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Aerosol particles are inertial particles. They cannot follow the surrounding fluid in a
region of high vorticity. These encounters render the particle velocity field v locally
compressible. Caustics occur if the trace of the gradient matrix 𝞼 of the field v locally
diverges. For three-dimensional isotropic and homogeneous turbulence, the dynamics of
the gradient matrix can be expressed in terms of three geometric invariants. In the present
paper we establish a parametrisation of this problem where the dynamics takes the form
of an excitable stochastic dynamical system with a three-dimensional phase space. The
deterministic part of the dynamics is solved analytically. We show that the deterministic
system has a globally attractive stable fixed point. Small noise induces excursions from the
fixed point that typically relax straight back towards the fixed point. Caustics emerge as
non-trivial return to a global fixed point when noise excites a trajectory across a stability
threshold. The relaxation to the global fixed point will then involve at least one, and it
may involve two or even three divergences of Tr 𝞼. Based on a combination of analytical
insights and numerical analysis, we determine the rate of occurrence, duration and relative
observation probability of caustic events in turbulent aerosols. Our analysis reveals that
each approach towards a divergence proceeds along a straight line in the phase space of
the dynamical system, which can help identify caustics. Moreover, there are infinite ways
in which caustics can arise, namely whenever Tr 𝞼 tends to −∞, so that no two caustics
look the same.
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1. Introduction

The turbulent flow in the wake of large obstacles can nicely be visualised by the
inhomogeneous distribution of aerosol particles (Kabanovs et al. 2019). A topical
application is the highly inhomogeneous distribution of aerosol particles resulting when
coughing without a mask (Chong et al. 2021), and the implications of this distribution on
the spreading of infections (Memoli et al. 2015; Pujadas et al. 2020), such as coronavirus
(Morawska & Cao 2020).

Owing to the difference of the mass densities of the aerosol particles and the
surrounding fluid, the particles follow slightly different tracks than the fluid (Cencini et al.
2006). This renders their flow field locally compressible and can lead to the emergence of
finite time singularities (Gustavsson et al. 2012) that are denoted as caustics (Wilkinson
& Mehlig 2005). In addition to their role in infection spreading they are expected to
play a role in the formation of rain droplets (Falkovich, Fouxon & Stepanov 2002; Shaw
2003; Wilkinson, Mehlig & Bezuglyy 2006; Bec et al. 2016; Ravichandran et al. 2022)
due to enhanced collision rates (Ravichandran & Govindarajan 2015), and hence for the
modelling of precipitation in modern climate models (Ashwin et al. 2012; Schneider et al.
2017; Prabhakaran et al. 2020). Moreover, the emergence of finite-time singularities in
hydrodynamic flows is a problem in its own right in mathematical fluid dynamics (Ivanova
& Gorman 1998).

Here, we follow up on a model of Wilkinson & Mehlig (2005) that addresses caustic
formation from a Lagrangian perspective: we address the time evolution of the mismatch
of the velocity gradients of the particle field and the surrounding fluid in the immediate
vicinity of a particle suspended in the flow. We consider the turbulent fluid-velocity field
u of the turbulent aerosol to be incompressible, isotropic and homogeneous at the relevant
scales. The model is non-dimensionalised based on the Kolmogorov length scale η and
the inner velocity scale uη of the turbulent motion. In such a setting the gradient matrix
sij = ∂iuj of the fluid-velocity field u is driving the gradient matrix 𝞼ij = ∂ivj of the
particle-velocity field v in the following nonlinear matrix equation

d𝞼
dt

= −𝞼 − 𝞼2 + s, (1.1)

where d𝞼/dt is the material derivative of the gradient tensor of the particle-velocity
field, 𝞼.

We demonstrate that (1.1) represents the dynamics of a noise-driven excitable system
(Anishchenko et al. 2003; Lindner et al. 2004) such as they have been discussed in the
context of activated decay of metastable states Graham (1990) and coherence resonance
(Pikovsky & Kurths 1997; Lindner & Schimansky-Geier 1999). From this perspective
gradient-free particle flow, 𝞼 = 0 is a global attractor of the deterministic dynamics, and
the gradient matrix s of the turbulent field serves as a noise term. Noise occasionally drives
the dynamics over a manifold that discriminates between immediate decay towards 𝞼 = 0
and large excursions with a caustic, where Tr(𝞼) diverges.

This paper is organised as follows. In § 2 we derive the model equations. In § 3 we
present an analytical solution of the evolution in the noise-free case, and discuss the
properties of this dynamics. The statistics of caustics that emerge in the presence of noise
is discussed in § 4. In § 5 we conclude the paper by a discussion of our results in the light
of previous findings, suggestions for follow-up experimental and numerical studies, and a
summary of our key findings.
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2. The model

The present study address identical, small and heavy particles in a strong isotropic and
homogeneous turbulent field. Moreover, we assume that the particles are smaller than
the Kolmogorov scale of the turbulent flow. Consequently, the fluid flow is laminar on
the scale of the particles, and the evolution of the particle velocity is described by the
(dimensionless) Stokes equation

dv

dt
= − (v − u) . (2.1)

In Appendix A we revisit the derivation of this equation, and we discuss the constraints
on the flow and particle properties where the (2.1) applies. Equation (1.1) is obtained by
taking the gradient of (2.1).

2.1. Evolution of geometric invariants
Equation (1.1) describes a nine-dimensional dynamical system in three spatial dimensions.
However, for an isotropic system only geometric invariants, i.e. combinations of the
coefficients that are invariant under rotation of the coordinate system, carry physical
information (Lumley 2007, appendix A2.6). These invariants amount to the coefficients
ck of the characteristic polynomial (2.2) of 𝞼 (cf. Lang 1993; Garibaldi 2004; Lawson &
Dawson 2015),

P(λ) = det(λI3 − 𝞼) = λ3 − Xλ2 + Yλ− Zλ0, (2.2)

where I3 is the 3 × 3 identity matrix, and

X = Tr(𝞼), Y = 1
2

(
Tr(𝞼)2 − Tr(𝞼2)

)
, Z = det(𝞼). (2.3a–c)

The time evolution of X is found by taking the trace of (1.1). Due to the incompressibility
of the fluid the noise term s is trace-less and vanishes. Moreover, Tr(𝞼2) can be expressed
in terms of X and Y , yielding

Ẋ = −X(1 + X) + 2Y. (2.4a)

The time derivative of Y amounts to Ẏ = XẊ − (1/2) (d/dt)Tr(𝞼2), and the time
derivative of Tr(𝞼2) can be worked out by multiplying (1.1) by 𝞼 and taking the trace

Ẏ = XẊ +
(

Tr(𝞼2) + Tr(𝞼3) − Tr(s𝞼)
)

= −X2(1 + X) + 2XY + X2 − 2Y + X(X2 − 2Y) − XY + 3Z − Tr(s𝞼)

= −Y(2 + X) + 3Z − Tr(s𝞼). (2.4b)

In the second step we used the Cayley–Hamilton theorem, P(𝞼) = 0, to express Tr(𝞼3) in
terms of X, Y and Z.

To derive the temporal evolution of Z we multiply (1.1) with 𝞼−1, take the trace and use
Jacobi’s formula:

Tr(log(𝞼)) = log(det(𝞼)). (2.4c)

Hence, we find

Ż = Z
d
dt

log Z = ZTr
(
𝞼−1 d

dt
𝞼

)
= −Z (3 + X) + Tr

(
s𝞼∗) , (2.4d)

where 𝞼∗ = Z𝞼−1 is the conjugate matrix of 𝞼.
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As a final remark we note that two-dimensional turbulence may be considered as
flow in a plane where all perpendicular velocity components vanish. In that case also
their gradients vanish, and consequently also the determinant Z of the gradient matrix.
Moreover, by a straightforward calculation, one verifies that Y is the determinant of the
non-vanishing 2 × 2 sub-matrix of 𝞼. Therefore, (2.4a) and (2.4b) with Z = 0 provide
the description of inertial particles in two-dimensional turbulence. In the one-dimensional
case (2.4a) with Y = 0 and Z = 0 reduces to a well-studied one-dimensional model to
study caustics (Gustavsson & Mehlig 2016).

The dynamical system (2.4) constitutes a nonlinear stochastic differential equation in a
Lagrangian point of view when Tr(s𝞼) and Tr(s𝞼∗) are interpreted as noise terms acting
on the Y and Z dynamics, respectively. These coupling terms model the inertial effects of
the turbulent dynamics, inducing the deviation of the particle from the fluid dynamics.

3. Deterministic evolution

To gain a qualitative insight into the formation of caustics in turbulent aerosols we analyse
the model first in the absence of noise. The deterministic evolution of (2.4), that results
when the noise terms Tr(s𝞼) and Tr(s𝞼∗) are dropped, describes the relaxation of the
gradients of the particle flow field, 𝞼, towards those of the turbulent flow, s. It takes the
form

Ẋ(t) = −X(t) (1 + X(t)) + 2Y(t), (3.1a)

Ẏ(t) = −Y(t) (2 + X(t)) + 3Z(t), (3.1b)

Ż(t) = −Z(t) (3 + X(t)) . (3.1c)

This dynamical system can be integrated, taking the solution

X(t) = 3C0 − 2C1 et − C2 e2t

−C0 + C1 et + C2 e2t + C3 e3t , (3.2a)

Y(t) = −3C0 + C1 et

−C0 + C1 et + C2 e2t + C3 e3t , (3.2b)

Z(t) = 1
−C0 + C1 et + C2 e2t + C3 e3t (3.2c)

with integration constants C0, C1, C2 and C3 that are related to the initial condition
(X0, Y0, Z0) of a phase-space trajectory at reference time t = 0 by

C0 = Z0, (3.3a)

C1 = Y0 + 3Z0, (3.3b)

C2 = −(X0 + 2Y0 + 3Z0), (3.3c)

C3 = 1 + X0 + Y0 + Z0. (3.3d)

This system models caustic events when the denominators of (3.2) vanish, i.e. at finite
times t = tc where

C0 = C1 etc + C2 e2tc + C3 e3 tc . (3.4)

While substituting Ec = etc in this equation, we can calculate the finite caustic times tc at
which a caustic occurs by solving the cubic polynomial

0 = C3E3
c + C2E2

c + C1Ec − C0. (3.5)
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Solving for the times tc reveals a remarkable feature of caustics. The relaxation of the
excited trajectory to the global attractor at the origin will encounter a divergence for each
real root of the polynomial (3.5) with tc > t0. Hence, the relaxation may involve up to
three singularities with a specific progression of times and phase-space directions on
the approach to the divergence. In the following, a caustic whose relaxation involves ν

divergences will be denoted as (ν)-caustic.
Next we analyse the structure of the flow for this three-dimensional model so that we can

understand how events such as (3)-caustics can emerge. Then we identify reduced two- and
one-dimensional models that will allow us to discuss certain features in a simpler setting.

3.1. The flow upon approaching a caustic
The deterministic dynamical system (3.1) has fixed points at

P0 = (0, 0, 0), P1 = (−1, 0, 0), P2 = (−2, 1, 0), P3 = (−3, 3, −1). (3.6a–d)

There is a remarkable correspondence between triples of these points and the constants
C0, . . . , C3:

C0 = 0 determines trajectories in the plane Z0 = 0 spanned by P0, P1, P2;
C1 = 0 determines trajectories in the plane Y0 = −3Z0 spanned by P0, P1, P3;
C2 = 0 determines trajectories in the plane X0 = −2Y0 − 3Z0 spanned by P0, P2, P3;
C3 = 0 determines trajectories in the plane Y0 = −1 − X0 − Z0 spanned by P1, P2, P3.

The explicit solution (3.2) implies that these are invariant planes of the dynamics.
Trajectories that start in one of the planes will stay in the plane, and trajectories that start
in the intersection of any pair of these planes have a dynamics on a straight line defined
by the intersection of the planes. Therefore, also the straight lines through any two of the
fixed points are invariants of motion. Linear stability analysis reveals that the flow along
these lines is oriented such that Pi has i unstable directions. In particular, P0 is linearly
stable.

For C3 /= 0 and t → ∞ the denominators of (3.2) increase faster than the numerators.
Hence, P0 is a global attractor of the dynamics which renders the particle velocity field
incompressible i.e. where particles follow the surrounding fluid. Almost all trajectories
will approach the origin. Trajectories in the half space that contains the origin can
approach zero without divergence. Trajectories in the plane C3 = 0 will either approach
P1 or P2. Trajectories on the opposite side of that plane will encounter a root of the
denominator at some finite time tc, that leads to a flip of the signs of X, Y and Z. This
finite-time singularity amounts to a steepening of the slope. The velocity gradients diverge
and change sign. Similar events happen in wave breaking, and in the formation of caustics
in optical reflections (Berry 1976; Beven 2019). An initial condition (X0, Y0, Z0) will
undergo 0 ≤ ν ≤ 3 caustics when the polynomial has ν real roots with Ec = exp(tc) > 1,
and it has undergone 0 ≤ νp ≤ 3 − ν caustics when the polynomial has νp roots with
0 < Ec < 1.

There are regions where (1)-caustics occur. Furthermore, there is a phase-space region
where (2)-caustics occur and a region where (3)-caustics occur. (3)-caustics are thereby
defined by phase-space trajectories that diverge three times before they approach the global
attractor P0.

The topological constraints on the flow stipulate that the domains of different types of
trajectories are separated by the four invariant planes spanned by triples of three fixed
points, and by the manifolds where cubic polynomial has double and triple roots.
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The solutions, (3.2), of the deterministic dynamics, (3.1), are ratios of polynomials in
the variable et. In the generic case the roots of the numerator and denominator are distinct.
In that case there are numbers α and β such that the approach to the singularity is always
linear in leading order,

|X(t)| � 1 ⇒ Y(t) ∼ αX(t) ∧ Z(t) ∼ βX(t). (3.7)

Far away from the origin the evolution of the trajectory towards a caustic follows a straight
line to infinity with X(t) → −∞ with some values α, β ∈ R. Interestingly, there are
infinite many possibilities of a caustic to occur because α and β are real parameters. Then
it returns from the exactly opposite position in the three-dimensional phase-space. It still
follows (3.7) with the same numbers α and β, and X(t) � 1 and decaying. Subsequently,
the phase-space trajectory either goes through another caustic, where α and β take other
values, or it settles down to the origin. A trajectory can undergo at most three caustics, that
correspond to the three roots of the denominator of (3.2).

The deterministic dynamics (3.1) always ends up asymptotically in the global attractor
P0 and is therefore not chaotic.

3.2. Caustics in the two-dimensional model
It is instructive to note that the (X, Y)-plane is an invariant manifold of the
three-dimensional dynamics (3.1), and that this manifold is attractive as long as X > −3.
Basic features of the dynamics can therefore be understood already in the two-dimensional
dynamics where it is much easier to visualise the structure of the flow. For Z ≡ 0 the
two-dimensional deterministic dynamics

Ẋ(t) = −X(t) (1 + X(t)) + 2 Y(t), (3.8a)

Ẏ(t) = −Y(t) (2 + X(t)) (3.8b)

has solutions

X(t) = −2c0 − c1 et

c0 + c1 et + c2 e2t , (3.9a)

Y(t) = c0

c0 + c1 et + c2 e2t (3.9b)

with c0, c1, c2 determined by the initial condition (X0, Y0) of a phase-space trajectory at
time t = 0,

c0 = Y0,

c1 = −(X0 + 2Y0)

c2 = 1 + X0 + Y0.

⎫⎪⎬
⎪⎭ (3.10)

This dynamics has fixed points at

Q0 = (0, 0), Q1 = (−1, 0), Q2 = (−2, 1), (3.11a–c)

i.e. the fixed points P0, P1, and P2 of (3.6a–d) with Z = 0. Accordingly, the invariant
manifolds of the two-dimensional system are straight lines through every pair of these fixed
points, and the flow along these lines is orientated such that Qi has i unstable directions.
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–2–3

Figure 1. The flow field, the invariant lines and the fixed points. Arrows show the direction of the flow field of
(3.8) in the (X, Y)-plane. The speed of the flow is provided by a colour coding with a label provided by the bar
to the right. The three fixed points Q0, Q1 and Q2 are marked by a red +, a green � and a blue •, respectively.
The invariant lines that proceed through all pairs of fixed points are marked by solid lines where the colours
serve for a better visualisation.

During a caustic the phase-space trajectories are to leading order linear functions with
slope γ such that

Y(t) ∼ γ X(t), (3.12)

and there are periodic boundary conditions in the variables X and Y during a caustic at
infinity.

The flow field, the invariant lines and the fixed points are shown in figure 1. This figure
nicely shows that the origin is an attractor of the flow. Small finite excitations from zero
decay right away, as long as they amount to initial conditions to the upper right of the
manifold spanned by Q1 and Q2,

Y = −1 − X (3.13)

that is marked by a solid red line. However, the trajectory makes a large excursion when
their initial conditions are located below the red line (3.13). In particular, it must then
go through a caustic before it can return to the origin. Different trajectories with initial
conditions below the red line (3.13) are shown in figure 2. One can see that they have
to perform a caustic event until the relaxation towards the global attractor sets in. At the
global attractor the particle velocity fields is incompressible and no further caustic events
can occur.

Similar to the three-dimensional system one can classify the trajectories based on
the roots of the common denominator Y0 − (x0 + 2Y0) exp(t) + (1 + X0 + Y0)(exp(t))2

of the solutions (3.9). The denominator is a quadratic function in exp(t) with roots
Ec = exp(tc). The polynomial has a double root at Y0 = X2

0/2 (yellow line in figure 2).
Trajectories undergo 0 ≤ ν ≤ 2 caustics if the denominator has ν roots with Ec > 1,
and they experienced 0 ≤ νp ≤ 2 − ν caustics in their past when the denominator has
νp roots with 0 < Ec < 1. A straightforward, even though tedious calculation provides a
classification that can also be inferred for the inspection of the flow (figure 1).
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50 10
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X
–5

–5

0
Y

–10

–10

Figure 2. Different types of caustics in the two-dimensional model. The dashed, dash-dotted and dotted line
show trajectories featuring a (1−)-caustic, a (1+)-caustic and a 2-caustic, respectively.

(i) For initial condition with X0 < −1 and Y0 = 0 there are roots with Ec = 0 and
Ec > 1, respectively. These initial conditions lie on trajectories that started close
to Q1, and they undergo a single caustic where they diverge towards the left. They
return from the right, and converge towards Q0.

(ii) For initial condition with X0 < −1 and 0 < Y0 < −1 − X0 there are roots with
Ec < 0 and Ec > 1, respectively. These initial conditions lie on trajectories that
started close to Q2, and they undergo a single caustic where they diverge towards
the upper left. They return from the lower right, and converge towards Q0. These
trajectories are said to exhibit (1+)-caustics. An example is provided by the
dash-dotted line in figure 2.

(iii) Initial conditions with X0 > −1 and 0 ≥ Y0 > −1 − X0 amount to post-caustic
locations on the trajectories described in (i) for Y0 = 0 and (ii) for Y0 > 0,
respectively.

(iv) Initial conditions with X0 < −2 and Y0 = −1 − X0 proceed along the red line,
originating at P2, diverging to the upper right and then approaching P1 along the
red line.

(v) For initial condition with −1 − X0 < Y0 < X2
0/2 there are two roots with Ec > 1.

These initial conditions lie on trajectories that started close to Q2, undergo a
caustic where they diverge towards the upper left. They return below the red line
from the lower right, undergo another caustic towards the lower left and then they
converge towards Q0. These trajectories are said to exhibit (2)-caustics. An example
is provided by the dotted line in figure 2.

(vi) Initial conditions with Y0 < 0 and Y0 < −1 − X0 amount to points in between the
two caustics the former trajectories. Trajectories initialised at these points perform a
(1−)-caustic (dashed line in figure 2). The vast majority of noise-induced caustics is
of this type.

(vii) For X0 < −2 and Y0 = X2
0/2 the trajectories are initiated on the line where the

denominator has a double root. They evolve towards the upper left along the parabola
indicated as solid orange line in figure 2, and subsequently they approach Q2 along
the positive branch of the parabola. This special trajectory separates the region where
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initial conditions perform two caustics, and where they return to the origin without
undergoing a caustic.

(viii) All other initial conditions approach directly Q0 without undergoing caustics.

3.3. Caustics in the one-dimensional model
The explicit solutions of the deterministic evolution imply that caustics involve a
divergence of the divergence, X = ∇ · v, of the particle velocity field, v (Wilkinson &
Mehlig 2005; Wilkinson et al. 2006). A first impression on the aerosol dynamics can
then be obtained by considering only the one-dimensional dynamics along the invariant
manifold Y0 = Z0 = 0 (Gustavsson et al. 2012; Gustavsson & Mehlig 2013, 2016)

Ẋ(t) = −X(t) (1 + X(t)) = − d
dX

Φ(X(t))

with Φ(X) = X2

6
(3 + 2X).

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

For the initial condition X(0) = X0, (3.14) has the solution

X(t) = X0

(1 + X0) et − X0
(3.15)

and the system undergoes a caustic when Ec = exp(tc) = X0/(1 + X0) > 1, i.e. for initial
condition X0 < −1 where X = 0 corresponds to the unstable point of the one-dimensional
dynamical system. For X0 > 0 the trajectory underwent a caustic in the past, and for −1 <

X0 < 0 the trajectories relax directly towards the stable fixed point at the origin.
At this point we provide another property for the analysis of caustics, the caustic duration

Tc. As the formulas are quite easy for the one-dimensional system we provide it first here.
A similar and straightforward calculation holds true also in the two- and three-dimensional
cases. An estimation for the duration of caustic events is especially interesting for the next
section where we analyse the effects of applying noise to the deterministic dynamics,
i.e. (2.4). The duration of a caustic will be defined as the time Tc where the particle
proceeds in a region X ∈ [−XD, XD] where the forcing due to the noise is negligible as
compared with the deterministic force due to the steep decay of the potential Φ(X). From
(3.15) one infers that

XD = −XD

(1 − XD) e〈Tc〉 + XD
⇒ 〈Tc〉 = ln

−1 − XD

1 − XD
. (3.16)

Here, XD is a user-defined parameter and typically values are XD > 1. In a case with noise
this parameter will depend on the noise strength of the turbulent flow field. It can be
determined by analysing when the phase space trajectories approach straight lines in the
mean, i.e. when trajectories during a caustic stay in a cylinder of some fixed diameter δ.
As a remark, in the two- and three-dimensional cases one finds curves YD(XD) and planes
ZD(XD, YD), respectively.

4. Noise-induced caustics

Adding noise turns (3.1) into an excitable dynamical system (2.4) (Lindner et al. 2004).
To gain insight into its dynamics we assume white noise terms

Tr(s𝞼) ≡
√

2D1ε1(t), (4.1a)

Tr(s𝞼∗) ≡
√

2D2ε2(t), (4.1b)
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with delta-correlated Gaussian white noise ε1,2(t) and noise amplitudes D1,2, respectively.
We assume ε1 and ε2 to be independent from each other and we ignore spatial correlations
of the noise terms because the caustic dynamics takes place on far smaller length scales
than the Kolmogorov scale.

Recently, Meibohm et al. (2021) studied the matrix equation (1.1) in the
two-dimensional case with Stokes numbers between 0.24 and 0.51 by modelling the
fluid velocity gradient s using a direct numerical simulation (DNS) of two-dimensional
turbulence. Interestingly, they confirmed that the noise in the dynamics of caustics is only
needed to initialise the escape process. The noise-independence of the deterministic part of
(2.4) favours the fact that analysing the pure deterministic system gives qualitative insight
in the behaviour of caustics. Changing the noise statistics will only change the statistic of
caustic events quantitatively. Furthermore, the study of geometric invariants (2.4) revealed
noise terms of the form Tr(s𝞼) and Tr(s𝞼∗). These terms can be approximated by the
Gaussian closure method with Gaussian white noise when v is incompressible, i.e. for
X = 0 (Wilczek & Meneveau 2014; Lawson & Dawson 2015; Fuchs et al. 2022). This fact
supports the noise assumption (4.1). The analysis of the noised system (2.4) will apply
to turbulence when the white noise assumption holds true in a range that extends till the
phase-space separatrix where trajectories take off for a caustic, i.e. the moment when the
deterministic force of (2.4) dominates the noise.

To explore the consequences of white noise we start with a brief recap of the well-known
one-dimensional model. Subsequently, we point out which features of the flow require an
analysis of the full three-dimensional set of equations, and we provide a numerical analysis
of the dynamics of these models.

4.1. Frequency of caustics in the one-dimensional model
The one-dimensional model reduces to the white-noise assumption from earlier works, i.e.
Wilkinson & Mehlig (2003) and Gustavsson & Mehlig (2016). They analysed

Ẋ = −X(1 + X) +
√

2Dε(t) (4.2)

for delta-correlated white noise ε(t) with noise amplitude D. In their work they analysed
the one-dimensional case with great detail up to finding exact solutions for the Lyapunov
exponents which describe the noised dynamics. However, for higher dimensions the
studied dynamics in the white noise limit have not yet been exactly solved. The difficulty
is that the multi-dimensional deterministic drift part of the resulting set of Langevin
equations is neither potential nor solenoidal. Therefore, general mathematical frameworks
cannot be applied.

As the rate jc at which caustics occur is of importance for our work, we present a quick
derivation of its asymptotic for large noise. We start by transforming the one-dimensional
dynamics (4.2) into a steady-state Fokker–Planck equation (Gustavsson & Mehlig 2016),

− jc(D) = X (1 + X) ρs(X) + D∂Xρs(X). (4.3)

Here, ρs corresponds to the probability density in the steady state, and jc determines the
steady-state probability current which corresponds to the rate at which caustics occur.
Multiplying (4.3) with the integrating factor exp(X3/3D + X2/2D) provides the formal
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solution

ρs(X) = − jc
D

exp
(

− X3

3D
− X2

2D

)∫ X

−∞
exp

(
X̂3

3D
+ X̂2

2D

)
dX̂. (4.4)

The density, ρs(X), is normalised over the real numbers, X ∈ R. Hence, one can integrate
(4.4) and derive an equation for jc

− jc(D) = D

∫∞
−∞ exp

(
− X3

3D
− X2

2D

)∫ X
−∞ exp

(
X̂3

3D
+ X̂2

2D

)
dX̂ dX

. (4.5)

In the large-noise case one can solve the integrals in (4.5) by noting that the X2-term in
the exponent are sub-dominant for D � 1, and adopting the substitution

y = X
D1/3 , ŷ = X̂

D1/3 . (4.6a,b)

This turns (4.5) into

−jc(D) = D1/3

∫∞
−∞ exp

(
−y3

3
− y2

2D1/3

)∫ y
−∞ exp

(
ŷ3

3
+ ŷ2

2D1/3

)
dŷ dy

∼ D1/3

∫∞
−∞

∫ y
−∞ exp

(
ŷ3 − y3

3

)
dŷ dy

for D � 1. (4.7)

Next we observe that ŷ3 − y3 = (ŷ − y)( y2 + yŷ + ŷ2) and introduce the substitution z =
ŷ − y and ẑ = y + z/2. After some arithmetic one finds that

− jc(D) ∼ D1/3∫ 0
−∞ ez3/12

∫∞
−∞ ezẑ2 dẑ dz

∼ D1/3

√
π
∫ 0
−∞ ez3/12

√−z dz
for D � 1. (4.8)

Substituting x = −z3/12 turns the integral in the denominator into a Gamma function and
provides the final result

− jc(D) ∼ 35/6

21/3π1/2Γ

(
1
6

)D1/3 for D � 1. (4.9)

This result is compared with numerical results in § 4.3.

4.2. Caustics in the two- and three-dimensional models
The stochastic system (2.4) constitutes a noise-driven excitable system (Pikovsky & Kurths
1997; Lindner & Schimansky-Geier 1999; Anishchenko et al. 2003) An exact solution of
this dynamics lies beyond the scope of the present paper. Hence, we discuss caustics in the
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Figure 3. Two caustics observed in a numerical simulation of (4.10) for noise strength D = 10. Approximately
95 % of the caustics observed in this case are (1−)-caustics (black dashed line). Most of the others are
(1+)-caustics and rarely one observes a (2)-caustic (black dotted line). The grey band demonstrates the region
where the trajectories evolve in a tube of width δ during a caustic. Here we choose δ = 1.

two- and three-dimensional models based only on numerical work, and we start with the
two-dimensional sub-system

Ẋ = −X(1 + X) + 2Y, (4.10a)

Ẏ = −Y(2 + X) +
√

2D1 ε1(t). (4.10b)

The position of the critical manifold (red line in figure 2) suggests that the closest point
to cross the manifold lies to the lower left of the origin. Inspection of the flow field in
figure 1 revels that this is also the region that is most easily reached by trajectories.
Trajectories that start in the vicinity of this region will perform a (1−)-caustic. Hence,
we expect that these should most frequently be observed. This is in line with the findings
of numerical integration of the system. The (1−)-caustics occur in over 95% of the cases.
A typical caustic of this type is shown by the dashed line in figure 3. However, the other
types of caustics can also be observed even if only rarely. The dotted line in figure 3 shows
a (2)-caustic.

For the three-dimensional model (2.4), the critical manifold is spanned by the fixed
points P1, P2, P3, and the closest point to cross this manifold is situated in the Z = 0
plane right at the position identified in the two-dimensional model. As long as D2 < D1
the dynamics stays close to the Z = 0 plane and one observes a very similar dynamics as
in the two-dimensional system; with the rare exception of a (3)-caustic. When D2 ≥ D1
more and more trajectories exhibit a non-trivial dynamics in the Z coordinate.

4.3. Rate of occurrence
The rate at which caustics occur is numerically estimated as the number of observed
caustics N divided by the total simulation time, Tsim,

− jc(D) � N
Tsim

. (4.11)
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105104103102101

100

101

D

– js

Figure 4. The rate at which caustics occur in simulations. From top to bottom the data points indicate
the different models. Here � shows data for the one-dimensional model, × shows data for the
two-dimensional model, © shows data for the three-dimensional model with D = D1 = D2, � shows data
for the three-dimensional model with increasing D1 = D and D2 fixed at 10 and � shows data for the
three-dimensional model with increasing D2 = D and D1 fixed at 10. The blue line shows the prediction (4.9),
which fits perfectly with the numeric data of the one-dimensional model. The red line corresponds to the power
law 0.2 D1/5. This line provides a very good fit of the data of the two- and three-dimensional models where the
noise on the Z-dynamics is sub-dominant.

In all simulations we limit N to 5000 caustics. To reach this number we perform
simulations for noise strengths D ≥ 10. The results of the simulations are shown in
figure 4. For the one-dimensional model (�) the simulation results lie right on our
analytical prediction (4.9), i.e. a power law with exponent 1/3. For the two-dimensional
model (×) and the three-dimensional model with D1 ≥ D2 (©, �) we observe the same
power-law dependence, but now with a smaller exponent of approximately 0.2. When
D1 < D2 in the three-dimensional model, the growth is even slower (�). In line with
the assessment of the qualitative features of the trajectories of § 4.2 the two-dimensional
sub-system (4.10) provides a good approximation of the rate of occurrence of caustics in
the full three-dimensional dynamics (2.4) as long as D1 � D2.

The different exponents of the power laws imply that the noise strength of the effective
noise in the one-dimensional model must not be interpreted as a turbulent noise strength.

4.4. Probability to observe caustics
The analysis of the previous subsection reveals that caustics occur much less frequently
than expected based on the analysis of the one-dimensional model. However, the linear
phase-space dependence established in (3.7) provides an opportunity to effectively identify
runaway trajectories, even while the divergence of the velocity is not yet or no longer close
to its divergence. In this novel approach the relative probability Pobs to identify a caustic
when observing a particle at random amounts to the sum over all caustic times Tc of the
N caustics observed in a simulation divided by the total time of the simulation, Tsim. As
suggested in § 3.3 the duration of the caustic Tc is provided here by the time at which the
phase-space trajectory is locked at a straight line within an δ-tube so that (3.7) holds to a
good approximation, and the noise is sub-dominant in the dynamics. This is demonstrated
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105104103102101
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Figure 5. The fraction of time, Pobs, that a particle spends in a caustic, i.e. it approaches infinity in a path that
fits into a tube of diameter δ. See figure 4 for the description of symbols. The solid blue line shows the theory
curve of the observation probability in the one-dimensional case, which fits the data nicely.

by the grey bands in figure 3 that indicate the δ = 1 tubes for the displayed caustics. Based
on this algorithm we define

Pobs = 1
Tsim

N∑
i=1

Tc,i = N
Tsim

1
N

N∑
i=1

Tc,i � jc〈Tc〉. (4.12)

In the last step of this equation we used that N/Tsim converges to the rate, jc, of the
occurrence of caustics, and that the total duration of all caustics divided by the number
of caustics amounts to the average duration 〈Tc〉 of a caustic.

The simulation results are reported in figure 5. Overall, the probability to observe a
caustic is located in the single-digit percentage range, and it increases in all cases as
the noise amplitudes become larger. For the one-dimensional model the numerical data
(�) lie right on the prediction (solid blue line) that is obtained as the product of (4.9)
and (3.16). The probability to observe a caustic increases roughly logarithmically with
the noise strength D. The data for the two-dimensional dynamics (×) follow the same
trend. However, in this case the probability is smaller by an ample factor of two. The data
for the three-dimensional dynamics with D = D1 > D2 (�) takes the same values as for
the two-dimensional dynamics. For D = D1 = D2 the probabilities (©) are smaller, and
the data for D = D2 > D1 take the smallest probabilities (�). This shows that a faithful
discussion of the probability to observe caustics must be based on a careful analysis of the
noise terms.

5. Discussion and conclusion

In Appendix A we discuss how one can define a flow field v in the immediate vicinity
of an aerosol particle, and we point out that the particle field will become compressible
as a consequence of particle inertia. Falkovich et al. (2002) came up with a physical
interpretation. In regions of high vorticity, heavy particles cannot follow the sharp turn
of the fluid and thus they detach from the flow when the centrifugal acceleration on the
particles by their vortical motion in the fluid is larger than the turbulent distortion force of
the flow.
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The resulting clustering effect of aerosol particles, known as caustic, is a topic of recent
research (Wilkinson et al. 2006; Gustavsson et al. 2012; Gustavsson & Mehlig 2016; Pumir
& Wilkinson 2016; Meibohm et al. 2020, 2021). Starting with Wilkinson & Mehlig (2005)
who established a one-dimensional model to point out that caustics can be modelled by
finite-time runaways. As we have shown, their model emerges as the dynamics along a
one-dimensional invariant manifold of our model, when white noise is added to mimic the
turbulent driving. However, to gain faithful theoretical insight in the dynamics of caustics
in turbulent aerosols an analysis of the full three-dimensional dynamics is needed.

We start this analysis by revisiting the Maxey–Riley equation (A5) from which we
derive Stokes equation for the evolution of the velocity field v of small and heavy aerosol
particles. By taking the gradient of Stokes equation we arrive at the matrix equation (1.1),
corresponding to the starting point of our analysis. Compressibility X = ∇ · v of the
particle flow field is reflected by a non-trivial time evolution of the trace of the gradient
matrix 𝞼ij = ∂ivj.

For homogeneous, isotropic turbulence we expressed the matrix equation (1.1) in terms
of the evolution of three geometric invariants of the dynamics (3.1). In contrast to previous
work (Garibaldi 2004; Mehlig et al. 2005; Gustavsson & Mehlig 2016), we adopt a
parameterisation (2.3a–c) in terms of the trace X = Tr(𝞼), Y = (X2 − Tr(𝞼2))/2, and
Z = det(𝞼). For two-dimensional turbulence the determinant Z will vanish, and Y amounts
to the determinant of the non-vanishing 2 × 2 part of the velocity gradient matrix. The
divergence of the flow X follows a deterministic evolution (2.4a), where Ẋ is determined
by X and Y .

The coupling of the aerosol particles to the turbulent flow emerges in the equations
of motion by additive terms Tr(s 𝞼) and Tr(s 𝞼∗) in the time derivatives of Y and Z,
respectively. We interpreted these terms as noise in the dynamics of caustics. Expressions
of this form were recently analysed by Wilczek & Meneveau (2014), Lawson & Dawson
(2015) and Fuchs et al. (2022). They proved that the additive noise terms in (2.4) take the
form of Gaussian white noise when v is incompressible, i.e. for X = 0. Our analysis will
apply to turbulence when this still holds true in a range that extends until the separatrix
where trajectories take off for a caustic. Recently, Meibohm et al. (2021) analysed (1.1)
with turbulent DNS data. They confirmed that turbulent noise in the dynamics of caustics
is only needed to initialise the escape process. Following whatever the noise looks like,
whenever a phase space trajectory is pushed over a the phase-space separatrix near the
origin, the system has to perform a caustic event when beyond this point the deterministic
force of the system dominates over the noise. When this is the case, the dynamics of caustic
formation is described by the analytic solution of the deterministic part of (2.4).

The virtue of our choice of observables is that it admits an explicit solution (3.2) of
the deterministic evolution, i.e. the equations of motion in the limit of vanishing noise
(3.1). Thus, we prove that the origin X = Y = Z = 0 is a global attractor of the dynamics.
Almost all initial conditions decay exponentially to this state. However, there is a critical
plane in the three-dimensional space that is invariant under the dynamics. This plane
separates initial conditions that decay directly to the origin, and those that decay only
after experiencing at least one finite-time singularity. We also showed that the Z = 0
plane is another invariant plane of the flow. The flow in this plane describes caustics
of aerosol particles suspended in two-dimensional turbulent flow. When subjected to
noise, small perturbations from the origin decay directly and excursions that cross the
critical plane will (most likely) undergo a caustic before they return. This places the
two- and three-dimensional models into the realm of excitable dynamics as they have
been studied in the context of coherence resonance (Pikovsky & Kurths 1997; Lindner &
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Schimansky-Geier 1999). The black square and the blue lines in figures 4 and 5 show our
predictions of the rates at which caustics occur and the relative probability to observe a
caustic, respectively. A comparison with the data of the two- and three-dimensional models
reveals that the one-dimensional model predicts a power law for the rate at which caustics
occur with exponent 1/3 which is significantly higher than the value of 1/5 followed by
the two-dimensional dynamics and the three-dimensional dynamics with dominant noise
in Y . This underpins our earlier assessment that the one-dimensional model provides only
qualitative insights in the dynamics of caustics and should not be the main scope of
interest. In contrast, our analysis of the phase-space structure of the full dynamics and
the exact solution of the caustic formation process provide several trustworthy predictions
about features of caustics in two- and three-dimensional turbulent flows.

(i) Equation (2.4) confirms the notion that the dynamics of caustics can be seen as
an excitable system where the turbulent distorting flow provides noise that pushes
trajectories over a separatrix that separates phase-space positions, which decay
directly to a global fixed point in the absence of noise, from positions that take
a large excursions in phase space. In the present dynamics they feature at least one
finite-time divergence before they eventually approach again the vicinity of the stable
fixed point. The divergences are hallmarks of caustics.

(ii) The three-dimensional dynamics remains close to the Z = 0 plane when the noise
in Z is smaller than that in Y . In that case the statistics of caustics in the full
three-dimensional dynamics agrees with the one of the two-dimensional model
(Z ≡ 0) that also describes two-dimensional turbulent flow (cf. the × and � in
figures 4 and 5). Furthermore, this result confirms the finding of Mehlig et al.
(2005) which states that under given conditions indeed the statistics of the two- and
three-dimensional systems seem to be similar.

(iii) In three-dimensional flows the deterministic system (3.1) can diverge up to three
times before it settles to the origin. Some excitations entail a sequence of divergences
with correlated features. Excitations with two and three singularities are denoted as
(2)- and (3)-caustics, respectively. The two-dimensional model shows (2)- but no
(3)-caustics. Double caustics are displayed in figures 2 and 3. However, we found
that (1)-caustics are the preferred caustics. They occur in over 95 % of the cases.

(iv) The divergence towards a caustic and the subsequent relaxation towards the region
close to the origin proceeds along a straight path in the (X, Y, Z) space (3.7). There
are infinitely many directions of the straight path at which caustics occur where X
tends towards −∞. Therefore, no two caustics look the same.

(v) Before, during and after the caustic event the phase space trajectory moves in a
straight line. Therefore, caustics can be identified by looking for trajectory segments
where the values Y/X and Z/X take a constant value for some short amount of time.
This is illustrated by the grey bands in figure 3. In §§ 4.3 and 4.4 we pointed out
that this provides a new opportunity to identify caustics in numerical data or in
experimental data via particle tracking velocimetry (Schanz, Gesemann & Schröder
2016; Herzog et al. 2021).

(vi) There is a most-likely path along caustics occur. Averaging over the observed
phase-space slopes of all caustics events reveals it.

(vii) By analysing the excitable stochastic dynamical system (2.4), under the assumption
of white noise, we also provided qualitative information about the time scales
(3.5), the duration (3.16), the rate of occurrence (4.11) and the relative observation
probability of caustics (4.12).
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In summary, the study of geometric invariants of the matrix equation (1.1) has led to a
stochastic dynamical system (2.4), the analysis of which provided a range of qualitative
new insights into the formation and evolution of caustics in turbulent aerosols. Analytic
solutions of this system revealed the deterministic dynamics of caustic in turbulent
aerosols in up to three spatial dimensions. To gain quantitative insight in the statistic
of caustic events we modelled the noise terms Tr(s𝞼) and Tr(s𝞼∗) by white noise, see
(4.1). Wilczek & Meneveau (2014) and Lawson & Dawson (2015) showed that under given
conditions this assumption applies to turbulence due to the special algebraic noise terms
structure. As Meibohm et al. (2021) showed, the noise terms are only needed to initialise
the escape process, which models caustics events. Therefore, the noise is sub-dominant in
the dynamics, which renders the dynamics of caustics semi-deterministic. This favours the
fact that analysing the pure deterministic system gives qualitative insight in the behaviour
of caustics and that different noise term assumptions will only lead to different quantitative
information about the statistic of caustics.

Forthcoming theoretical work will address the interplay between the noise parameters
D1 and D2 in the three-dimensional model, and a mathematical underpinning of the
noise term assumptions. This will involve properly modelling the noise terms to fit
experiments and DNS data. We look forward to qualitatively and quantitatively comparing
our theoretical predictions of the dynamics of caustics in turbulent aerosols with these
data. In particular, it would be very exciting to see (2)- or (3)-caustics in such data.
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Appendix A. Borders of applicability

The equation of motion of the Lagrangian velocity v(r, t) of a small spherical aerosol
particle moving in an incompressible flow-velocity field u(r, t) has been provided by
Maxey and Riley (Maxey & Riley 1983),

ρPVP
dv

dt
= −6πνRρF (v − u) (A1a)

+ 6 R2ρF
√

πν

∫ t

0

u̇(t′) − v̇(t′)√
t − t′

dt′ (A1b)

+ 1
2
ρFVP (u̇ − v̇) (A1c)

+ ρFVP (u̇ − g) (A1d)

+ ρP VP g. (A1e)

Here, ρF and ρP are the densities of the fluid and the particles, respectively, ν is the
kinematic viscosity of the fluid, R is the particle radius and VP = 4πR3/3 is the particle
volume. The terms on the right-hand side of (A1) are the Stokes drag force (A1a), the
Basset-history force due to distortion of the fluid-velocity field by an accelerating particle
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(A1b), the added mass force due to acceleration of the surrounding fluid (A1c), the
buoyancy term (A1d) and the gravitational force term (A1e), respectively.

A.1. Derivation of (1.1)
To explore the relevance of the different contributions in (A1) we turn the equation into
a dimensionless form that is adapted to the evolution on the scale of small particles.
Velocities will be measured in units of the characteristic turbulence velocities uη on the
Kolmogorov scale η. Changes of these velocities arise on the turbulence time scale

τη = η

uη

. (A2a)

However, we rather derive the time scale from the relaxation rate

γ = 6πνRρF

VPρP
(A2b)

that determines the relaxation rate of the particle-velocity field to the surrounding
fluid-velocity field due to Stokes drag. The ratio of the relaxation time and the turbulence
time scale is denoted as Stokes number

St = 1
γ τη

. (A3)

It characterises the violence of the turbulence on the particle scale. Non-dimensionalisation
by uη and γ provides the dimensionless units

t̂ ≡ γ t, û ≡ u
uη

, v̂ ≡ v

uη

. (A4a–c)

To avoid bulky notation we suppress the hat symbols, with the understanding that we
always use dimensionless units in the following. The resulting dimensionless Maxey–Riley
equation reads

dv

dt
= − (v − u) (A5a)

+ 1√
π

(
R
η

1√
St

)∫ t

0

(
u̇(t′) − v̇(t′)

)
√

t − t′
dt′ (A5b)

+ 1
2

ρF

ρP
(3u̇ − v̇) (A5c)

+ g
uηγ

(
1 − ρF

ρP

)
. (A5d)

A.2. Stokes equation (2.1)
The description of the particle velocity evolution by the Stokes equation (2.1) is based on
the assumptions that the contributions (A5b), (A5c) and (A5d) may be neglected in (A1).
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In order to explore the compatibility of these requirements we insert (A2) into Eq. (A3) to
express the Stokes number in terms of the density contrast ρP/ρF and the ratio R/η,

St = 2
9

Reη

ρP

ρF

(
R
η

)2

with Reη = uηη

ν
. (A6)

We further note that the Kolmogorov scale η is defined as the length scale where the
Reynolds number, Reη, takes a value of order one.

A.2.1. The Basset history term (A5b)
This term is sub-dominant when (R/η)2 � St. In view of (A6) this requirement holds if
the particles are heavy,

ρF

ρP
� 2

9
Reη. (A7a)

However, in itself it is not clear whether the integral in this term might become large in
some parameter ranges. Indeed, Daitche & Tél (2014) pointed out that for heavy particles
the Basset memory term in (A5) may only be neglected after carefully inspection. In their
(29), they estimate that one should also require

R < 0.01η (A7b)

in order to safely neglect memory effects. This requirement must be adopted as an
additional constraint on the applicability of our model.

A.2.2. The added mass term (A5c)
This contribution is sub-dominant when the particles are heavy,

ρF

ρP
� 1. (A8)

This comes down to the same requirement as (A7a).

A.2.3. The gravitational force term (A5d)
This term is sub-dominant when the Stokes settling velocity, g/γ , is small as compared
with the turbulent velocity scale uη

uη � |g|/γ. (A9)

Based on (A2b) and (A6) this can be expressed as a requirement on the particle radius or
on the Stokes number,

R
Lg

�
√

9
2

Reη

ρF

ρP

Lg

η
(A10a)

⇔ St � Re2
η

(
Lg

η

)3

where Lg =
(

ν2

g

)1/3

. (A10b)

Here Lg is the length scale in the fluid where the gravity and viscosity have comparable
effect. Equation (A10a) is only determined by parameters characterising turbulent flow,
Lg and η. It limits the range of Stokes numbers where the motion of aerosol particles is
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L0 (m) U0 (m s−1) ν (m2 s−1) Re = U0 L0

ν
η = L0

Re3/4 Lg = ν2/3

g1/3 St �
(

Lg

η

)3

water 0.1 1 10−6 105 18 μm 47 μm 18
air 0.1 1 15 × 10−6 7 × 103 135 μm 280 μm 9.2
truck 2.5 25 15 × 10−6 4.2 × 106 27 μm 280 μm 1200
cloud 1000 20 15 × 10−6 1.3 × 109 140 μm 280 μm 7.8

Table 1. Numerical examples for the bound (A10b) where the turbulent flow has a length scale L0 and
velocity U0 on the outer scale. With the kinematic viscosity ν this prescribes the Reynolds number Re and
the Kolmogorov scale η is then obtained by standard scaling arguments (see e.g. Tennekes & Lumley 1972,
Chap. 1.5). The different lines correspond to different fluid flows. The former two cases refer to table-top
experiments of water and with air, respectively. The third case refers to the turbulent wake of a van running
with a speed of 90 km h−1, and the last case refers to the hydrodynamic motion of a cloud. Note that the bound
to the Stokes number is determined solely by the properties of the flow. It does not involve features of aerosol
particles.

described by the Stokes equation. For some characteristic cases the numerical values of
this limit are provided in table 1.

Cencini et al. (2006) performed DNS of turbulent aerosol particles with Stokes numbers
in the range between 0.16 and 3.3, and they verified that the assumptions based on the
Stokes equation (2.1) are compatible with numerical observations to the very least in this
regime. Their numerical work provides further evidence that for heavy particles the Stokes
equation (2.1) applies to the least for Stokes numbers up to order of unity.

A.3. Constraints on particle radii
Equations (A10a) and (A7b) put bounds on the particle radius R that must be fulfilled at the
same time. In figure 6 the dependence of the bounds on the outer turbulence velocity U0
are plotted by solid and dotted lines of matching colour. Different pairs of lines correspond
to setting with different outer scales L0. For small velocities U0 the particles must be tiny
to escape the influence of gravity. For increasing velocities U0 the Kolmogorov scale η

decreases, and particle size must decrease to remain smaller than η. In an intermediate
range, for velocities U0 of the order of a few tens of metres per second both criteria can best
be matched. In these cases the theory (2.4) applies also for Stokes numbers considerably
larger than one, similar to the wake behind a driving truck provided in table 1.

A.4. Particle velocity field
Equation (1.1) is derived from (2.1) by interpreting v as a particle velocity field and
taking spatial derivatives. This approach has previously been adopted in the pertinent
literature (Wilkinson & Mehlig 2005; Falkovich & Pumir 2007; Gustavsson & Mehlig
2016; Pumir & Wilkinson 2016; Meibohm et al. 2021). However, it needs some careful
underpinning because it is not clear a priori how and if a unique particle velocity field
should be defined in a setting where the particle undergo caustics, e.g. where multiple
particles occurring at the same position in space with different velocities. We sketch here
how such a foundation is available from the perspective of kinetic theory (Chapman &
Cowling 1970; Saint-Raymond 2009).

We consider the probability distribution f (x, v, t) to observe a particle with velocity v
at the position x. In the present study we do not consider particle collisions. Further, we
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Figure 6. The constraints (A10a) (solid lines) and (A7b) (dotted lines) stipulate that the particle radius must
lie well below the solid and below the dotted line. The bounds a provided as function of the outer velocity scale
U0 of the flow and lines with different colours refer to different outer length scales L0 of the flow.

work at finite Reynolds numbers and we assume that the particle radius R is smaller than
the Kolmogorov length scale η. This requirement is identical to the condition (A7b) to
neglect the Basset history contribution to the Stokes equation. It entails that the turbulent
flow is smooth on the length scale of the particles, and a given initial distribution f (x, v, t0)
is propagated to the f (x, v, t) via the Stokes equation.

In order to study the emergence of caustics we consider a system with a finite volume
V and adopt an initial distribution where the particles take velocities that agree with the
surrounding fluid velocity, f (x, v, t0) = V−1 δ(v − u(x, t0)). This amounts to a smooth
three-dimensional manifold M in the six-dimensional phase space.

Due to inertial effects the particle velocities v will deviate from u for t > t0. Eventually,
the projection of M into position space will develop folds due to the emergence of
caustics. When the first caustic forms in a certain region of space, the particle velocity
field v will take three values for a given position, rather than being single-valued.
Any further caustic will add two additional branches to the function. However, the
generation of caustics takes a minimum time Tc (see §§ 3.3 and 4.4). Therefore, for
any finite time the velocity fields will at most take a finite number of values at any
given position x. Moreover, the difference of the velocities in existing branches decays
exponentially due to the exponential relaxation of the Stokes dynamics. Therefore, we
expect that the different branches of the manifold M provide particle velocity fields that
are differentiable for positions that do not lie on the folds. Modern developments in kinetic
theory (Saint-Raymond 2009) might even supply the tools to establish this result in the
limit of occasional particle collisions. This work lies beyond the scope of the present study,
and will be followed up in forthcoming work.

However, in the following study we adopt a Lagrange framework for the dynamics of a
turbulent aerosol. By evaluating the time evolution of a single randomly chosen particle
there is a unique trajectory and particle velocity for any given starting position (x0, v0, t0).
At any times the phase space trajectory under consideration will be located on one of the
folds of the manifold and the gradients that we calculate amount describe the velocity
gradient of the particle field of particles that arrived at the position x via a trajectory in
a small neighbourhood of the reference trajectory. The past of the trajectory determines
the relevant branch of the velocity field. Unless it resides on a fold, there is an open
neighbourhood on the branch where the velocity field is differentiable. Positions on the
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fold are a set of measure zero that represents isolated positions in time when the particle
goes through a caustic. At these instances of time the particle velocity gradients diverge:
a caustic occurs.
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