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Infinite Families of A4-Sextic Polynomials

Joshua Ide and Lenny Jones

Abstract. In this article we develop a test to determine whether a sextic polynomial that is irreducible
over Q has Galois group isomorphic to the alternating group A4. This test does not involve the com-
putation of resolvents, and we use this test to construct several infinite families of such polynomials.

1 Introduction

The classical inverse Galois problem—to determine if a particular finite group can be
realized as a Galois group of some polynomial over Q—dates back at least to 1892,
when Hilbert gave families of polynomials having Galois group isomorphic to the
symmetric group. However, he was unable to give such a parameterized family of
polynomials having Galois group isomorphic to the alternating group. For a good
account of the history of this problem and a modern treatment of the techniques, see
[MM].

In this article we develop a test to determine whether a sextic polynomial that is
irreducible over Q has Galois group isomorphic to the alternating group A4. The
test is simple to apply and does not involve the computation of resolvents. As an
application, we use the test to construct several infinite families of such polynomials.
More precisely, we prove the following theorem.

Theorem 1.1 Let f (x) ∈ Z[x] be a sextic polynomial that is irreducible over Q .
Suppose that f (θ) = 0 and that Q(θ) contains a subfield Q(φ) such that g(φ) = 0,
where g(x) ∈ Z[x] is a cubic polynomial that is irreducible over Q . If both ∆( f ) and
∆(g) are squares in Z, then Gal( f ) ' A4.

Corollary 1.2 Let g(x) ∈ Z[x] be a monic cubic polynomial such that f (x) := g(x2)
is irreducible over Q . If both ∆( f ) and ∆(g) are squares in Z, then Gal( f ) ' A4.

We use Theorem 1.1 and Corollary 1.2 to prove the following theorem.

Theorem 1.3 Let A,B,m, d ∈ Z and define the following infinite families of polyno-
mials:

F1 =
{

x6 + A2x4 − B2x2 −m2
∣∣ AB = 3m with m 6≡ 0 (mod 3)

}
,

F2 =
{

x6 + (d2 + d + 4)m2x4 + 3m4x2 −m6
}
,
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F3 =
{

x6 + (d + 3m2)x4 + dm2x2 −m6
∣∣ m ≡ 1 (mod 2)

}
.

Let f ∈ Fi for any i ∈ {1, 2, 3}. Then f ∈ Fi is irreducible over Q and Gal( f ) ' A4.

Theorem 1.4 Define an infinite family F4 of polynomials as follows. For a, b, c ∈ Z,
the polynomial f (x) = x6 − bx4 + acx2 − c2 is an element of F4 if and only if f (x) is
irreducible over Q and ∆(g) is a square in Z, where g(x) = x3 + ax2 + bx + c. Then
every polynomial f ∈ F4 has Gal( f ) ' A4.

2 Definitions and Preliminaries

Throughout this paper, we let ∆( f ) denote the discriminant over Q of the polyno-
mial f (x), and if f (x) is irreducible over Q , we let Gal( f ) denote its Galois group
over Q . For an algebraic number field K, we let ∆(K) denote the discriminant of
K over Q , and we let ZK denote the ring of algebraic integers of K. For the sake of
brevity, unless stated otherwise, when we say a polynomial is irreducible or reducible,
we mean irreducible over Q or reducible over Q . The following theorems are needed
in the sequel.

Theorem 2.1 ([C]) Suppose that deg( f (x)) = n. If f (x) is irreducible, then Gal( f )
is isomorphic to a subgroup of the alternating group An if and only if ∆( f ) is a square
in Z.

Theorem 2.2 ([C]) Let f (x) be a sextic polynomial that is irreducible. Suppose that
f (θ) = 0 and let K = Q(θ). If K contains a cubic subfield and ∆( f ) is a square in Z,
then Gal( f ) ' S4 or Gal( f ) ' A4.

The following theorem is due to Stickelberger.

Theorem 2.3 ([C]) Let p be an odd prime, and suppose that f (x) ∈ Fp[x] is such
that deg( f ) = n ≥ 2 and ∆ := ∆( f ) 6≡ 0 (mod p). If k is the number of monic
irreducible factors of f (x), then (∆/p) = (−1)n−k, where (∆/p) is the Legendre symbol
modulo p.

3 Proof of Theorem 1.1 and Corollary 1.2

3.1 Proof of Theorem 1.1

We have immediately from Theorem 2.2 that Gal( f ) ' S4 or Gal( f ) ' A4. Since
[Q(φ) : Q] = 3 and ∆(g) is a square in Z, we deduce from Theorem 2.1 that Q(φ) is
a normal extension of Q . Thus, Gal( f ) contains a normal subgroup of index 3, and
hence Gal( f ) ' A4.

3.2 Proof of Corollary 1.2

Suppose that f (θ) = 0. Then g(φ) = 0, where φ = θ2. Since f (x) is irreducible, we
have that g(x) is irreducible, and hence the corollary follows from Theorem 1.1.
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4 Proof of Theorem 1.3

The proof is divided into three sections according to the three cases f ∈ Fi for i ∈
{1, 2, 3}. In each case, we let f (x) = g(x2), F = Q(θ), and K = Q(θ2), where
f (θ) = 0. Using Corollary 1.2, we only need to establish that f (x) is irreducible and
that both ∆( f ) and ∆(g) are squares in Z. Although the proofs in all three cases are
similar, we provide the basic details in each situation. The following lemma is useful
in all three cases.

Lemma 4.1 Let a, b, c ∈ Z. Let g(x) = x3 + ax2 + bx− c2 and f (x) = g
(
x2
)
. Then

∆( f ) is a square in Z.

Proof A simple calculation gives

∆( f ) = 26c2(4b3 + 27c4 + 18abc2 − a2b2 − 4a3c2)2.

4.1 The Proof of Theorem 1.3 for F1

We wish to show that f (x) is irreducible. To do this, we first show that g(x) is irre-
ducible. In general, the irreducibility of g(x) is not equivalent to the irreducibility
of f (x). However, in this situation the irreducibility of f (x) follows from the irre-
ducibility of g(x). We prove a lemma that is slightly more general than needed, but
it is of some interest in its own right. The irreducibility of g(x) will then follow as a
special case.

Lemma 4.2 Let A,B,m ∈ Z with AB ≡ 0 (mod 3), but AB 6≡ 0 (mod 9), and
m 6≡ 0 (mod 3). Then g(x) = x3 + A2x2 − B2x −m2 is irreducible.

Proof By way of contradiction, assume that g(x) is reducible and write

g(x) = (x − a)(x2 + bx + c) = x3 + (b− a)x2 − (ab− c)x − ac.

Equating coefficients yields the system of Diophantine equations:

m2 = ac,(4.1)

B2 = ab− c,(4.2)

A2 = b− a.(4.3)

Since m 6≡ 0 (mod 3), we have from (4.1) that a ≡ c ≡ 1 (mod 3) or a ≡ c ≡ 2
(mod 3). Note that the hypotheses on A and B imply that

A2 + B2 ≡ 1 (mod 3).

Hence, from (4.3) and (4.2), we have that

(4.4) b− a + ab− c ≡ 1 (mod 3),

which yields a contradiction if a ≡ c ≡ 2 (mod 3). Therefore, a ≡ c ≡ 1 (mod 3),
and it follows from (4.4) that b ≡ 0 (mod 3). But then we see from (4.2) that B2 ≡ 2
(mod 3), which is impossible.
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The special case of Lemma 4.2 that is of interest to us here is g(x) = x3 + A2x2 −
B2x−m2 with AB = 3m and m 6≡ 0 (mod 3). We therefore assume these conditions
hold for the remainder of this section. Without loss of generality, we assume that
A,B,m ∈ Z+.

We are now in a position to establish the irreducibility of f (x) over Q . Assume
that f (x) is reducible over Q so that [F : Q] < 6. Since g(x) is irreducible, we have
that [K : Q] = 3, and since [K : Q] divides [F : Q], we conclude that [F : Q] = 3.
Thus, θ is a zero of an irreducible cubic h(x) = x3 + ax2 + bx + c ∈ Z[x]. Note that
−θ is a zero of h(−x) and f (x). Since h(−x) 6= −h(x), it follows that

f (x) = −h(x)h(−x) = x6 + (2b− a2)x4 − (2ac − b2)x2 − c2.

Equating coefficients and including the restriction that AB = 3m results in the fol-
lowing system of Diophantine equations:

A2 = 2b− a2,(4.5)

B2 = 2am− b2,(4.6)

AB = 3m.(4.7)

Solving for b in (4.5) and for m in (4.7), and then substituting into (4.6) gives the
single equation

(4.8)
3A4 + 12B2 + 6a2A2 + 3a4

4
= 2aAB.

Observe that b > 0 from (4.5), and a > 0 from (4.6), since m > 0. Hence, from (4.6)
we have

(4.9) 3am > 2am = B2 + b2 > B2.

Then, using the arithmetic-geometric mean inequality, (4.7) and (4.9), it follows that

3A4 + 12B2 + 6a2A2 + 3a4

4
≥ 4
√

3A4 · 12B2 · 6a2A2 · 3a4

= 3
(

4
√

8
)

aA
(√

aAB
)

= 3
(

4
√

8
)

aA
(√

3am
)

> 3
(

4
√

8
)

aAB > 2aAB,

which contradicts (4.8). Thus, f (x) is irreducible.
We show now that ∆(g) is a square in Z. Using the fact that B = 3m/A, we have

∆(g) = −27m4 + 18m2A2B2 + A4B4 + 4A6m2 + 4B6

= 216m4 + 4A6m2 + 4
( 729m6

A6

)
= 4
( m2A12 + 54m4A6 + 729m6

A6

)
= 4
( mA6 + 27m3

A3

) 2

= 4
(

mA3 +
( 3m

A

) 3) 2
= 4(mA3 + B3)2,

so that ∆(g) is a square in Z.
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Finally, ∆( f ) is a square in Z by Lemma 4.1, and hence Gal( f ) ' A4 by Corol-
lary 1.2. This completes the proof for F1.

4.2 The Proof of Theorem 1.3 for F2

Let d,m ∈ Z and let g(x) = x3 + (d2 + d + 4)m2x2 + 3m4x −m6. Since

ĝ(x) := (1/m6)g(m2x) = x3 + (d2 + d + 4)x2 + 3x − 1

is irreducible by the Rational Zero theorem, it follows that g(x) is also irreducible. To
see that f (x) is irreducible, we show that

f̂ (x) := ĝ(x2) = x6 + (d2 + d + 4)x4 + 3x2 − 1 = (1/m6) f (mxt)

is irreducible. It is easy to check that f̂ (x) is irreducible if d ∈ {−1, 0}. So, suppose
that d 6∈ {−1, 0} and assume, by way of contradiction, that f̂ (x) is reducible. Since
ĝ(x) is irreducible, we may write, as in the proof for F1, that f̂ (x) = −h(x)h(−x),
where h(x) = x3 + ax2 + bx + c ∈ Z[x] is irreducible over Q . Thus,

f̂ (x) = −h(x)h(−x) = x6 + (2b− a2)x4 − (2ac − b2)x2 − c2.

Equating coefficients gives the following system of Diophantine equations:

c2 = 1,

b2 − 2ac = 3,(4.10)

2b− a2 = d2 + d + 4.(4.11)

Subtracting (4.11) from (4.10) and adding c2 + 1 to both sides, we obtain

(b− 1)2 + (c − a)2 = −d2 − d + 1,

which is impossible, since−d2−d +1 < 0 for all d 6∈ {−1, 0}. Thus, f̂ (x), and hence
f (x), is irreducible.

From Lemma 4.1, we have that ∆( f ) is a square in Z, and a simple computation
gives

∆(g) = m12(d2 + d + 7)2(2d + 1)2,

which completes the proof for F2.

4.3 The Proof of Theorem 1.3 for F3

Let d,m ∈ Z with m odd, and let g(x) = x3 + (d + 3m2)x2 + dm2x−m6. We show first
that g(x) is irreducible. Let ∆ := ∆(g) and let p be an odd prime such that p 6 | ∆.
Since

∆ = m4(d2 + 3dm2 + 9m4)2,

we have that (∆/p) = 1. On the other hand, Theorem 2.3 implies that (∆/p) =
(−1)3−k, where k is the number of irreducible monic factors of g(x) modulo p. Thus
k = 1 or k = 3. If k = 1, then g(x) is irreducible modulo p, and hence irreducible
over Q . So, assume that k = 3 for all odd primes p 6 | ∆. That is, g(x) factors
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completely into linear factors modulo all such primes. Therefore, by the Chebotarëv
density theorem, g(x) factors completely into linear factors in Z[x]. Thus

g(x) = (x − a)(x − b)(x − c) = x3 − (a + b + c)x2 + (ab + ac + bc)x − abc

for some a, b, c ∈ Z. Equating coefficients gives the system of Diophantine equations:

m6 = abc,(4.12)

dm2 = ab + ac + bc,(4.13)

d + 3m2 = −(a + b + c),(4.14)

Since m is odd, we see from (4.12) that a, b, and c are odd, which implies that a+b+ c
and ab+ac +bc are also odd. Thus, if d is odd, then d+3m2 is even, which contradicts
(4.14), and if d is even, then dm2 is even, which contradicts (4.13). Hence, g(x) is
irreducible.

To establish the irreducibility of f (x), we assume that f (x) is reducible and pro-
ceed as in the previous cases. Since g(x) is irreducible, we may write f (x) =
−h(x)h(−x), where h(x) = x3 + ax2 + bx + c ∈ Z[x] is irreducible over Q . Thus,

f (x) = −h(x)h(−x) = x6 + (2b− a2)x4 − (2ac − b2)x2 − c2

and, equating coefficients, we arrive at the following system of Diophantine equa-
tions:

m6 = c2,(4.15)

dm2 = b2 − 2ac,(4.16)

d + 3m2 = 2b− a2.(4.17)

Subtracting (4.16) from (4.17) we get

(4.18) d + 3m2 − dm2 = 2b− a2 − b2 + 2ac.

Note from (4.15) that c is odd, since m is odd. Hence, reduction modulo 4 of (4.18)
yields

3 ≡ 2b− a2 − b2 + 2a (mod 4),

which can be rewritten as

(4.19) 3 ≡ (a− 1)2 + (b− 1)2 (mod 4).

Since (4.19) is easily seen to be impossible, we deduce that f (x) is irreducible.
An easy computation gives

∆(g) = m4(d2 + 3dm2 + 9m4)2,

and ∆( f ) is also a square in Z by Lemma 4.1. This case then follows from Corol-
lary 1.2, which completes the proof of the theorem.

Remark 4.3 The family F3 is given in [S] but the proof uses resolvents. A proper
subset of F3 is handled in [ESW] without the use of resolvents.
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5 Proof of Theorem 1.4

Let a, b, c ∈ Z. Let f (x) = x6 − bx4 + acx2 − c2, and assume that f (x) is irreducible.
Let g(x) = x3 + ax2 + bx + c and assume that ∆(g) is a square in Z. Let φ1, φ2 and φ3

be the zeros of g(x), so that

a = −(φ1 + φ2 + φ3),

b = φ1φ2 + φ1φ3 + φ2φ3,

c = −φ1φ2φ3.

Then

f
(√

φ1φ2

)
= (φ1φ2)3 − b(φ1φ2)2 + ac(φ1φ2)− c2

= (φ1φ2)3 − (φ1φ2 + φ1φ3 + φ2φ3)(φ1φ2)2

+ (φ1 + φ2 + φ3)(φ1φ2φ3)(φ1φ2)− (φ1φ2φ3)2 = 0,

which implies that

(5.1)
[

Q
(√

φ1φ2

)
: Q
]

= 6,

since f (x) is irreducible.
We show now that g(x) is irreducible. By way of contradiction, assume that g(x)

is reducible. Since ∆(g) is a square in Z, we have by Theorem 2.1 that g(x) splits
completely over Q so that φ1, φ2, φ3 ∈ Q . But then [Q(

√
φ1φ2) : Q] ≤ 2, which

contradicts (5.1). Hence, g(x) is irreducible.
Note that Q(

√
φ1φ2) contains −c/φ1φ2 = φ3, and since g(x) is irreducible, we

have that Q(φ3) is a cubic subfield of Q(
√
φ1φ2). Finally, since

∆( f ) = 26c6(27c2 + 4b3 + 4a3c − 18abc − a2b2)2,

it follows from Theorem 1.1 that Gal( f ) ' A4.
To complete the proof of the theorem, we must show that the set F4 is infinite.

Observe that x6 + 9x4− 16x2− 16 ∈ F4 ∩F1. On the other hand, x6 + 9x4− 256x2−
256 ∈ F4 − F1. In fact, we claim that f (x) = x6 + 9x4 − c2x2 − c2 ∈ F4 − F1 for
all c ∈ Z with c 6≡ 0 (mod 3). It is clear that f (x) 6∈ F1. To establish the claim,
it is then enough to show that f (x) is irreducible, since ∆(g) = 4(c2 + 27)2, where
g(x) = x3 + cx2 − 9x − c.

We proceed as in the proof of Theorem 1.3 and show first that g(x) is irreducible.
By way of contradiction, assume that g(x) is reducible and write

g(x) = (x + r)(x2 + sx + t) = x3 + (r + s)x2 + (rs + t)x + rt,

for some r, s, t ∈ Z. Equating coefficients gives the system of Diophantine equations:

rt = −c,(5.2)

rs + t = −9,(5.3)

r + s = c.(5.4)

Combining (5.2) and (5.4) to eliminate c, solving for s, and substituting back into
(5.3) yields r2 = 1 + 8/(t + 1), which implies that t + 1 divides 8 and t ≥ 0. Clearly,
g(0) 6= 0, so t 6= 0. Hence, t ∈ {1, 3, 7}. But then r2 ∈ {5, 3, 2}, which is impossible.
Thus, g(x) is irreducible.
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Recall from above that if φ1, φ2, and φ3 are the zeros of g(x), then f (
√
φ1φ2) = 0.

Also, F contains K, where F = Q(
√
φ1φ2) and K = Q(φ3). Assume that f (x) is

reducible so that [F : Q] < 6. Since g(x) is irreducible, we have that [K : Q] = 3, and
since [K : Q] divides [F : Q], we conclude that [F : Q] = 3. Thus,

√
φ1φ2 is a zero of

an irreducible cubic h(x) = x3 + rx2 + sx + t ∈ Z[x]. Note that −
√
φ1φ2 is a zero of

h(−x) and f (x). Since h(−x) 6= −h(x), it follows that

f (x) = −h(x)h(−x) = x6 + (2s− r2)x4 − (2rt − s2)x2 − t2.

Equating coefficients results in the following system of Diophantine equations:

t2 = c2,(5.5)

2rt − s2 = c2,(5.6)

2s− r2 = 9.(5.7)

Equating (5.5) and (5.6), adding the resulting equation to (5.7), and completing the
square on s, and then on r and t gives

−(s− 1)2 − (r − t)2 = 8,

which is impossible. Hence, f (x) is irreducible, and the proof of the theorem is
complete.
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