and that the gas in question is an ideal gas. Extension of the work
to account for a more realistic viscosity model, for example Sutherland’s law (Sutherland
1893), is straightforward but we believe that for the Mach numbers considered here that
is not necessary. At hypersonic speeds beyond the regime covered here both real gas
effects and more realistic viscosity models must be used and an intriguing question is
the relationship between the production-layer problem and the temperature adjustment
layer for the basic state at hypersonic speeds. Certainly, we know from for example
Cowley & Hall (1990), Blackaby, Cowley & Hall (1993) and Fu, Hall & Blackaby (1993)
that real gas effects, realistic viscosity models and indeed shocks present in the flow
can significantly alter streamwise vortex or travelling-wave instabilities, so it is to be
expected that the free-stream coherent structure mechanism at hypersonic speeds will be
significantly different from that in the moderate supersonic case.

It is not yet known whether the class of exact coherent structures described by Hall
& Sherwin (2010) can be extended to compressible flows. However, the fundamental
asymptotic analysis supporting the structure is the vortex–wave interaction theory of Hall
& Smith (1991) which in fact was given in the context of compressible flows so it would
appear likely that it is operational in compressible flows. Moreover, the inviscid stability
equation for many boundary-layer compressible flows has unstable solutions when the
incompressible counterpart has none (Mack 1975, 1984) so it may well be that vortex–wave
interactions in compressible flows may have a richer structure than their incompressible
counterparts. Taken together with the extension of the free-stream coherent structure
mechanism to compressible flows, it suggests that compressible flows might well have
a significant family of possible exact coherent states.
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Appendix A. The finite-difference approximation to the boundary-region equations

We denote the values of ũ, ṽ and θ̃ at ξi = (i − 1)�ξ , �ξ = 1/N by ũ(ξi) = ũi, ṽ(ξi) =
ṽi and θ̃ (ξi) = θ̃i, respectively, where 0 � i � N + 1. The wall is at ξ1 = 0 and the
production layer is at ξN = (N − 1)�ξ = ξPL.

The discretised boundary-region equations are

α1ũi+1 + α2ũi + α3ũi−1 = α4ṽi + α5θ̃i+1 + α6θ̃i + α7θ̃i−1, (A1)

β1ṽi+2 + β2ṽi+1 + β3ṽi + β4ṽi−1 + β5ṽi−2

= β6θ̃i+2 + β7θ̃i+1 + β8θ̃i + β9θ̃i−1 + β10θ̃i−2, (A2)

γ1θ̃i+1 + γ2θ̃i + γ3θ̃i−1 = γ4ũi+1 + γ5ũi−1 + γ6ṽi. (A3)

924 A27-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-2166-5859
https://orcid.org/0000-0002-2166-5859
https://orcid.org/0000-0001-5175-3115
https://orcid.org/0000-0001-5175-3115
https://doi.org/10.1017/jfm.2021.617


E.C. Johnstone and P. Hall

The coefficients αk, βk and γk depend on the coefficients Ak, Bk and Ck. The coefficients
of the finite-difference approximation to the x-momentum equation (6.19) are given by

α1 = A2/�ξ + A3/�ξ
2, α2 = A1 − 2A3/�ξ

2, α3 = −A2/�ξ + A3/�ξ
2, (A4a)

α4 = A4, α5 = A6/2�ξ, α6 = A5, α7 = −A6/2�ξ. (A4b)

The coefficients of the finite-difference approximation to the y-momentum equation (6.20)
are given by

β1 = B4/2�ξ3 + B5/�ξ4, (A5a)

β2 = B2/2�ξ + B3/�ξ2 − 2B4/2�ξ3 − 4B5/�ξ4, (A5b)

β3 = B1 − 2B3/�ξ2 + 6B5/�ξ4, (A5c)

β4 = −B2/2�ξ + B3/�ξ2 + 2B4/2�ξ3 − 4B5/�ξ4, (A5d)

β5 = −B4/2�ξ3 + B5/�ξ4, β6 = B9/2�ξ3 + B10/�ξ4, (A5e)

β7 = B7/2�ξ + B8/�ξ2 − 2B9/2�ξ3 − 4B10/�ξ4, (A5f )

β8 = B6 − 2B8/�ξ2 + 6B10/�ξ4, (A5g)

β9 = −B7/2�ξ + B8/�ξ2 + 2B9/2�ξ3 − 4B10/�ξ4, (A5h)

β10 = −B9/2�ξ3 + B10/�ξ4. (A5i)

The coefficients of the finite-difference approximation to the temperature equation (6.21)
are given by

γ1 = C1/2�ξ, γ2 = −C1/2�ξ, γ3 = C2, γ4 = C4/2�ξ + C5/�ξ2, (A6a)

γ5 = C3 − 2C5/�ξ2, γ6 = −C4/2�ξ + C5/�ξ2. (A6b)

The coefficients A1–A6, B1–B10 and C1–C5 are available from the authors on request.
These finite-difference approximations are then encoded in a 3 × 3 block matrix A

where each block is of size (N + 2)2. The first, second and third block rows contain the
discretisations of the x-momentum, y-momentum and temperature equations respectively.
To find the solution ũ = (ũ(ξi), ṽ(ξi), θ̃ (ξi))

T for 0 � i � N + 1 we solve Aũ = b, where
b contains the values of the solution and its derivatives at the boundaries.
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