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ASYMPTOTIC ERROR EXPANSIONS FOR 
SPLINE INTERPOLATION 

BY 

H. P. D I K S H I T , A. S H A R M A A N D J. T Z I M B A L A R I O 

ABSTRACT. During the last decade or so there has been a revival 
of interest in the analysis of error- bounds /<S>-S(S) for different 
classes of functions and their interpolatory splines of odd degree on 
a finite interval with variations on end conditions. Our object is to 
present a unified treatment of the asymptotic error expansion both 
for even and for odd degree interpolatory splines. 

1. Introduction. We shall be interested in the class of functions /(x) which 
are continuously difïerentiable with bounded derivatives up to some order on 
the real line and their interpolatory splines S(x) on a uniform mesh. During the 
last decade or so, there has been a revival of interest in the analysis of error 
bounds / ( s ) — S(s) for different classes of functions and their interpolatory 
splines of odd degree on a finite interval with variations on end conditions. It 
appears that this kind of study was first initiated by Birkhoff and de Boor [1] in 
1964 for cubic splines. They showed that the error f'-S' = 0(h3) for cubic 
splines with mesh size h. Almost all the authors consider splines of odd degree 
and concentrate on cubics and quintics. For detailed references, we refer to T. 
R. Lucas [5]. 

Since the problem of interpolation by even degree splines at the knots does 
not always have a solution, they seem to have received little attention. 
However, as Schoenberg [7] points out, interpolation by even degree splines at 
mid-intervals is uniquely solvable. For recent studies on quadratic splines 
interpolating / at the mid-intervals, we refer to Marsden [6] and Kammerer, 
Reddien and Varga [3]. 

Our object in this note is to present a unified treatment of the asymptotic 
error expansion both for even and for odd degree interpolatory splines. In §2 
we give the preliminaries and a statement of the main result. §3 deals with 
some properties of B -splines which will be required later. The proof of the 
main result is presented in §4 and is based on an identity concerning the 
interdependence of the derivatives of a spline and the interpolatory data. Since 
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the periodic splines form a subset of cardinal splines, the results of Lucas [5] 
for odd-degree periodic splines are included in our study. 

2. Statement of main result. Consider a bi-infinite sequence of points {kh}™^ 
and denote by ifn the space of splines of degree n. When n is even, the knot 
sequence will be {(k +|)fi}!!00 and when n is odd, the knots will be taken to be 
{khĵ oo. The existence and uniqueness of a bounded spline S(x)e^n which 
interpolate bounded data is well known [7]. 

Let w(2n+2) denote the class of functions f(x) such that /0 )(x) exists, is 
continuous and bounded on JR for / = 0, 1 , . . . , 2n + 2. We shall prove 

THEOREM 1. Let f(x)eW(2n+2) and let S(jc)eS^n be the spline interpolating 
f(x) at the points {kh}™^. Then 
(a) // n is odd ( = 2m — 1) the following asymptotic formula holds for 0 < s < 
2m —2: 

m - 1 

(2.1) S\s) = f\s) + X A^> mh2 m + 2 f c-7!2 m + 2 k + s^ ) + 0(h4 m~ s) 
fc=0 

where S{s) = S(,)(Ih), f\s} = f(s)(lh), s = 2[s/2] and 

(2-2) 

A(s> B2m+2k^s\ f/2k + s-s\_ /2m-1\1 
2 k m (2m + 2fc-s)-(2m-l)!(2k + s-£)!l\ s J K ' \ s II 

(b) If n is even ( = 2m), we have for 0 ^ s ^ 2 m 

m 

(2.3) sïs) = tfs)+ X Âitmh2m+2k--i{2m+2k+s-§) + 0(h4m+2~§) 
k=0 

where 

(2.4) _ ( 2 — - - DB 2 f c + 2 m_ ss-{( 2 k -x; s-*)- (- ir(2;)} 
Jfel 

2Km (2k + 2 m - s ) 2 2 k + 2 m - 1 ^ ( 2 m ) ! ( 2 f c - l + s - s ) ! 

and Bk in (2.2) and (2.4) are Bernoulli numbers. 

REMARKS. When n = 2, Sf2 denotes the class of quadratic splines with knots 
{ (k+^n}"^ and the nodes of interpolation {kh}^. In this case it follows from 
(2.3) and (2.4) that 

(2.5) s^=fr+~n3)-^~fr+o(h6) 

(2.6) S{» = fP~fP+0(hs). 

If x = (I + t)h, with \t\<|, we have from (2.5) and (2.6) on expanding in Taylor 
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series 

and 

sxx)-nx)=(^-^)h2/p-^/r+o(h6). 

This shows that when t = i S(x)-f(x) = 0(h4) and when t = 1/2V3, 
S'(x)-f(x)0(h3). 

3. Auxiliary results. We recall that the forward B -splines for cardinal 
splines of degree n are given by 

(3.1) Qn+1(x) = -i- I ' (~ir(n + *)(* - y)î 

and the central B -spline is given by 

(3.2) M n + 1 ( x ) = Q n + 1 ( x + ~ ) . 

Let i//n+1(w) = (2sin |u/u)n + 1 . It is known [6] that 

Mn+1(x) = ^- f ipn+1(u)eixu du. 
2TT J_OO 

Then for any integer v and for any integer s for which M^+xiv) has a meaning, 
we have 

(3.3) Mi:l1(v) = ^~ f (iuY*n+i(u)e™du=^- f " ^ . . ( u ^ d u 
Z7T J_oo 277 J0 

where 

(3.4) *ri+i.a(M) = (- l ) s / 2Ë(M+2ir/) s0n + 1(u + 27rj) 

By inversion, from (3.3) we get 

(3.5) U W = W i i M « " i w -

From (3.4) we can rewrite <£n+i,s(w) in a form which we shall need later. 
Indeed we have 

1 . U+277j \ n + 1 

2 sin — - — \ 
(3.6) *n+i.s(") = ("l) s / 2 I (u + 2TTJ> 

M + 27TJ 
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We recall that 

u ^ 1 oot-=I , 
2 _ooU 

cosec 
(-iy 

2 -ooM 

2 + VJ 

u y 

so that from (3.6), it follows that when n is odd ( = 2 m - l ) , 

/y\-(s/2)-122m~1 I i A 2 m / , A ( 2 ^ - s - i ) 
(3.7) 4>2m,S(w)=-

( 2 m - s - l ) ! 

and when n is even (=2m), 

/ . uVm( u\ 

(3.8) * * ~ i » = (2m-s)! lSm2J lCOSeC2J 

where (cot u/2)(k) denotes the kth derivative of cot u/2. Set 

(2m-s) 

(3.9) 

and let 

^ u I = Z «n,fc«2 

(3.10) / S ^ H 

(-1) 
k+s + 1 D 

# 2 

2 k ( 2 k - 2 m + s ) ! ( 2 m - l - s ) ! ' 

( - l ) ^ - 1 ( 2 2 k - 1 - l ) B 2 k 

^2k22k~1(2k - 2m + s - 1)! (2m - s)! 

where B2k denote Bernoulli numbers. We shall prove 

n — 2m — 1 

, n = 2m 

LEMMA 1. The function </>n+i,s(w) fias the following power series expansion: 
(a) If n = 2m -1, we have 

(3.11) 

where 

(3.12) «2m,fc=S 

^2 m >) = (-D3S/2I«2tfc"
2k+S 

0 

a2m,k, fc=0,1, . . . , m - ^ - J - l 

« 2 m , k + Z 0 2 m , j « 2 m , k - p k>m~ " • 
j=m-[s /2] L Z J 

(b) If n = 2m, we have 

(3-13) <fcm + i» = (-l)s/2 £ a&+1>fcM
2k+' 
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where 

<*2m+i,k> k = 0 , 1 , . . . , m - [^J - 1 

(3.14) a&+1 , f c = i 

c*2m + l , k + 2 - P2Sm + l J a 2 m + l ,k-j? ^ — m | ^ • 
L j = m - 0 / 2 ] LZJ 

REMARK. We must observe that when s = 0, the numbers a ^ k a r e n o t 

always the same as «2m,k without the superscript 0. 

Proof. The proof of this Lemma is a simple consequence of the expansion 
(3.9) and the following known ([2], pp. 334-335) Laurent expansions of cot u/2 
and cosec ufs : 

(3.15) ^2=2 + 2 J h g B a ^ - a 
2 u k=1 (2k)! 

u 2 , „ v ( - l ) k - 1 (2 2 k - ' 1 - l )B 2 k 2k_, 
(3.16) cosec - = - + 2 X 

2 u ^ k t 1 ! (2k)!22k~1 M 

Differentiating (3.15) 2m —s —1 times and using (3.7) and (3.9), we get (3.11). 
Similarly from (3.16), (3.8) and (3.9), we get (3.13). 

LEMMA 2. For any S(x)eSfn and for any non-negative integer s for which 
DsSi =DsS\s = lh, (D = d/dx) has a meaning, we have the following identity: 

(3.17) <hl+1(-ihD)DaSl = h-a^+ l f S(-i»iD)Si 

for any integer I. 

Proof. Set 

Qn+1(x) = - I ( - i r Kx-vh)l. 
n!„ = 0 \ v / 

Then Qn+1(x) = h"Qn+1(x/h). Similarly we have 

(3.18) A t + i ( x ) - Q B + 1 ( x + ^ h ) = h"A4+i(x). 

Since every spline S(x)e5^n has a unique representation in terms of B-splines, 
viz., 

S(x) = X cJVd^+^x - vh\ 
—oo 

and since obviously we have 
oo oo 

X M„+1(x + /Jt)M^1(x - / h + /h) = I M(„sli(x + /Ji)M„+1(x - jh + Ih) 
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for any integer J, it follows that 

(3.19) £ M n + 1 ( x + / h ) S ( s ) ( x ^ 
—oo —oo 

Putting x = 0 in (3.19) and using (3.18), we get 

(3.20) £ M^GOD'S,., . = h~s £ M^UOS^. 
— oo —oo 

If we use the shift operator E = ehD, we have 

D'Si-j = E~iDsSl = Dse~]hDSl 

so that (3.20) becomes 

(3.21) [ £ Mn+l{j)e-^D"Sx = h~s{£ M ^ G ^ ^ J s , 

Using (3.5) and (3.21), we get (3.17) where <f)n+10(u) = cf)n+1(u). 

4. Proof of Theorem 1. Since the proofs for the cases n odd and n even are 
very close and the same is true for s odd and s even, we shall sketch an outline 
of the proof only when n is even (=2m) and s is even. 

If in the identity (3.17), we replace DsSt by 

(4.1) F[s) = f\s) + £ Ag , m h 2 m + 2 k -YP m + 2 k + s - s ) 

k=0 

and Si by fh then the error Ensl is given by 

(4.2) EnM = cj)n+1(~ihD)F\s)-h'~s<f>n+Us(-ihD)fl 

where A££m are given by (2.4). We shall use (3.10), (3.13) and (3.14) in (4.2) 
This gives 

This gives 

^ 0 / \ k=o / 

h->(t «^+i,^2fc+s02fc+s)/, 

c=0 / xk=C 

In this sum, Y2m+i,k = 0 for fc = 0 , 1 , . . . , m - ( s / 2 ) - 1 and for m - ( s / 2 ) < f c < 
2m - (s/2), 72m+i,k again vanishes because of (3.14) and (2.4). This proves that 

(4.3) En^ = 0(h4m+2~s). 
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Set 

(4.4) ô[s) = S[ s )-F[ s ) . 

Subtracting (4.2) from (3.17), we get from (4.3) 

(4.5) d>n+1(-ihD)8[s) = 0 (h 4 m + 2 " s ) . 

Observing that (3.17) and (3.20) are equivalent, we replace (4.5) by 

(4.6) £ M2m+1(i-j)Sf= 0 ( h 4 m + 2 - ) . 

The matrix A = (M2 m+i(i-])) is a banded symmetric Toeplitz matrix with 
2m 4-1 successive non-zero elements in each row. The associated polynomial in 
this case is p2m(x) where 

m 

p2m(x) = 22m(2m)lxm I M2m+1(jV. 
j = -m 

Schoenberg [7] has shown that this polynomial has simple, negative zeros 

^ 2 m < ^ 2 m - l < * ' * < f W l < ~ 1 < ^m < * ' *<M' 1 <0 

such that 

W2m-i = h J = 0 , 1 , . . . , m - l . 

Hence 
m 

p2m(x) = Kmxmnu+q+^_1) 
J = l 

where c,- = jû  + |ui2m-j > 2 . Following Kershaw [4], we see that for the matrix A 
defined above, we have 

m 

A=KAI1A-
1=1 

where A;- is a banded three diagonal circulant matrix with a row of the form 
(0 • • • 1 cjr 1 • • •) with q > 2. Hence 

1 m 

iiA-'iN^miAnK». 
A m j = l 

Since ||A_1|| is uniformly bounded it follows from (4.6) that 

| |ôJ
(s )IU=o(h4m+2-s), 

which concludes the proof of the theorem. 

5. Conclusion. The methods used above can be adapted to find higher order 
terms in the expansions (2.1) and (2.3) when the function has a higher degree 
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of differentiability. Also for odd-degree splines of degree n similar expansions 
can be obtained for S[+) and S^ by using the above results. It would be 
interesting to know what kind of results hold for other kinds of interpolatory 
conditions such as Hermite and lacunary conditions. 
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