
CONTRIBUTIONS TO THE THEORY OF THE
LARGEST CLAIM COVER

J. KUPPER

Zurich

In the wake of the technical development of our era we are
increasingly faced with claims of extremely large amounts.

Whereas even in the past century large claims were mostly due
to elemental or natural forces such as earthquakes, hurricanes and
floods, there are today other causes, conditioned by human factors,
that have considerably increased in importance. Another fact to be
observed is that the risks that are passed on to the insurance market
assume a more serious character year by year. Large building com-
plexes, giant tankers, containers, atomic power stations, dams and
jumbo jets pose for the insurers problems which are in no way easy to
solve, since the risk covers required touch the limits of market
capacity and their rating is subject to great uncertainties. At the
same time, the readiness to underwrite such covers is a matter of
utmost importance for the private insurance industry.

For the coverage of such large risks, various insurance forms have
been developed in the past years within the range of non-propor-
tional methods. Besides the excess of loss and stop loss covers in
their usual form, the cumulative loss cover and the largest claim
cover have attracted particular attention. The cumulative risk cover
has, for example, been dealt with in [n] *) and has also been fre-
quently offered in practice. The coverage of the largest claim or,
more generally, of the sum of the n largest claims does not appear to
have gained a proper foothold in practice in spite of various valuable
contributions in this field—considering particularly [2], [3], [5], [8]
and [14]. The fact that it was during 1963/64 that various authors
analysed these problems is no coincidence, for it was then that in
two ASTIN Colloquia these topics were discussed.

The purpose of this presentation is to take up once again these

Figures in [ ] refer to the list of references at the end of this paper.
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thoughts and to give some further results in continuation of the
papers by Ammeter. The author wishes to take this opportunity of
thanking Dr. Ammeter for pointing out to him this interesting line
of subjects.

1. Basic formulas of the largest claim distribution

The risk process in non-life insurance is characterised by two
stochastic variables, the number of claims and the amount of claims.

If

Pr(t) represents the probability that exactly r claims occur in the
period observed, with the expected number of claims t,

S(x) represents the probability that upon occurence of a claim
its amount is < x, and

S*r(x) represents the rth convolution of the distribution function
S(x),

then, the total loss can be expressed on certain simplifying assump-
tions by the well-known formula

F(x, t)=i Pr(t) S » (1)
r - 0

Further, for the first two moments one finds (the subscript
conforms to the corresponding distribution)

Franckx has shown in [8] how the distribution of the largest claim
can be based very simply on the two fundamental distributions of
the risk process. In particular, if

Q(s, t)=i Pr(t) S' (3)
r = 0

is the generating function of the distribution of the number of
claims, we have for the distribution of the largest claim m of a
portfolio the relationship

H(m, t) = Q[S(m), t] (4)
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I36 LARGEST CLAIM COVER

By differentiating with respect to m, one obtains the density
function h(m, t) and from this the moments of the distribution can
be determined. For example, the mean is

V-H ~ I m Hm> t) &m (5)

For the distribution of the number of claims, the classical model
assumes a Poisson process. The assumption of a negative binomial
distribution has, however, proved to be more flexible. Let this be of
the form

with the given fluctuation parameter T. As the generating function
in this case we have

Q(s, t) =

so that for the distribution and the density function of the largest
claim the resultant expressions are

H{tn,t) = i +[i — S(m))jl

him, t) = ts(m) j i + [i - S(m)] ~ j (8)

s(m) is the density function of claim amounts.

2. Variations in the basic distributions

If in (6) T -» oo, then the classical Poisson distribution results
with the generating function

Q(s,t)=e-^'^ (9)

In [2] and [3] Ammeter has closely investigated only this case and
has assumed moreover that the distribution of the amount of claims
obeys a Pareto law

S(m) = 1 — m1-* (10)

The choice of this special form is not only accounted for by the
fact that the results produced can be expressed in quite an elegant
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way but it appears that especially for large claims the adjustment
through a Pareto distribution often turns out to be amazingly good.
The investigations of Benktander and Segerdahl ([6] and [7]) have
moreover furnished additional grounds for the assumption made by
Ammeter.

The Pareto distribution defined under (10) exists in the interval
(1, 00) and has the mean

~ (« > 2) (")
QL 2

The kth moment of the distribution is only then finite when
a >k + 1. However, this restriction is not a very serious one in
practice and it can be overcome by a suitable truncation of,the
distribution.

Considering the Poisson Case (9) the formula (5) reads

iiH = t] ms(m) e-
tll-s{mn dm (12)

If one uses the distribution (10) here, then one obtains, after
some transformations, the result already found by Ammeteri) r
where Ff signifies the incomplete Gamma function. For practical
purposes one can, in most cases, compute with F itself instead of
with F(.

However, the most usual assumption for the distribution of claim
amounts—on account of the relatively complicated evaluation of
formula (1)—is perhaps an exponential distribution. Various authors
(for example [1], [9] and [13]) have already made use of this possibili-
ty which is admittedly fairly crude. It might, therefore, be of in-
terest to elucidate somewhat the effects of the application of such a
distribution instead of (10).

Let the exponential distribution be so chosen that the range and
the mean remain unchanged as compared with (10). This delivers
the formula

S H = I - « - ( J - ! » ( ' » - 1 > (14)

10
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with 1 a — 1

+ a — 2 a — 2
In contrast to the Pareto distribution, there exist here, provided

a > 2, all moments.
If with (14) or its derivation one considers formula (12) and

further substitutes u = te~(a~2) (m-1)> one obtains

,~u du

/ 1 \

= 1 H log* (1 — e~l)
\ 2 /

g ( ) g
a — 2 / a— 2 0

It can be shown that
J <r M log M du = — C — £*(— 0 — e"' log t (16)
0

where C = 0,577 2 I57 • • •, is the Euler's constant and — Ei(— t) =

J e~u/u du denotes the exponential integral.

Accordingly, where t is large, one can compute with the formula

= 1 + —^-z (C + log t) (17)
OC 2
OC

without any loss of accuracy.
The results according to (13) and (17) are indicated in the follow-

ing table for various a on the assumption that t = 100. The values
contained in the first three columns have been already given in [2].

TABLE I

Comparison of the means fxf {total loss), (JLHP (the largest claim jPareto) and
V-HE (the largest claim/exponential)

a

2,25

2,5

2,75

3
3,5
4
5
10

GO

V-F

(I)

500,00

300,00

233.33
200,00

166,67
I5O,OO

133,33
II2,5O
IOO,OO

V-HP

(2)

182,77

57,72

28,73
17,72

9,4°
6,29

3,87
1,80

1,00

[XHP

UF °

(3)

36,6

19,2

12,3
8,9
5,6
4,2

2,9
1,6
1,0

V-HE

(4)

21,73
H,36

7,91
6,l8

4,45
3,59

2,73
1,65
1,00

(JL/fP i 0/

(5)

4.3
3.8
3,4
3,1

2,7

2,4
2,0

1,5
1,0

V-HP

(6)

8,4
5,1

3.6
2,9
2,1

1,8

1,4
1,1

1,0
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IOO I I
Since in the example chosen, = = , the third and the

V V Vfifth columns give an indication of the number of times by which-
the expected value of largest claim exceeds the mean of individual
claims. It is clear that with increasing oc, i.e. with decreasing
"danger" of the distribution (a = oo signifies constant claim
amounts) the given values must decrease. On the other hand, a
comparison of the above two columns shows how significant the
weight of the largest claim is for small a in the case of the Pareto
distribution. For example, whereas for a = 2,25 and the exponential
distribution as the distribution of claim amounts the largest claim
constitutes only 4,3% of the total loss, in the case of the Pareto
distribution it constitutes 36,6%!

This result suggests the conclusion that to operate with the ex-
ponential distribution would be hardly satisfactory in cases where
large claims are likely. In the following studies, therefore, the Pareto
distribution is always postulated.

Proceeding from formula (8) and using the distribution (10), one
obtains for the mean value (5) the expression

tJ (18)

after the usual substitution.
In deriving (13) it was assumed that T -> 00. In the following, the

case where 7" = 1 is examined. For T •= 1, formula (6) reduces to

in words, to a geometric distribution. As in the previous approxi-
mations, it may, without any great loss of accuracy, further be
assumed that the upper limit of the integral can be taken to be 00.

By using the method of partial fractions for the integrand and
then integrating by parts one finds at first

f «i/<«-1> (1 4. uV2du = —^— f M 1 ^
J a — 1 J

(20)

https://doi.org/10.1017/S0515036100010862 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010862


140 LARGEST CLAIM COVER

But now, for o < n < i

it"-1 (i + u)-1 du = =I»r(i— n) (21)
sin mi

0

holds good.
With (20) and (21), one obtains for the expected value of the

largest claim in the case of a geometric distribution

- E~ r £ED r (~) ««>
= r (-~

1 Vx-lJ
if \xHP represents the approximate mean value (F instead of F<)
according to (13).

For 2 < a < 00, the factor I 1 takes values in the interval
1 \oc—1/

(0.886, 1), [iHG therefore lies always slightly below \i.HP—a result
that could hardly be expected on intuition.

3. Excess of loss and the largest claim cover

Generally speaking, an insurance company would not undertake
unlimited liability as has been assumed in the statements made so
far; it will limit its liability to a maximum retention M. The effect
of such an excess of loss reinsurance is that even the largest claim
cannot exceed the amount M.

The probabilistic model can directly be adjusted through a
"truncation" of the distribution of the largest claim. Actually this
is not a truncation in the usual sense (transferring the residual mass
beyond the point of truncation proportionately over the remaining
interval) but a concentration (transferring the residual mass at the
point of truncation M). All claims which turn out to be larger than
M are registered as M—claims (see in this connection [10]).

Since in the case of Poisson and Pareto as basic distributions the
formulas (8) change into

H(m,t) = e-""1""
h(m, t) = t{a. — 1) w"a e~tml
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the new density of the distribution of the largest claim is

h(m, t) 1 <m < M
h{m,t)= i _ e - ^ - a m = M (24)

0 m > M

According to formula (5) we have, therefore, as the mean of this
distribution

fr (—) - r
putting M * = tM1" a for abbreviation.

Obviously, for a fixed M and large values of t, the expected lar-
gest claim (LH tends to the retention M. This follows also from the
above formula (25).

The influence of the concentration in (24) on the next largest
claims can be investigated in a similar way. For example, the
expression for the density function of the second largest claim
without truncation (see [3]) is

#•> (w, t) = t\* - i l w ' - S - " " ' " ' (26)

For the expected value of the second largest claim after concen-
tration we get

jig) = fmh{2) (m, t) dm + M(i — e ' M * — M *e'u *) (27)
1

With the help of the recursion formula for the incomplete Gamma
function

and the result of (25) 1), we obtain for the integral in formula (27)
the expression

(m> t) dm =

V-SP
x) Analogically, we denote the expected value of the largest claim now

by jln*1'.
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and thus, after a slight rearrangement,

£$ P$+ ( - * " " ' ) - ^ ' (28)

The third term can generally be disregarded. For a fixed M and
large values of t, (1^. also tends to M as can be expected intuitively.

Whereas for the untruncated largest claim distribution between
the expected values of the largest and the second largest claim the
relationship

$ $ < « - ' (29)

holds, an additional term must be taken into consideration for
(28). If the term te~f is once disregarded, the ratio of the expected
values in formula (29) is independent of t1), whereas in the case of a
truncated distribution the ratio tends to 1 for increasing t.

4. Influence of the largest claim upon a change in the retention

In view of the position described in the introduction, the insurer
will increasingly be compelled to take a more risk-taking attitude.
The increase in his maximum retention will on the other hand
affect the expected value of the largest claims. This influence, which
may not be insignificant in considering a change, can be investi-
gated with the help of the formula provided in section 3. As in that
section, only the two largest claims are taken into account.

Let the new retention be M > M, specifically M = 2M.
Then

+ M(i — e-Q*)— M(i — e-M*) (30)

if, in a similar manner as before, M * = tM1 ~a is used.

J) This proposition generally holds good since the ratio of the expected
values of the nitl largest claim and of the largest claim can be approximately
given by the simple formula
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Also

— e~M*) — M(i — e~M*)]
\<x — I

or utilising (30)

+ 2[M(i — e"^*)— M(i — <rM*)] (31)

As can be readily seen, the increase represented by (31) can be
very easily derived from formula (30) by multiplying the first term

of this relationship by the factor 1 -\ ) = and by
\ \LSP/ a — 1

doubling the second.
In the special case, M = 2M, still further simplifications result

especially if the relationship

'M* — 2 ^ 2 l " a M*)— e-M*) = M(i + e' )

is taken into consideration.
In deciding on a possible change of the retention it might be

useful to draw a comparison between the increase in the expected
value of the largest claim as derived here and the increase in the
total expected loss.

5. A numerical example
Beard has given in [4] the empirical claim statistics of an Ameri-

can fire portfolio. If for this investigation we ignore intervals of less
than $ 50,000, consider this amount as a unit of account and draw a
graph of the remaining values, we get a hyperbolic figure 1). It
seemed appropriate, therefore, to assume a Pareto distribution for
the basic distribution and, in fact, the x2 test carried out with the
help of the maximum likelihood estimate of a(a = 2,4) gave no
reason to doubt the hypothesis.

1 The 19 unit intervals between $ 50,000 and $ 1 million contain respecti-
vely the following number of cases: 362/82/38/17/10/10/4/4/2/2/3/1/—/—/—/
1/—/1/1. Over $ 1 million there were three more claims registered.
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The value calculated for a is relatively low, which shows the
"dangerous" character of the distribution. According to the model,
claim amounts of $ 15 million and more must still be expected with
a probability of 0.34%0. Since the three largest claims of the statis-
tics together result (no individual details of these claims are given
in the paper) in a claim amount of approximately $ 23.5 million, the
curve should certainly not fall off very rapidly. On the other hand,
out of the total 541 claims incurred (see the footnote) no fewer than
529 are under the $ 0.5 million mark.

An evaluation of formulas (13) and (25) is contained in the fol-
lowing table. It seems reasonable here to proceed on the basis of a
retention M = 100 (i.e. $ 5 million). For computation purposes the
tables given in [12] were used.

TABLE 2
Expected values of the largest claim without and with "truncation"

t

IOO

500

IOOO
5000
10000

V-H

84.5
266,7

437.6
1381,3
2266,3

V-H

45,5
83,8

94,9
99,9
100,0

= M

V-HIV-H in %

53.8
3L4
21,7

7,2
4.4

If we equate t with the observed number 541, we get \LH = 282.1,
or upon conversion an amount of about $ 14 million, a very plausible
order of magnitude. With assumed retention of $ 5 million the
expected largest claim reduces in the same case to approximately
$ 4.3 million.

In the following table a comparison is made between formulas
(28) and (29).

TABLE 3
Expected values of the largest and second largest claim without and with

"truncation" (M = 100)

t

IOO

500
IOOO
5000
10000

84,
266,

437,
1381,
2266

5
7
6
3
3

V-H]

24,1
76,2

125,0

394,7
647,5

28

28

,6

,6

VH

45
83
94
99

IOO

,5

,8
,9
,9
,0

V-H

23
63
83
99
IOO

,5
,0

,9
,9
,0

V-H IV-H

51,6

75.2
88,4

, IOO O
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The statements made at the end of section 3 are confirmed here.
Another interesting fact is how little, for a small t, the expected
value of even the second largest claim is affected by truncation.

TABLE 4

Expected values of the largest claim upon a change in the retention
M = 100

M = 200

t

I O O

5 0 0
IOOO
5000

10000

Pi1' •
( I )

45,5
83,8
94,9
99,9

100,0

( 2 )

9 ,1

37,5
60,3
98,4
99,9

TT)in %

(3)

20,0

44,7
63,5
98,5
99,9

~ (1) ~ (2)
[J-H + (J-H

(4)

69,O
146,8
178,8
199,8
2OO,O

(5)

9,5
46,2
85,2

190,9

199,6

(6)

13,8
3L5
47,7
95,5
99,8

Finally, the results obtained by application of formulas (30) and
(31) are summarised in the preceding table.

Some of the realisations, which have already been made clear to
some extent by the previous explanations, receive confirmation
from the numerical values given above.
—If t is large, a doubling of retention practically leads to a doubling

of the expected value of the largest claim.
—Taking into consideration also the second largest claim results in a

doubling of the amount if t is large, and has little influence if t is
small (9.1 <-> 9.5).

—The percentage increase of the expected values undergoes a
pronounced reduction, if t is not much too large, by inclusion of
the second largest claim.
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